2024 Vol. 44, No. 6
Article Contents

WANG Xuelian, MIAO Yunfa, NIU Gaihong, ZHOU Yingying, YANG Yongheng, ZHANG Teng, ZHAO Yongtao, MENG Qingquan, SONG Chunhui, ZHANG Yang. The discovery of Podocarpium from the Miocene of Qaidam Basin and its biogeographic implication[J]. Quaternary Sciences, 2024, 44(6): 1482-1494. doi: 10.11928/j.issn.1001-7410.2024.06.02
Citation: WANG Xuelian, MIAO Yunfa, NIU Gaihong, ZHOU Yingying, YANG Yongheng, ZHANG Teng, ZHAO Yongtao, MENG Qingquan, SONG Chunhui, ZHANG Yang. The discovery of Podocarpium from the Miocene of Qaidam Basin and its biogeographic implication[J]. Quaternary Sciences, 2024, 44(6): 1482-1494. doi: 10.11928/j.issn.1001-7410.2024.06.02

The discovery of Podocarpium from the Miocene of Qaidam Basin and its biogeographic implication

  • Fund Project:

    国家自然科学基金项目(批准号: 42202029和42271176)、国家自然科学基金国际(地区)合作与交流项目(批准号: 42161144012)、科技部第二次青藏高原综合科学考察研究项目(批准号: 2019QZKK0707)、中国科学院"西部之光-西部交叉团队"重点实验室专项项目(批准号: xbzg-zdsys-202204)和甘肃省自然科学基金项目(批准号: 24JRRA087)共同资助

More Information
  • Podocarpium is an extinct genus of the family Fabaceae that was widely distributed in the Eurasian continent during Cenozoic. But the lack of fossil evidence from key regions and critical time points limits the understanding of its evolutionary and distributional history. In this study, we focus on the Middle Miocene Podocarpium of the Naoge section in the Qaidam Basin, located in the northeastern of the Tibetan Plateau. By integrating global fossil records from the Cenozoic, this paper provides a comprehensive overview of the biogeographical history of the genus and discusses how environmental changes influenced its evolution, based on accurately dated specimens from the Tibetan Plateau. The Naoge section is located about 43 km south of Gahai Town, Delingha City, in the northeastern of the Qaidam Basin, with a thickness of approximately 3300 meters. Exposed are the Upper Cretaceous Quanyagou Formation, the Miocene to Pliocene Lower Youshashan Formation, Upper Youshashan Formation, and the Shizigou Formation. The fossil specimens in this study were collected from the Upper Youshashan Formation of the section, at an elevation of 2100 meters, within greenish-gray muddy siltstone. According to paleomagnetic dating, the geological age of the fossil layer is approximately 11 Ma. Our results show that the well-preserved fossil fruits and leaves of the Podocarpium podocarpum were described from the Middle Miocene of the Qaidam Basin, northeast Tibetan Plateau. Furthermore, fossil records from the Tibetan Plateau indicate that the genus had its highest diversity during the Miocene, with a distribution pattern synchronous with global trends, supporting the possibility that the Podocarpium spread and dispersed via low-latitude routes. Thus, global aridification and cooling are unlikely to be the primary causes of the range contraction of the Podocarpium. Instead, further uplift of certain areas of the Tibetan Plateau after the Miocene, by altering precipitation patterns, which may have contributed to the reduction of the Podocarpium's distribution in inland Asia.

  • 加载中
  • [1]

    Li W C, Huang J, Chen L L, et al. Podocarpium (Fabaceae) from the Late Eocene of central Tibetan Plateau and its biogeographic implication[J]. Review of Palaeobotany and Palynology, 2022, 305: 104745. doi: 10.1016/j.revpalbo.2022.104745.

    [2]

    Han F, Yang T L, Zhang K X, et al. Early Oligocene Podocarpium (Leguminosae)from Qaidam Basin and its paleoecological and biogeographical implications[J]. Review of Palaeobotany and Palynology, 2020, 282: 104309. doi: 10.1016/j.revpalbo.2020.104309.

    [3]

    Heer O. Die Tertiäre Flora der Schweiz, Vol. 3[M]. Winterthur: Verlag der lithographischen Anstalt von Wurster and Comp. Schweiz: Karger Press, 1857: 1-94.

    [4]

    Kirchheimer F. Die Laubgewa¨chse der Braunkohlenzeit[M]. Halle: Veb Wilhelm Knapp Verlag. Germany: Alle Rechte Vorbehalten, 1957: 1-783.

    [5]

    Braun A. Ubersicht der Geognostischen und Allgemeinen Palaeontologischen Verhaltnisse Badens[M]//Stizenberger E ed. Ubersicht der Versteinerungen des Grosherzogthums Baden. Freiburg: Verlag der Universitats-Buchhandlung von J. Diernfellner, 1851: 8-143.

    [6]

    李浩敏, 邵家骥, 黄姜侬. 江苏南京地区晚第三纪植物[J]. 古生物学报, 1987, 26 (5): 563-575.

    Li Haomin, Shao Jiaji, Huang Jiangnong. Some Neogene plant fossils from Nanjing area, Jiangsu[J]. Acta Palaeontologica Sinica, 1987, 26(5): 563-575.

    [7]

    Raven P H, Polhill R M. Advances in Legume Systematics[M]. UK: Royal Botanic Gardens, 1981: 1-383.

    [8]

    Herendeen P S. Podocarpium Podocarpum comb. nov., the correct name for Podogonmm korrii Heer, nom. illeg. (fossil Fabaceae)[J]. Taxon, 1992, 41: 731-736. doi: 10.2307/1222400

    [9]

    中国新生代植物编写组. 中国植物化石第三册, 中国新生代植物[M]. 北京: 科学出版社, 1978: 1-383.

    WGCPC (Writing Group of Cenozoic Plants of China). Fossil Plants of China (Vol. 3): Cenozoic Plants from China[M]. Beijing: Science Press, 1978: 1-383.

    [10]

    Wang Q, Dilcher D L, Lott T A. Podocarpium A. Braun ex Stizenberger 1851 from the Middle Miocene of Eastern China, and its palaeoecology biogeography[J]. Acta Palaeobotanica, 2007, 47 (1): 237-251.

    [11]

    王祺. 山东中新世山旺植物群中豆荚属的名实问题[J]. 植物分类学报, 2006, 44 (2): 197-203.

    Wang Qi. On the identity of Podogonium Heer 1857, nom. illeg. (Leguminosae) from the Miocene Shanwang flora of Shandong[J]. Acta Phytotaxon Sinica, 2006, 44 (2): 197-203.

    [12]

    刘耕武. 伏平粉属(新属)Fupingopollenites gen. nov. 及其时空分布[J]. 古生物学报, 1985, 24 (1): 64-70+144.

    Liu Gengwu. Fupingopollenites gen. nov. and its distribution[J]. Acta Palaeontologica Sinica, 1985, 24 (1): 64-70+144.

    [13]

    Hantke R. Die Fossil Flora der Obermiozänen Oehninger-Fundstelle Schrotzburg (Schienerberg, SüdBaden)[D]. Zürich: The Doctor's Thesis of Eidgenössische Technische Hochschule Zürich, 1954: 1-118.

    [14]

    Rüffle L. Die obermiozäne (sarmatische) flora vom Randecker Maar[J]. Paläontologie Abhandlungen, 1963, 1 (3): 139-298.

    [15]

    Endo S, Fujiyama I. Some Late Mesozoic and Late Tertiary plants and a fossil insect from Thailand[M]//Kobayashi T, Toriyama R eds. Contributions to the Geology and Palaeontology of Southeast Asia 31. Tokyo: University of Tokyo Press, 1966: 191-194.

    [16]

    Ishida S. The Noroshi flora of Noto Peninsula, Central Japan[J]. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 1970, 37 (1): 1-112.

    [17]

    Chaney R. A Pliocene flora from Shansi province[J]. Bulletin of the Geological Society of China, 1933, 12 (1-2): 129-144. doi: 10.1111/j.1755-6724.1933.mp12001012.x

    [18]

    Gregor H J, Hantke R. Revision der fossilen Leguminosengattung Podogonium Heer (=Gleditsia Linné) aus dem europäischen Jungtertiär[J]. Feddes Repertorium, 1980, 91 (3): 151-182. doi: 10.1002/fedr.19800910303

    [19]

    Zastawniak E. Sarmatian leaf flora from the southern margin of the Holy Cross Mts. (South Poland)[J]. Prace Muzeum Ziemi, 1980, 33: 39-107.

    [20]

    Gregor H J. Zur flora des Randecker Maares (Miozän, Baden-Württemberg)[J]. Staatliches Museum für Naturkunde, 1986, 122B: 1-29.

    [21]

    Kovar-Eder J, Kvaček Z, Ströbitzer-Hermann M. The Miocene flora of Parschlug (Styria, Austria)—Revision and synthesis[J]. Annalen des Naturhistorischen Museums in Wien, Serie A, 2004, 105(A): 45-159.

    [22]

    Hu H H, Chaney R W. A Miocene flora from Shantung Province, China[J]. Palaeontologia Sinica, New Series A, 1940, 112: 1-147.

    [23]

    郭双兴. 青海泽库中新世植物群[J]. 古生物学报, 1980, 19 (5): 66-71.

    Guo Shuangxing. Miocene flora in Zekog County of Qinghai[J]. Acta Palaeontologica Sinica, 1980, 19 (5): 66-71.

    [24]

    Liu Y S, Guo S X, Ferguson D K. Catalogue of Cenozoic megafossil plants in China[J]. Palaeontographica Abteilung B, 1996, 238: 141-179.

    [25]

    孙博. 山旺植物化石[M]. 济南: 山东科学技术出版社, 1999: 1-167.

    Sun Bo. Shanwang Flora[M]. Jinan: Shandong Science and Technology Press, 1999: 1-167.

    [26]

    陶君容. 中国晚白垩世至新生代植物区系发展演变[M]. 北京: 科学出版社, 2000: 1-282.

    Tao Junrong. The Evolution of the Late Cretaceous-Cenozoic Floras in China[M]. Beijing: Science Press, 2000: 1-282.

    [27]

    刘耕武, 李代芸, 黄翡, 等. 云南元谋盆地上新世甘棠组植物和孢粉组合及其古气候意义[J]. 古生物学报, 2002, 41 (1): 1-9.

    Liu Gengwu, Li Daiyun, Huang Fei, et al. A Pliocene flora from the Gantang Formation of Yuanmou Basin, Yunnan Province, SW China and its paleoclimate significance[J]. Acta Palaeontologica Sinica, 2002, 41 (1): 1-9.

    [28]

    Xu Q Q, Qiu J, Zhou Z K, et al. Eocene Podocarpium (Leguminosae) from South China and its biogeographic implications[J]. Frontiers in Plant Science, 2015, 6: 1036. doi: 10.3389/fpls.2015.00938.

    [29]

    Yan D F, Zhang L, Han L, et al. Podocarpium from the Oligocene of NW Qaidam Basin, China and its implications[J]. Review of Palaeobotany and Palynology, 2018, 259: 1-9. doi: 10.1016/j.revpalbo.2018.09.009.

    [30]

    Li X C, Ma F J, Xiao L, He, et al. New records of Podocarpium A. Braun ex Stizenberger (Fabaceae) from the Oligocene to Miocene of China: Reappraisal of the phylogeographical history of the genus[J]. Review of Palaeobotany and Palynology, 2019, 260: 38-50. doi: 10.1016/j.revpalbo.2018.11.002.

    [31]

    Kvacek Z, Teodoridis V. Tertiary macrofloras of the Bohemian Massif: A review with correlations within Boreal and Central Europe[J]. Bulletin Geoscience, 2007, 82 (4): 383-408.

    [32]

    Teodoridis V. Tertiary flora and vegetation of the locality P ívlaky near Žatec (most basin)[J]. Acta Universitatis Carolinae—Geologica, 2003, 47 (1): 165-177.

    [33]

    Yabe A. Early Miocene terrestrial climate inferred from plant megafossil assemblages of the Joban and Soma areas, northeast Honshu, Japan[J]. Bulletin of the Geological Survey of Japan, 2008, 59 (7-8): 397-413.

    [34]

    Schaefer H, Hechenleitner P, Santos-Guerra A, et al. Systematics, biogeography, and character evolution of the legume tribe Fabeae with special focus on the middle-Atlantic island lineages[J]. BMC Evolutionary Biology, 2012, 12: 1-19. doi. org/10.1186/1471-2148-12-250. doi: 10.1186/1471-2148-12-250

    [35]

    林启彬. 华东地区古生物图册(三)中、新生代分册[M]. 北京: 地质出版社, 1982: 1-608.

    Lin Qibin. Paleontological Atlas of East China Part 3, Volume of Mesozoic and Cenozoic[M]. Beijing: Geological Publishing House, 1982: 1-608.

    [36]

    Ishida S. The Noroshi flora of Noto Peninsula, Central Japan[J]. Memoirs of the Faculty of Science, Kyoto University: Series of Geology and Mineralogy, 1970, 37: 1-112.

    [37]

    Spicer R A, Su T, Valdes P J, et al. Why 'the uplift of the Tibetan Plateau' is a myth[J]. National Science Review, 2021, 8 (1): nwaa091. doi: 10.1093/nsr/nwaa091.

    [38]

    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28 (1): 211-280. doi: 10.1146/annurev.earth.28.1.211

    [39]

    Ding L, Spicer R A, Yang J, et al. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon[J]. Geology, 2017, 45 (3): 215-218. doi: 10.1130/G38583.1

    [40]

    汪品先. 新生代亚洲形变与海陆相互作用[J]. 地球科学——中国地质大学学报, 2005, 30 (1): 1-18.

    Wang Pinxian. Cenozoic deformation and history of sea-land interactions in Asia[J]. Earth Science—Journal of China University of Geosciences, 2005, 30 (1): 1-18.

    [41]

    李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43 (15): 1569-1574.

    Li Jijun, Fang Xiaomin. Study on the uplift and environmental change of the Tibetan Plateau[J]. Chinese Science Bulletin, 1998, 43 (15): 1569-1574.

    [42]

    刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 1998, (3): 194-203.

    Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia[J]. Quaternary Sciences, 1998, (3): 194-203.

    [43]

    An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411: 62-66. doi: 10.1038/35075035Medline.

    [44]

    Deng T, Wang X M, Wu F X, et al. Implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau[J]. Global and Planetary Change, 2019, 174: 58-69. doi: 10.1016/j.gloplacha.2019.01.005.

    [45]

    Greenwood D R. Leaf form and the reconstruction of past climates[J]. New Phytologist, 2005, 166: 355-357. https://www.jstor.org/stable/1514678. doi: 10.1111/j.1469-8137.2005.01380.x

    [46]

    徐仁, 陶君容, 孙湘君. 希夏邦马峰高山栎化石层的发现及其在植物学和地质学上的意义[J]. 植物学报, 1973, 15 (1): 102-109.

    Hsü Jen, Tao Junrong, Sun Xiangjun. On the discovery of a Quercus semicarpifolia bed in mount Shisha Pangma and its significance in botany and geology[J]. Acta Botanica Sinica, 1973, 15 (1): 102-109.

    [47]

    Molnar P, Boos W R, Battisti D S. Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau[J]. Annual Review of Earth & Planetary Sciences, 2010, 38 (1): 77-102.

    [48]

    魏新俊, 邵长铎, 王弭力. 柴达木盆地西部富钾盐湖物质组分、沉积特征及形成条件研究[M]. 北京: 地质出版社, 1993: 1-197.

    Wei Xinjun, Shao Changduo, Wang Erli. Study on the Material Composition, Sedimentary Characteristics, and Formation Conditions of Potassium Rich Salt Lakes in the Western Qaidam Basin[M]. Beijing: Geological Publishing House, 1993: 1-197.

    [49]

    张彭熹. 柴达木盆地盐湖[M]. 北京: 科学出版社, 1987: 1-235.

    Zhang Pengxi. Salt Lake in Qaidam Basin[M]. Beijing: Science Press, 1987: 1-235.

    [50]

    周立华. 青海省植被图 1 ︰ 1000000[M]. 北京: 中国科学技术出版社, 1990.

    Zhou Lihua. Vegetation Map of Qinghai Province 1 ︰ 1000000[M]. Beijing: Science and Technology of China Press, 1990.

    [51]

    Sun X J, Wang P X. How old is the Asian monsoon system?Palaeo-botanical records from China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 222 (3-4): 181-222. doi: 10.1016/j.palaeo.2005.03.005

    [52]

    青海省地质矿产局. 青海省区域地质志[M]. 北京: 地质出版社, 1991: 1-664.

    Qinghai Provincial Bureau of Geology and Mineral Resources. Regional Geology of Qinghai Province[M]. Beijing: Geological Publishing House, 1991: 1-664.

    [53]

    杨用彪. 柴北缘新近纪磁性地层年代与沉积构造演化[D]. 兰州: 兰州大学硕士学位论文, 2009: 1-106.

    Yang Yongbiao. Neogene Magnetostratigraphy Chronology and Sedimentary-Tectonic Evolution in the Northern Qaidam Basin[D]. Lanzhou: The Master's Thesis of Lanzhou University, 2009: 1-106.

    [54]

    Hickey L J. Classification of the architecture of Dicotyledonous leaves[J]. American Journal of Botany, 1973, 60 (1): 17-33. doi: 10.1002/j.1537-2197.1973.tb10192.x

    [55]

    Dilcher D L. Approaches to the identification of angiosperm leaf remains[J]. The Botanical Review, 1974, 40 (1): 1-157. doi: 10.1007/BF02860067

    [56]

    LAWG (Leaf Architecture Working Group). Manual of Leaf Architecture-Morphological Description and Categorization of Dicotyledonous and Net-veined Monocotyledonous Angiosperms[M]. Washington DC: Smithsonian Institution, 1999: 1-224.

    [57]

    Soltis P S, Soltis D E, Doyle J J. Molecular Systematics of Plants[M]. Boston: Springer, 1992: 1-480.

    [58]

    Mayr G, Wilde V. Eocene fossil is earliest evidence of flower-visiting by birds[J]. Biology Letters, 2014, 10 (5): 1-4.

    [59]

    Matthiessen J, Knies J, Vogt C, et al. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367 (1886): 21-48. doi: 10.1098/rsta.2008.0203

    [60]

    Wu F L, Fang X M, Yang Y B, et al. Reorganization of Asian climate in relation to Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3 (10): 684-700.

    [61]

    Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294 (5547): 1671-1677. doi: 10.1126/science.105978

    [62]

    Li S F, Valdes P J, Farnsworth A, et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in Eastern Asia[J]. Science Advances, 2021, 7 (5): eabc7741. doi: 10.1126/sciadv.abc7741.

    [63]

    Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369 (6509): 1383-1387. doi: 10.1126/science.aba6853

    [64]

    杜金龙, 田军. 陆-海碳收支过程驱动的晚中新世气候-碳循环耦合演变机制[J]. 第四纪研究, 2023, 43 (6): 1675-1687.

    Du Jinlong, Tian Jun. On the carbon-climate dynamics driven by land-sea carbon budget during the Late Miocene[J]. Quaternary Sciences, 2023, 43 (6): 1675-1687.

    [65]

    Su T, Spicer R A, Wu F X, et al. A Middle Eocene lowland humid subtropical "Shangri-La" ecosystem in central Tibet[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (25): 32989-32995.

    [66]

    Zhang X W, Gélin U, Spicer R A, et al. Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet[J]. Nature Communications, 2022, 13 (1): 3787. http://creativecommons.org/licenses/by/4.0/. doi: 10.1038/s41467-022-31512-z

    [67]

    Ding L, Xu Q, Yue Y, et al. The andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. doi: 10.1016/j.epsl.2014.01.045.

    [68]

    孙继敏, 刘卫国, 柳中晖, 等. 青藏高原隆升与新特提斯海退却对亚洲中纬度阶段性气候干旱的影响[J]. 中国科学院院刊, 2017, 32 (9): 951-958.

    Sun Jimin, Liu Weiguo, Liu Zhonghui, et al. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys Ocean on the stepwise aridification of mid-latitude Asian interior[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (9): 951-958.

    [69]

    Xiong Z Y, Liu X, Ding L, et al. The rise and demise of the Paleogene central Tibetan Valley[J]. Science Advances, 2022, 8 (6): eabj0944. doi: 10.1126/sciadv.abj0944.

    [70]

    Ding L, Kapp P, Cai F, et al. Timing and mechanisms of Tibetan Plateau uplift[J]. Nature Reviews Earth & Environment, 2022, 3 (10): 652-67.

    [71]

    Song B W, Spicer R A, Zhang K X, et al. Qaidam Basin leaf fossils show northeastern Tibet was high, wet and cool in the Early Oligocene[J]. Earth and Planetary Science Letters, 2020, 537: 116175. doi: 10.1016/j.epsl.2020.116175.

    [72]

    Li X C, Manchester S R, Wang Q, et al. A unique record of Cercis from the late Early Miocene of interior Asia and its significance for paleoenvironments and paleophytogeography[J]. Journal of Systematics and Evolution, 2021, 59 (6): 1321-1338.

    [73]

    Miao Y F, Fang X M, Sun J M, et al. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau[J]. Science, 2022, 378 (6624): 1074-1079. doi: 10.1126/science.abo2475

    [74]

    Zhang R, Jiang D B, Liu X D, et al. Modeling the climate effects of different subregional uplifts within the Himalaya-Tibetan Plateau on Asian summer monsoon evolution[J]. Chinese Science Bulletin, 2012, 57 (35): 4617-4626.

    [75]

    Liu X D, Sun H, Miao Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14. doi: 10.1016/j.quascirev.2015.03.010.

    [76]

    Ding W N, Ree R H, Spicer R A, et al. Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora[J]. Science, 2020, 369 (6503): 578-581.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint