Citation: | Cui Yikun, Chang Fengming, Li Tiegang, Sun Hanjie, Nan Qingyun, Liu Tianhao, Wang Jia, Qian Fang. Responses of surface seawater salinity in the southwest of the Timor Sea to the evolution of the Indonesia Throughflow over the past 620 ka[J]. Quaternary Sciences, 2020, 40(3): 633-645. doi: 10.11928/j.issn.1001-7410.2020.03.04 |
The Indonesia Throughflow(ITF), which regulates the water and heat exchange between the Pacific Ocean and Indian Ocean, has significant influence on the recent climate and environments in the Indo-Pacific region. Also, it exerted a crucial role in the evolution of regional hydrological conditions during the past times. However, most of the existing studies on the changes of the ITF in geological history are limited to the last glacial period with insufficient knowledge on its evolution over multiple glacial cycles.
International Ocean Discovery Program(IODP)Site U1482(Expedition 363), 535.86 m core composite depth below seafloor(CCSF)in length, is located on the Scott Plateau off the northwest Australian margin at 15°03.32'S, 120°26.10'E and 1466 m below sea level. The site is within the prominent hydrographic front between subtropical water mass in the Eastern Indian Ocean carried northward by the West Australian Current and the tropical waters from the ITF, which makes it suitable for reconstructing the variations of the ITF outflow into the Indian Ocean in the past glacial-interglacial cycles.
In this work, the upper 42.48 m CCSF of Site U1482, with lithology dominated by foraminifera-rich nannofossil ooze, was used to reconstruct the seawater residual oxygen isotope(δ18Osw-iv)based on δ18O and Mg/Ca analyses of planktonic foraminifera Trilobatus sacculifer, and thus to investigate the variations in the sea surface salinity related to the evolution of the ITF over the past 620 ka. Totally, 226 samples, subsampled at intervals of 20 cm, were analyzed, providing an average temporal resolution of 3 ka. In more details, the age model was determined by 14 age tie points, derived from correlating the present δ18O curve with the standard LR04 stack as well as the last appearance of Globigerinoides ruber(pink)with a well-known age(120 ka)in the Indian Ocean.
The temperature-corrected planktonic foraminiferal δ18Osw record constrains global changes in ice volume, yielding a δ18Osw-iv record that primarily reflects regional salinity. Our results indicate that the variability of δ18Osw-iv show significant precession(23 ka)and obliquity(40 ka)cycles with a weaker 79 ka-period over the past 620 ka, implying the direct responses of regional hydrological conditions to orbital changes. We suggest that the periodic fluctuations of prevailing wind and the meridional migrations of the Intertropical Convergence Zone driven by precession could influence the structure and strength of the ITF, and then the salinity in the southwest of the Timor Sea. And, the 79-ka component for the δ18Osw-iv record coincides with the periodic onset of deglaciation, indicating the considerable role of the global sea level fluctuations in the regional hydrology during the glacial cycle that determined the connectivity of the ITF channels among the Indonesian archipelagos. In addition, the variations in the meridional temperature gradient in the southern hemisphere driven by the obliquity of the Earth's orbit could also affect the southward transport of the ITF fresh water to the high-latitude areas, resulting in periodic revolutions of the regional salinity with a prominent 40-ka period during the last six glacial cycles.
[1] |
Visser K, Thunell R, Stott L. Magnitude and timing of temperature change in the Indo-Pacific Warm Pool during deglaciation[J]. Nature, 2003, 421(6919):152-155. doi: 10.1038/nature01297 |
[2] |
Pierrehumbert R T. Climate change and the tropical Pacific:The sleeping dragon wakes[J]. Proceedings of The National Academy of Sciences of The United States of America, 2000, 97(4):1355-1358. doi: 10.1073/pnas.97.4.1355 |
[3] |
Wyrtki K. Indonesian Through-flow and the associated pressure-gradient[J]. Journal of Geophysical Research:Oceans, 1987, 92(C12):12941-12946. doi: 10.1029/JC092iC12p12941 |
[4] |
Godfrey J S. The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere:A review[J]. Journal of Geophysical Research:Oceans, 1996, 101(C5):12217-12237. doi: 10.1029/95JC03860 |
[5] |
Vranes K, Gordon A L, Field A. The heat transport of the Indonesian Throughflow and implications for the Indian Ocean heat budget[J]. Deep-Sea Research Part Ⅱ:Topical Studies in Oceanography, 2002, 49(7-8):1391-1410. doi: 10.1016/S0967-0645(01)00150-3 |
[6] |
Gordon A. Oceanography of the Indonesian Seas and their throughflow[J]. Oceanography, 2005, 18(4):14-27. doi: 10.5670/oceanog.2005.01 |
[7] |
常凤鸣, 李铁刚.西太平洋暖池区古海洋学研究[J].地球科学进展, 2013, 28(8):847-858. Chang Fengming, Li Tiegang. Progress in the paleoceanography of the Western Pacific Warm Pool:A review[J]. Advances in Earth Science, 2013, 28(8):847-858. |
[8] |
Gordon A L. Inter-ocean exchange of thermocline water[J]. Journal of Geophysical Research:Oceans, 1986, 91(C4):5037-5046. doi: 10.1029/JC091iC04p05037 |
[9] |
Yu Y Q, Zhou Z Y, Zhang X H. Impact of the closure of Indonesian seaway on climate:A numerical modeling study[J]. Chinese Science Bulletin, 2003, 48(S2):88-93. |
[10] |
Kerr R A. The tropics return to the climate system[J]. Science, 2001, 292(5517):660-661. doi: 10.1126/science.292.5517.660 |
[11] |
Oppo D W, Rosenthal Y. The great Indo-Pacific communicator[J]. Science, 2010, 328(5985):1492-1494. doi: 10.1126/science.1187273 |
[12] |
汪品先.低纬过程的轨道驱动[J].第四纪研究, 2006, 26(5):694-701. doi: 10.3321/j.issn:1001-7410.2006.05.003 Wang Pinxian. Orbital forcing of the low latitude processes[J]. Quaternary Sciences, 2006, 26(5):694-701. doi: 10.3321/j.issn:1001-7410.2006.05.003 |
[13] |
叶黎明, 翦知湣, 金海燕, 等.末次盛冰期以来印度尼西亚穿越流对东印度洋上部水体结构的影响[J].第四纪研究, 2008, 28(3):458-464. doi: 10.3321/j.issn:1001-7410.2008.03.010 Ye Liming, Jian Zhimin, Jin Haiyan, et al. Influence of Indonesian Throughflow on easternmost Indian upper ocean structure since Last Glacial Maximum[J]. Quaternary Sciences, 2008, 28(3):458-464. doi: 10.3321/j.issn:1001-7410.2008.03.010 |
[14] |
何毓新, 孙奕映, 孙大洋, 等. 4 Ma来澳大利亚西海岸带的环境变化历史及其与印尼贯穿流的联系[J].第四纪研究, 2017, 37(5):1131-1140. He Yuxin, Sun Yiying, Sun Dayang, et al. History of environmental changes on the Western Australia Shelf over the past 4 million years and its indication on the Indonesian Throughflow[J]. Quaternary Sciences, 2017, 37(5):1131-1140. |
[15] |
Auer G, De Vleeschouwer D, Smith R A, et al. Timing and pacing of Indonesian Throughflow restriction and its connection to Late Pliocene climate shifts[J]. Paleoceanography and Paleoclimatology, 2019, 34(4):635-657. doi: 10.1029/2018PA003512 |
[16] |
De Vleeschouwer D, Auer G, Smith R, et al. The amplifying effect of Indonesian Throughflow heat transport on Late Pliocene Southern Hemisphere climate cooling[J]. Earth and Planetary Science Letters, 2018, 500:15-27. doi:10.1016/j.epsl.2018.07.035. |
[17] |
Cane M A, Molnar P. Closing of the Indonesian seaway as a precursor to East African aridification around 3-4 million years ago[J]. Nature, 2001, 411(6834):157-162. doi: 10.1038/35075500 |
[18] |
Kuhnt W, Holbourn A, Hall R, et al. Neogene history of the Indonesian throughflow[M]//Clift P, Kuhnt W, Wang P, et al. Continent-Ocean Interactions within East Asian Marginal Seas. Washington D. C: American Geophysical Union, 2004: 299-320. |
[19] |
Zuraida R, Holbourn A, Nurnberg D, et al. Evidence for Indonesian Throughflow slowdown during Heinrich events 3-5[J]. Paleoceanography, 2009, 24(2):PA2205. |
[20] |
Xu J, Holbourn A, Kuhnt W G, et al. Changes in the thermocline structure of the Indonesian outflow during Terminations Ⅰ and Ⅱ[J]. Earth and Planetary Science Letters, 2008, 273(1-2):152-162. doi: 10.1016/j.epsl.2008.06.029 |
[21] |
Xu J, Kuhnt W, Holbourn A, et al. Changes in the vertical profile of the Indonesian Throughflow during Termination Ⅱ:Evidence from the Timor Sea[J]. Paleoceanography, 2006, 21(4):PA4202. |
[22] |
Holbourn A, Kuhnt W, Xu J. Indonesian Throughflow variability during the last 140 ka:The Timor Sea outflow[J]. Geological Society, London, Special Publications, 2011, 355(1):283-303. doi: 10.1144/SP355.14 |
[23] |
Xu J. Change of Indonesian Throughflow outflow in response to East Asian monsoon and ENSO activities since the Last Glacial[J]. Science China:Earth Sciences, 2014, 57(4):791-801. doi: 10.1007/s11430-014-4845-0 |
[24] |
Ding X, Bassinot F, Guichard F, et al. Indonesian Throughflow and monsoon activity records in the Timor Sea since the Last Glacial Maximum[J]. Marine Micropaleontology, 2013, 101:115-126. doi:10.1016/j.marmicro.2013.02.003. |
[25] |
Xu J, Kuhnt W, Holbourn A, et al. Indo-Pacific Warm Pool variability during the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2010, 25(4):PA4230. |
[26] |
丁旋, 方念乔, Guichard F, 等.爪哇海末次冰盛期以来的季风与穿越流活动记录[J].第四纪研究, 2008, 28(3):465-471. doi: 10.3321/j.issn:1001-7410.2008.03.011 Ding Xuan, Fang Nianqiao, Guichard F, et al. Monsoon and throughflow activity records in the Java Sea during the Last Glacial Maximum[J]. Quaternary Sciences, 2008, 28(3):465-471. doi: 10.3321/j.issn:1001-7410.2008.03.011 |
[27] |
Zweng M, Reagan J, Antonov J, et al. World Ocean Atlas 2013 Volume 2: Salinity NOAA Atlas NESDIS 74[DS/OL]. Department of Commerce, Washington D. C, 2014. https://www.nodc.noaa.gov/OC5/indprod.html. |
[28] |
Mohtadi M, Oppo D W, Steinke S, et al. Glacial to Holocene swings of the Australian-Indonesian monsoon[J]. Nature Geoscience, 2011, 4(8):540-544. doi: 10.1038/ngeo1209 |
[29] |
Hall R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean[J]. Tectonophysics, 2012, 570-571:1-41. doi:10.1016/j.tecto.2012.04.021. |
[30] |
Keep M, Harrowfield M, Crowe W. The Neogene tectonic history of the North West Shelf, Australia[J]. Exploration Geophysics, 2007, 38(3):151-172. doi: 10.1071/EG07022 |
[31] |
国家海洋局科技司.海洋大辞典[M].沈阳:辽宁人民出版社, 1998:115. Department of Science and Technology, State Oceanic Administration. A Dictionary of Marine Science[M]. Shenyang:Liaoning People's Publishing House, 1998:115. |
[32] |
袁东亮, 周慧, 王铮, 等.印尼贯穿流源区环流的多尺度变异及其科学重要性[J].海洋与湖沼, 2017, 48(6):1156-1168. Yuan Dongliang, Zhou Hui, Wang Zheng, et al. The multi-scale variability of the ocean circulation at the Pacific entrance of the Indonesian Throughflow and its scientific importance[J]. Oceanologia et Limnologia Sinica, 2017, 48(6):1156-1168. |
[33] |
Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian Throughflow entering the Indian Ocean:2004-2006[J]. Journal of Geophysical Research:Oceans, 2009, 114(C7):C07001. |
[34] |
Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian Throughflow during 2004-2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):115-128. doi: 10.1016/j.dynatmoce.2009.12.002 |
[35] |
Gordon A L, Huber B A, Metzger E J, et al. South China Sea Throughflow impact on the Indonesian Throughflow[J]. Geophysical Research Letters, 2012, 39(11):L11602. |
[36] |
Gordon A L, Susanto R D, Vranes K. Cool Indonesian Throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960):824-828. doi: 10.1038/nature02038 |
[37] |
Du Y, Qu T D. Three inflow pathways of the Indonesian Throughflow as seen from the simple ocean data assimilation[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2):233-256. doi: 10.1016/j.dynatmoce.2010.04.001 |
[38] |
Schlitzer R. Ocean Data View[CP/OL]. Bremerhaven, Germany: Alfred Wegener Institute, 2019. https://odv.awi.de. |
[39] |
Locarnini R A, Mishonov A V, Antonov J I, et al. World Ocean Atlas 2013 Volume 1: Temperature NOAA Atlas NESDIS 73[DS/OL]. Department of Commerce, Washington D. C, 2013. https://www.nodc.noaa.gov/OC5/indprod.html. |
[40] |
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3):437-471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 |
[41] |
Lindsay R, Commander D. Hydrogeological assessment of the Fitzroy alluvium[R]. Perth: Western Australia of Department of Water, 2006. |
[42] |
Doupe R G, Pettit N E. Ecological perspectives on regulation and water allocation for the Ord River, Western Australia[J]. River Research and Applications, 2002, 18(3):307-320. doi: 10.1002/rra.676 |
[43] |
Vorosmarty C J, Fekete B M, Tucker B A. Global River Discharge, 1807-1991, V. 1.1(RivDIS)[DS/OL]. ORNL Distributed Active Archive Center, Oak Ridge, Tennessee, USA. 1998.https://doi.org/10.3334/ORNLDAAC/199. |
[44] |
Rosenthal Y, Holbourn A, Kulhanek D, et al. Western Pacific Warm Pool Site U1482[J]. Proceedings of the International Ocean Discovery Program, 2018, 363:1-24. doi:10.14379/iodp.proc. 363.103.2018. |
[45] |
Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(9):8407. doi:10.1029/2003GC000559. |
[46] |
Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series[J]. Paleoceanography, 2003, 18(2):1050. |
[47] |
Karas C. Mid-Pliocene Restriction of the Indonesian Gateway and Its Implication on Ocean Circulation and Climate[D]. Kiel, Germany: The Doctoral's Dissertation of Kiel University, 2010: 11-16. |
[48] |
Bemis B E, Spero H J, Bijma J, et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera:Experimental results and revised paleotemperature equations[J]. Paleoceanography, 1998, 13(2):150-160. doi: 10.1029/98PA00070 |
[49] |
Elderfield H, Ganssen G. Past temperature and δ18O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature, 2000, 405(6785):442-445. doi: 10.1038/35013033 |
[50] |
LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater[J]. Geophysical Research Letters, 2006, 33(12):L12604. doi: 10.1029/2006GL026011 |
[51] |
Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1-3):283-293. doi: 10.1016/S0277-3791(01)00081-6 |
[52] |
Fairbanks R, Evans M, Rubenstone J, et al. Evaluating climate indices and their geochemical proxies measured in corals[J]. Coral Reefs, 1997, 16(1):S93-S100. |
[53] |
Gibbons F T, Oppo D W, Mohtadi M, et al. Deglacial δ18O and hydrologic variability in the tropical Pacific and Indian Oceans[J]. Earth and Planetary Science Letters, 2014, 387:240-251. doi:10.1016/j.epsl.2013.11.032. |
[54] |
Holloway M D, Sime L C, Singarayer J S, et al. Reconstructing paleosalinity from δ18O:Coupled model simulations of the Last Glacial Maximum, last interglacial and Late Holocene[J]. Quaternary Science Reviews, 2016, 131:350-364. doi:10.1016/j.quascirev. 2015.07.007. |
[55] |
Bintanja R, van de Wal R S W, Oerlemans J. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 2005, 437(7055):125-128. doi: 10.1038/nature03975 |
[56] |
Schulz M, Mudelsee M. REDFIT:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3):421-426. |
[57] |
Hammer Ø, Harper D A, Ryan P D. PAST:Paleontological statistics software package for education and data analysis[J]. Palaeontologia Electronica, 2001, 4(1):1-9. |
[58] |
Li Mingsong, Hinnov L, Kump L. Acycle:Time-series analysis software for paleoclimate research and education[J]. Computers & Geosciences, 2019, 127:12-22. doi:10.1016/j.cageo.2019.02.011. |
[59] |
Kodama K P, Hinnov L A. Rock Magnetic Cyclostratigraphy[M]. Hoboken, America:John Wiley & Sons, 2014:52-89. |
[60] |
Lisiecki L E, Lisiecki P A. Application of dynamic programming to the correlation of paleoclimate records[J]. Paleoceanography, 2002, 17(4):1-12. |
[61] |
Holbourn A, Kuhnt W, Kawamura H, et al. Orbitally paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460 kyr[J]. Paleoceanography, 2005, 20(3):PA3002. |
[62] |
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003. doi:1010.1029/2004PA001071. |
[63] |
Schiebel R, Hemleben C. Planktic Foraminifers in the Modern Ocean[M]. Berlin, Germany:Springer, 2017:36-40. |
[64] |
Thompson P R, Be A W H, Duplessy J C, et al. Disappearance of pink-pigmented Globigerinoides ruber at 120, 000-yr BP in the Indian and Pacific Oceans[J]. Nature, 1979, 280(5723):554-558. doi: 10.1038/280554a0 |
[65] |
李丽, 王慧, 李建如, 等.南海西部晚更新世以来表层海水剩余氧同位素及盐度变化[J].第四纪研究, 2008, 28(3):399-406. doi: 10.3321/j.issn:1001-7410.2008.03.003 Li Li, Wang Hui, Li Jianru, et al. Variability of sea surface residual oxygen isotopic and salinity in western South China Sea over Late Pleistocene[J]. Quaternary Sciences, 2008, 28(3):399-406. doi: 10.3321/j.issn:1001-7410.2008.03.003 |
[66] |
Medina-Elizalde M, Lea D W. The mid-Pleistocene transition in the tropical Pacific[J]. Science, 2005, 310(5750):1009-1012. doi: 10.1126/science.1115933 |
[67] |
Clarke A J, Liu X. Observations and dynamics of semiannual and annual sea levels near the Eastern Equatorial Indian-Ocean boundary[J]. Journal of Physical Oceanography, 1993, 23(2):386-399. doi: 10.1175/1520-0485(1993)023<0386:OADOSA>2.0.CO;2 |
[68] |
Ehlert C, Frank M, Haley B A, et al. Current transport versus continental inputs in the Eastern Indian Ocean:Radiogenic isotope signatures of clay size sediments[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(6):Q06017. |
[69] |
Stumpf R, Kraft S, Frank M, et al. Persistently strong Indonesian Throughflow during Marine Isotope Stage 3:Evidence from radiogenic isotopes[J]. Quaternary Science Reviews, 2015, 112:197-206. doi:10.1016/j.quascirev.2015.01.029. |
[70] |
庞晓雷.东帝汶海160 ka以来上部水体结构与性质变化及其古海洋学意义[D].北京: 中国地质大学(北京)硕士论文, 2014: 45-48. Pang Xiaolei. The Last 160 ka Upper Water Structure and Properties of the Eastern Timor Sea and Paleoceanography Implication[D]. Beijing: The Master's Thesis of China University of Geosciences(Beijing), 2014: 45-48. |
[71] |
Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1):261-285. |
[72] |
Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646. doi: 10.1038/nature18591 |
[73] |
Jia Q, Li T G, Xiong Z F, et al. Hydrological variability in the Western Tropical Pacific over the past 700 kyr and its linkage to Northern Hemisphere climatic change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 493:44-54. doi:10.1016/j.palaeo. 2017.12.039. |
[74] |
程海, 艾思本, 王先锋, 等.中国南方石笋氧同位素记录的重要意义[J].第四纪研究, 2005, 25(2):157-163. doi: 10.3321/j.issn:1001-7410.2005.02.004 Cheng Hai, Edwards R L, Wang Xianfeng, et al. Oxygen isotope records of stalagmites from Southern China[J]. Quaternary Sciences, 2005, 25(2):157-163. doi: 10.3321/j.issn:1001-7410.2005.02.004 |
[75] |
张帅, 李铁刚, 常凤鸣, 等. MIS 6期以来热带西太平洋降雨与ITCZ的关系[J].第四纪研究, 2015, 35(2):390-400. Zhang Shuai, Li Tiegang, Chang Fengming, et al. The relationship between the Tropical Pacific precipitation and the ITCZ variation since MIS 6[J]. Quaternary Sciences, 2015, 35(2):390-400. |
[76] |
张键, 李廷勇."雨量效应"与"环流效应":近1 ka亚澳季风区石笋和大气降水δ18O的气候意义[J].第四纪研究, 2018, 38(6):1532-1544. Zhang Jian, Li Tingyong. "Amount effect" vs. "Circulation effect":The climate significance of precipitation and stalagmite δ18O in the Asian-Australian monsoon region over the past 1 ka[J]. Quaternary Sciences, 2018, 38(6):1532-1544. |
[77] |
Berger A, Crucifix M, Hodell D A, et al. Interglacials of the last 800, 000 years[J]. Reviews of Geophysics, 2016, 54(1):162-219. doi: 10.1002/2015RG000482 |
[78] |
Huybers P, Wunsch C. Obliquity pacing of the Late Pleistocene glacial terminations[J]. Nature, 2005, 434(7032):491-494. doi: 10.1038/nature03401 |
[79] |
李涛, 李高军.斜度驱动第四纪冰期-间冰期转换来自中国黄土的证据[J].第四纪研究, 2018, 38(5):1111-1119. Li Tao, Li Gaojun. Obliquity pacing of deglaciations in the Pleistocene:Evidence from the Chinese loess deposits[J]. Quaternary Sciences, 2018, 38(5):1111-1119. |
[80] |
Van Sebille E, Sprintall J, Schwarzkopf F U, et al. Pacific-to-Indian Ocean connectivity:Tasman leakage, Indonesian Throughflow, and the role of ENSO[J]. Journal of Geophysical Research:Oceans, 2014, 119(2):1365-1382. doi: 10.1002/2013JC009525 |
[81] |
Gingele F X, De Deckker P, Hillenbrand C D. Clay mineral distribution in surface sediments between Indonesia and NW Australia-Source and transport by ocean currents[J]. Marine Geology, 2001, 179(3-4):135-146. doi: 10.1016/S0025-3227(01)00194-3 |
[82] |
Gallagher S J, Wallace M W, Li C L, et al. Neogene history of the West Pacific Warm Pool, Kuroshio and Leeuwin currents[J]. Paleoceanography, 2009, 24(1):PA1206. |
[83] |
Alongi D M, Da Silva M, Wasson R J, et al. Sediment discharge and export of fluvial carbon and nutrients into the Arafura and Timor Seas:A regional synthesis[J]. Marine Geology, 2013, 343:146-158. doi:10.1016/j.margeo.2013.07.004. |
[84] |
Gingele F X, De Deckker P, Hillenbrand C D. Late Quaternary fluctuations of the Leeuwin Current and palaeoclimates on the adjacent land masses:Clay mineral evidence[J]. Australian Journal of Earth Sciences, 2001, 48(6):867-874. doi: 10.1046/j.1440-0952.2001.00905.x |
[85] |
贾奇, 李铁刚, 熊志方, 等. 70万年来西太平洋暖池北缘有孔虫氧碳同位素特征及其古海洋学意义[J].第四纪研究, 2015, 35(2):401-410. Jia Qi, Li Tiegang, Xiong Zhifang, et al. Foraminiferal carbon and oxygen isotope composition characteristics and their paleoceanographic implications in the north margin of the Western Pacific Warm Pool over the past about 700, 000 years[J]. Quaternary Sciences, 2015, 35(2):401-410. |
[86] |
Mantsis D F, Clement A C, Broccoli A J, et al. Climate feedbacks in response to changes in obliquity[J]. Journal of Climate, 2011, 24(11):2830-2845. doi: 10.1175/2010JCLI3986.1 |
[87] |
Mantsis D F, Lintner B R, Broccoli A J, et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients[J]. Journal of Climate, 2014, 27(14):5504-5516. doi: 10.1175/JCLI-D-13-00526.1 |
[88] |
Timmermann A, Friedrich T, Timm O E, et al. Modeling obliquity and CO2 effects on Southern Hemisphere climate during the past 408 ka[J]. Journal of Climate, 2014, 27(5):1863-1875. doi: 10.1175/JCLI-D-13-00311.1 |
[89] |
Wyrwoll K H, Liu Z Y S, Chen G, et al. Sensitivity of the Australian summer monsoon to tilt and precession forcing[J]. Quaternary Science Reviews, 2007, 26(25-28):3043-3057. doi: 10.1016/j.quascirev.2007.06.026 |
[90] |
Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800, 000 years[J]. Science, 2007, 317(5839):793-796. doi: 10.1126/science.1141038 |
Schematic ocean currents in the region[35], and the locations of the core U1482 and other published cores mentioned in this paper. MC:Mindanao Current; NECC:North Equatorial Counter Current; NGCC:New Guinea Coastal Current; SCSTF:South China Sea Throughflow; SJC:South Java Current; ITF:Indonesian Throughflow; LC:Leeuwin Current
Fitzroy River area mean monthly precipitation at Fitzroy Crossing and mean monthly SSS at Site U1482[27, 41]
T.sacculifer δ18O from core U1482, benthic and planktonic foraminifers δ18O from core MD01-2378[61] and curve of LR04[62]. Black triangle is the LAD of G.ruber (pink), numbers represent Marine Isotope Stage(MIS)
δ18O, Mg/Ca-SST and δ18Osw-iv records in core U1482
Spectral analyses results of δ18Osw-iv from core U1482 and ODP806. Dotted lines stand for the 95 % confidence levels
Comparison of δ18Osw-iv records and its band-pass filter result from core U1482 with global sea level changes and other paleoclimate records. (a)Orbital precession[71]; (b)Original and band-pass filter of Chinese caves δ18O[72]; (c)Original and band-pass filter of δ18Osw-iv from core U1482; (d)The F1 values from core MD01-2378[61]; (e)The austral summer insolation at 15°S and 15°N[71](blue:15°N, golden:15°S); (f)The δ18Osw-iv from core MD06-3047[73]; (g)Global relative sea level[55]
Comparison of δ18Osw-iv records from U1482 with other paleoclimate records. Orbital obliquity[71]; original and band-pass filter of δD record from EDC[90]; original and band-pass filter of δ18Osw-iv from core U1482