2020 Vol. 40, No. 3
Article Contents

Liu Tianhao, Chang Fengming, Li Tiegang, Sun Hanjie, Cui Yikun, Wang Jia, Qian Fang. ENSO-like state in the tropical Pacific Ocean during the cold and warm periods of the galcial cycle since 450 ka[J]. Quaternary Sciences, 2020, 40(3): 646-657. doi: 10.11928/j.issn.1001-7410.2020.03.05
Citation: Liu Tianhao, Chang Fengming, Li Tiegang, Sun Hanjie, Cui Yikun, Wang Jia, Qian Fang. ENSO-like state in the tropical Pacific Ocean during the cold and warm periods of the galcial cycle since 450 ka[J]. Quaternary Sciences, 2020, 40(3): 646-657. doi: 10.11928/j.issn.1001-7410.2020.03.05

ENSO-like state in the tropical Pacific Ocean during the cold and warm periods of the galcial cycle since 450 ka

  • Fund Project:

    国家自然科学基金项目(批准号:41830539、41476041、41876041和41706040)、自然资源部"全球变化与海气相互作用"专项项目(批准号:GASI-GEOGE-04和GASI-GEOGE-06-02)、自然资源部第一海洋研究所海洋沉积与环境地质重点实验室开放基金项目(批准号:MASEG201901)和山东省"泰山学者"建设工程专项经费项目(批准号:TSQN20182117)共同资助

More Information
  • As the strongest inter-annual climate anomaly in modern times, the El Niño-Southern Oscillation(ENSO)process has a significant impact on the global climate and marine hydrological conditions. On the long-term scale, the ENSO-like transition of thermal state in the tropical Pacific may also have played an important role in the paleoclimatic evolution. Most of the existing studies on the tropical ENSO-like state are, however, limited to the last glacial period, and there are many significant disagreements among these available results derived from different proxies.

    Site U1486, 211.2 m in length, was drilled within the Manus Basin, the central sector of the Western Pacific Warm Pool(WPWP), at 02°22.34'S, 144°36.08'E in 1332 m of water during the International Ocean Discovery Program(IODP)Expedition 363. The site is located ca. 150 km away from the Sepik River mouth in Papua New Guinea. The tectonic setting of this area was shaped by the oblique northward movement of the Australian plate as it rapidly converged with the Pacific plate. Site U1486 is situated in the North Bismarck microplate which is resulted from the tectonic movements.

    In this study, the upper 31 m core composite depth below seafloor(CCSF)of Site U1486, with lithology dominated by white foraminifera-rich nannofossil ooze, was used to reconstruct the sea surface temperature(SST)based on δ18O and Mg/Ca analyses of planktonic foraminifera Trilobatus sacculife, and thus to investigate the potential linkage between the warm/cold periods in the glacial/interglacial cycles and the tropical ENSO-like state in the WPWP since 450 ka. In more details, the age model was determined by 12 age tie points, derived from correlating the present δ18O curve with the standard LR04 stack as well as the last occurrence of Globigerinoides ruber(pink)with a well-known age(120 ka)in the west Pacific. In addition, the δ18O analysis was made on 335 subsamples, with sampling intervals of 10 cm and thus an average temporal resolution of 1.2 ka. Furthermore, a total of 455 subsamples were analyzed for the Mg/Ca ratio, with sampling intervals of 5-cm for the top 11 m and 10-cm for the rest section of the site.

    The results indicate that the SST in the WPWP since 450 ka ranged between 25.3 ℃ and 30.8 ℃, with minimum and maximum value occurred at ca. 27.8 ka and 418.7 ka, respectively. The minimum SST at the site during the Last Glacial Maximum(LGM, 23~19 ka)is nearly 2 ℃ lower than that during the Late Holocene(2~0 ka). By comparing the SST records derived from the cores located in the Western Pacific Warm Pool(WPWP)and the Eastern Pacific Cold Tongue(EPCT), it is found that the zonal temperature gradient of the tropical Pacific Ocean was more than 3 ℃, along with deeper thermocline in the WPWP, during the glacial periods. This is coincident with the SST records in other cores collected from the Eastern and Western Pacific Ocean. In addition, larger zonal temperature gradients were recorded in the major stadials of interglacial periods(MIS 5b and MIS 7d). In contrast, the temperature gradients between the West and East Pacific Ocean decreased significantly during the deglacial periods(MIS 6/ 5, MIS 8/ 7 and MIS 10/ 9).

    The patterns of the zonal temperature gradient across the tropical Pacific Ocean imply that the ocean conditions therein showed more La Niña-like states in the colder periods and more El Niño-like states during the warmer stages over the past few hundred thousand years. Nevertheless, the significant fluctuations in the zonal temperature gradient also indicate the instability of ENSO-like states in the tropical Pacific Ocean over a longer time-scale. When the earth-surface temperature rises, the rapid increase of water vapor concentration in the lower troposphere could weaken the mass exchange between the boundary layer and the troposphere, and thus slow down the zonal atmosphere circulation in the tropical Pacific Ocean that may result in a decreased zonal temperature gradient with a more El Niño-like state.

  • 加载中
  • [1]

    Yan Xiaohai, Ho Chungru, Zheng Quanan, et al. Temperature and size variabilities of the Western Pacific Warm Pool[J]. Science, 1992, 258(5088):1643-1645. doi: 10.1126/science.258.5088.1643

    [2]

    Webster P J. The role of hydrological processes in ocean-atmosphere interactions[J]. Reviews of Geophysics, 1994, 32(4):427-476. doi: 10.1029/94RG01873

    [3]

    Rasmusson E M. El Niño and variations in climate:Large-scale interactions between the ocean and the atmosphere over the tropical Pacific can dramatically affect weather patterns around the world[J]. American Scientist, 1985, 73(2):168-177.

    [4]

    Ropelewski C F, Halpert M S. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation[J]. Monthly Weather Review, 1987, 115(8):1606-1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2

    [5]

    李晓惠, 徐峰, 陈虹颖, 等. 1980-2016年西太平洋暖池与ENSO循环过程的相关分析[J].海洋气象学报, 2017, 37(3):85-94.

    Li Xiaohui, Xu Feng, Chen Hongying, et al. Correlation analysis of the cycle process between the Western Pacific Warm Pool and ENSO during 1980-2016[J]. Journal of Marine Meteorology, 2017, 37(3):85-94.

    [6]

    Pierrehumbert R T. Climate change and the tropical Pacific:The sleeping dragon wakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4):1355-1358. doi: 10.1073/pnas.97.4.1355

    [7]

    Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, Western Equatorial Pacific[J]. Geophysical Research Letters, 2003, 30(8):1428.

    [8]

    Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation[J]. Nature, 2003, 421(6919):152-155. doi: 10.1038/nature01297

    [9]

    Stott L, Timmermann A, Thunell R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming[J]. Science, 2007, 318(5849):435-438. doi: 10.1126/science.1143791

    [10]

    Zhang Shuai, Li Tiegang, Chang Fengming, et al. Correspondence between the ENSO-like state and glacial-interglacial condition during the past 360 kyr[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(5):1018-1031. doi: 10.1007/s00343-017-6082-9

    [11]

    汪品先.低纬过程的轨道驱动[J].第四纪研究, 2006, 26(5):694-701. doi: 10.3321/j.issn:1001-7410.2006.05.003

    Wang Pinxian. Orbital forcing of the low-latitude processes[J]. Quaternary Sciences, 2006, 26(5):694-701. doi: 10.3321/j.issn:1001-7410.2006.05.003

    [12]

    张帅, 李铁刚, 常凤鸣, 等. MIS 6期以来热带西太平洋降雨与ITCZ的关系[J].第四纪研究, 2015, 35(2):390-400.

    Zhang Shuai, Li Tiegang, Chang Fengming, et al. The relationship between the tropical Pacific precipitaton and the ITCZ variation since MIS 6[J]. Quaternary Sciences, 2015, 35(5):390-400.

    [13]

    贾奇, 李铁刚, 熊志方, 等. 70万年来西太平洋暖池北缘有孔虫氧碳同位素特征及其古海洋学意义[J].第四纪研究, 2015, 35(2):401-410.

    Jia Qi, Li Tiegang, Xiong Zhifang, et al. Foraminiferal carbon and oxygen isotope composition characteristics and their paleoceanographic implications in the north margin of the Western Pacific Warm Pool[J]. Quaternary Sciences, 2015, 35(2):401-410.

    [14]

    Cane M A. A role for the Tropical Pacific[J]. Science, 1998, 282(5386):59-61. doi: 10.1126/science.282.5386.59

    [15]

    Lea D W, Pak D K, Spero H J. Climate impact of Late Quaternary equatorial Pacific sea surface temperature variations[J]. Science, 2000, 289(5485):1719-1724. doi: 10.1126/science.289.5485.1719

    [16]

    Tudhope A W, Chilcott C P, Mcculloch M T, et al. Variability in the El Niño-Southern Oscillation through a glacial-interglacial cycle[J]. Science, 2001, 291(5508):1511-1517. doi: 10.1126/science.1057969

    [17]

    Stott L, Poulsen C, Lund S, et al. Super ENSO and global climate oscillations at millennial time scales[J]. Science, 2002, 297(5579):222-226. doi: 10.1126/science.1071627

    [18]

    李铁刚, 赵京涛, 孙荣涛, 等. 250 ka B. P.以来西太平洋暖池中心区Ontong Java海台古生产力演化[J].第四纪研究, 2008, 28(3):447-457. doi: 10.3321/j.issn:1001-7410.2008.03.009

    Li Tiegang, Zhao Jingtao, Sun Rongtao, et al. Paleoproductivity evolution in the Ontong Java Plateau-Center of the Western Pacific Warm Pool during the last 250 ka[J]. Quaternary Sciences, 2008, 28(3):447-457. doi: 10.3321/j.issn:1001-7410.2008.03.009

    [19]

    Sarnthein M, Grootes P M, Holbourn A, et al. Tropical warming in the Timor Sea led deglacial Antarctic warming and atmospheric CO2 rise by more than 500 yr[J]. Earth and Planetary Science Letters, 2011, 302(3-4):337-348. doi: 10.1016/j.epsl.2010.12.021

    [20]

    Schmittner A, Appenzeller C, Stocker T F. Enhanced Atlantic freshwater export during El Niño[J]. Geophysical Research Letters, 2000, 27(8):1163-1166. doi: 10.1029/1999GL011048

    [21]

    Partin J W, Cobb K M, Adkins J F, et al. Millennial-scale trends in West Pacific Warm Pool hydrology since the Last Glacial Maximum[J]. Nature, 2007, 449(7161):452-455. doi: 10.1038/nature06164

    [22]

    Vecchi G A, Clement A, Soden B J. Examining the tropical Pacific's response to global warming[J]. Eos, Transactions American Geophysical Union, 2008, 89(9):81-83.

    [23]

    Clement A C, Seager R, Cane M A, et al. An ocean dynamical thermostat[J]. Journal of Climate, 1996, 9(9):2190-2196. doi: 10.1175/1520-0442(1996)009<2190:AODT>2.0.CO;2

    [24]

    Held I M, Soden B J. Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2006, 19(21):5686-5699. doi: 10.1175/JCLI3990.1

    [25]

    Gagan M K, Hendy E J, Haberle S G, et al. Post-glacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern Oscillation[J]. Quaternary International, 2004, 118-119:127-143. https://doi.org/10.1016/S1040-6182(03)00134-4. doi: 10.1016/S1040-6182(03)00134-4

    [26]

    Driscoll R, Elliot M, Russon T, et al. ENSO reconstructions over the past 60 ka using giant clams(Tridacna sp.) from Papua New Guinea[J]. Geophysical Research Letters, 2014, 41(19):6819-6825. doi: 10.1002/2014GL061446

    [27]

    王玥铭, 窦衍光, 徐景平, 等. 16 ka以来冲绳海槽中南部有机质来源及其对上升流演变的指示[J].第四纪研究, 2018, 38(3):769-781.

    Wang Yueming, Dou Yanguang, Xu Jingping, et al. Organic matter source in the middle Southern Okinawa Trough and its indication to upwelling evolution since 16 ka[J]. Quaternary Sciences, 2018, 38(3):769-781.

    [28]

    黄冉, 陈朝军, 李廷勇, 等.基于石笋记录的晚全新世太平洋东西两岸季风区气候事件对比研究[J].第四纪研究, 2019, 39(3):742-754.

    Huang Ran, Chen Chaojun, Li Tingyong, et al. Comparison of climatic events in the Late Holocene, based on stalagmite records from monsoon regions near by the east and west Pacific[J]. Quaternary Sciences, 2019, 39(3):742-754.

    [29]

    Baldwin S L, Fitzgerald P G, Webb L E. Tectonics of the New Guinea region[J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1):495-520. doi: 10.1146/annurev-earth-040809-152540

    [30]

    Taylor B. Bismarck Sea:Evolution of a back-arc basin[J]. Geology, 1979, 7(4):171-174. doi: 10.1130/0091-7613(1979)7<171:BSEOAB>2.0.CO;2

    [31]

    Schlitzer R. Ocean Data View 4[DB]. 2015. http://odv.awi.de.

    [32]

    Carton J A, Giese B S. A reanalysis of ocean climate using Simple Ocean Data Assimilation(SODA)[J]. Monthly Weather Review, 2008, 136(8):2999-3017. doi: 10.1175/2007MWR1978.1

    [33]

    Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2013. Volume 1, Temperature, 2013[DB]. https://www.nodc.noaa.gov/OC5/indprod.html.

    [34]

    Zweng M M, Reagan J R, Antonov J I, et al. World Ocean Atlas 2013. Volume 2, Salinity, 2013[DB]. https://www.nodc.noaa.gov/OC5/indprod.html.

    [35]

    Tachikawa K, Timmermann A, Vidal L, et al. CO2 radiative forcing and Intertropical Convergence Zone influences on Western Pacific Warm Pool climate over the past 400 ka[J]. Quaternary Science Reviews, 2014, 86:24-34. doi:10.1016/j.quascirev. 2013.12.018.

    [36]

    Bolliet T, Holbourn A, Kuhnt W, et al. Mindanao Dome variability over the last 160 kyr:Episodic glacial cooling of the West Pacific Warm Pool[J]. Paleoceanography, 2011, 26(1):PA1208.

    [37]

    Spero H J, Mielke K M, Kalve E M, et al. Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr[J]. Paleoceanography, 2003, 18(1):1022.

    [38]

    Jia Qi, Li Tiegang, Xiong Zhifang, et al. Hydrological variability in the western tropical Pacific over the past 700 kyr and its linkage to Northern Hemisphere climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 493:44-54. doi:10.1016/j.palaeo.2017.12.039.

    [39]

    Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9):8407.

    [40]

    Hollstein M, Mohtadi M, Rosenthal Y, et al. Stable oxygen isotopes and Mg/Ca in planktic foraminifera from modern surface sediments of the Western Pacific Warm Pool:Implications for thermocline reconstructions[J]. Paleoceanography, 2017, 32(11):1174-1194. doi: 10.1002/2017PA003122

    [41]

    Lisiecki L E, Raymo M E, Curry W B. Atlantic overturning responses to Late Pleistocene climate forcings[J]. Nature, 2008, 456(7218):85. doi: 10.1038/nature07425

    [42]

    Thompson P R, Bé A W H, Duplessy J-C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000 yr BP in the Indian and Pacific Oceans[J]. Nature, 1979, 280(5723):554-558. doi: 10.1038/280554a0

    [43]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.

    [44]

    万随, 翦知湣, 成鑫荣.赤道西太平洋冬季浮游有孔虫分布与壳体同位素特征[J].第四纪研究, 2011, 31(2):284-291. doi: 10.3969/j.issn.1001-7410.2011.02.10

    Wan Sui, Jian Zhimin, Cheng Xinrong. Distribution of winter living planktonic foraminifers and characteristics to their shell's stable isotopic in the western equatorial Pacific[J]. Quaternary Sciences, 2011, 31(2):284-291. doi: 10.3969/j.issn.1001-7410.2011.02.10

    [45]

    Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit:Pacemaker of the ice ages[J]. Science, 1976, 194(4270):1121-1132. doi: 10.1126/science.194.4270.1121

    [46]

    Mcmanus J F, Oppo D W, Cullen J L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic[J]. Science, 1999, 283(5404):971-975. doi: 10.1126/science.283.5404.971

    [47]

    Oppo D W, Sun Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea:Dynamic link to the East Asian monsoon[J]. Geology, 2005, 33(10):785-788. doi: 10.1130/G21867.1

    [48]

    Koutavas A, Lynch-Stieglitz J, Marchitto T M Jr, et al. El Niño-like pattern in ice age tropical Pacific sea surface temperature[J]. Science, 2002, 297(5579):226-230. doi: 10.1126/science.1072376

    [49]

    Sagawa T, Yokoyama Y, Ikehara M, et al. Shoaling of the western equatorial Pacific thermocline during the Last Glacial Maximum inferred from multispecies temperature reconstruction of planktonic foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346-347:120-129. doi:10.1016/j.palaeo.2012.06.002.

    [50]

    Martínez I, Keigwin L, Barrows T T, et al. La Niña-like conditions in the eastern equatorial Pacific and a stronger Choco jet in the northern Andes during the last glaciation[J]. Paleoceanography, 2003, 18(2):1003.

    [51]

    Koutavas A, Joanides S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2012, 27:PA4208. doi:10.1029/2012PA002378.

    [52]

    Beaufort L, Garidel-Thoron T D, Mix A C, et al. ENSO-like forcing on oceanic primary production during the Late Pleistocene[J]. Science, 2001, 293(5539):2440-2444. doi: 10.1126/science.293.5539.2440

    [53]

    Andreasen D J, Ravelo A C. Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum[J]. Paleoceanography, 1997, 12(3):395-413. doi: 10.1029/97PA00822

    [54]

    Rincón-Martínez D, Lamy F, Contreras S, et al. More humid interglacials in Ecuador during the past 500 kyr linked to latitudinal shifts of the equatorial front and the Intertropical Convergence Zone in the eastern tropical Pacific[J]. Paleoceanography, 2010, 25(2):PA2210.

    [55]

    Koutavas A, Lynch-Stieglitz J. Glacial-interglacial dynamics of the eastern equatorial Pacific Cold Tongue-Intertropical Convergence Zone system reconstructed from oxygen isotope records[J]. Paleoceanography, 2003, 18(4):1089.

    [56]

    Rosenthal Y, Broccoli A J. In search of paleo-ENSO[J]. Science, 2004, 304(5668):219-221. doi: 10.1126/science.1095435

    [57]

    Dannenmann S, Linsley B K, Oppo D W, et al. East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3:Link to Northern Hemisphere climate[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(1):1-13.

    [58]

    Brijker J M, Jung S J A, Ganssen G M, et al. ENSO related decadal scale climate variability from the Indo-Pacific Warm Pool[J]. Earth and Planetary Science Letters, 2007, 253(1):67-82.

    [59]

    Jin F-F. Tropical Ocean-atmosphere interaction, the Pacific Cold Tongue, and the El Niño-Southern Oscillation[J]. Science, 1996, 274(5284):76-78. doi: 10.1126/science.274.5284.76

    [60]

    Zhu J, Liu Z, Brady E, et al. Reduced ENSO variability at the LGM revealed by an isotope-enabled Earth system model[J]. Geophysical Research Letters, 2017, 44(13):6984-6992. doi: 10.1002/2017GL073406

    [61]

    Hollstein M, Mohtadi M, Rosenthal Y, et al. Variations in Western Pacific Warm Pool surface and thermocline conditions over the past 110, 000 years:Forcing mechanisms and implications for the glacial Walker circulation[J]. Quaternary Science Reviews, 2018, 201:429-445. doi:10.1016/j.quascirev. 2018.10.030.

    [62]

    Xu J, Holbourn A, Kuhnt W, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations Ⅰ and Ⅱ[J]. Earth and Planetary Science Letters, 2008, 273(1-2):152-162. doi: 10.1016/j.epsl.2008.06.029

    [63]

    Steinke S, Mohtadi M, Groeneveld J, et al. Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum:Implications for the East Asian winter monsoon development[J]. Paleoceanography, 2010, 25(2):PA2219.

    [64]

    Leech P J, Lynch-Stieglitz J, Zhang R. Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum[J]. Earth and Planetary Science Letters, 2013, 363:133-143. https://doi.org/10.1016/j.epsl.2012.12.026. doi: 10.1016/j.epsl.2012.12.026

    [65]

    Regoli F, De Garidel-Thoron T, Tachikawa K, et al. Progressive shoaling of the equatorial Pacific thermocline over the last eight glacial periods[J]. Paleoceanography, 2015, 30(5):439-455. doi: 10.1002/2014PA002696

    [66]

    Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2):1050.

    [67]

    Soden B J, Jackson D L, Ramaswamy V, et al. The radiative signature of upper tropospheric moistening[J]. Science, 2005, 310(5749):841-844. doi: 10.1126/science.1115602

    [68]

    Trenberth K E, Fasullo J, Smith L. Trends and variability in column-integrated atmospheric water vapor[J]. Climate Dynamics 2005, 24(7-8):741-758. doi: 10.1007/s00382-005-0017-4

    [69]

    Boer G J. Climate change and the regulation of the surface moisture and energy budgets[J]. Climate Dynamics, 1993, 8(5):225-239. doi: 10.1007/BF00198617

    [70]

    Allen M R, Ingram W J. Constraints on future changes in climate and the hydrologic cycle[J]. Nature, 2002, 419(6903):228-232.

    [71]

    Vecchi G A, Soden B J, Wittenberg A T, et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing[J]. Nature, 2006, 441(7089):73-76. doi: 10.1038/nature04744

    [72]

    Yan Hong, Sun Liguang, Wang Yuhong, et al. A record of the Southern Oscillation Index for the past 2, 000 years from precipitation proxies[J]. Nature Geoscience, 2011, 4(9):611-614. doi: 10.1038/ngeo1231

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by(0)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint