全新世和末次间冰期北大西洋底栖有孔虫氧同位素对比的探索研究

胡镕. 全新世和末次间冰期北大西洋底栖有孔虫氧同位素对比的探索研究[J]. 第四纪研究, 2018, 38(5): 1142-1155. doi: 10.11928/j.issn.1001-7410.2018.05.09
引用本文: 胡镕. 全新世和末次间冰期北大西洋底栖有孔虫氧同位素对比的探索研究[J]. 第四纪研究, 2018, 38(5): 1142-1155. doi: 10.11928/j.issn.1001-7410.2018.05.09
胡镕. 全新世和末次间冰期北大西洋底栖有孔虫氧同位素对比的探索研究[J]. 第四纪研究, 2018, 38(5): 1142-1155. doi: 10.11928/j.issn.1001-7410.2018.05.09 Hu Rong. A comparative study of benthic foraminifera oxygen isotopes in the North Atlantic during Holocene and MIS 5e[J]. Quaternary Sciences, 2018, 38(5): 1142-1155. doi: 10.11928/j.issn.1001-7410.2018.05.09
Citation: Hu Rong. A comparative study of benthic foraminifera oxygen isotopes in the North Atlantic during Holocene and MIS 5e[J]. Quaternary Sciences, 2018, 38(5): 1142-1155. doi: 10.11928/j.issn.1001-7410.2018.05.09

全新世和末次间冰期北大西洋底栖有孔虫氧同位素对比的探索研究

  • 基金项目:

    中国博士后科学基金项目(批准号:2017M620201)和国家重点研究发展计划——全球变化及应对项目(批准号:2016YFA0600503)共同资助

详细信息
    作者简介:

    胡镕, 女, 30岁, 博士后, 表生地球化学和全球变化研究, E-mail:ronghu@nju.edu.cn

  • 中图分类号: P725.1;Q915.811+.1;P597+.2;P534.63

A comparative study of benthic foraminifera oxygen isotopes in the North Atlantic during Holocene and MIS 5e

  • 北大西洋(特别是亚极地海区)是对全球气候变化响应最敏感的区域之一,也是全球气候变化研究关注的焦点之一。地质记录和模拟研究指出末次间冰期(MIS 5e)全球地表平均温度比全新世(Holocene)高约1℃,因而可以作为未来全球变暖趋势的历史对照,但目前北大西洋水体温盐变化在这两个时期的对比研究仍然较少。底栖有孔虫氧同位素作为古气候研究常用的指标,与冰量、温度和洋流变化紧密相关。本文统计并对比了北大西洋47个深海沉积物钻孔MIS 5e和全新世的底栖有孔虫氧同位素数据,发现研究区不同深度、不同纬度的数据在这两个间冰期具有系统的差异。MIS 5e氧同位素平均值和极低值比全新世系统性偏轻0.08 ‰,反映了陆地冰量变化对整个区域的影响,且深水温度整体可能比全新世偏高。氧同位素时空分布表明北大西洋中层水(1~2 km)全新世和MIS 5e的有孔虫氧同位素差值(> 0.2 ‰)比深水(> 2 km)更显著,可能记录更大的温度变化幅度,而1.5 km之上MIS 5e氧同位素值变重(平均重约0.36 ‰)则主要响应了大洋环流的变化。此外,高纬地区(45°N以北)深水底栖有孔虫氧同位素值在MIS 5e系统性偏轻约0.12 ‰,比中低纬(0°~45°N)深水变化更显著,可能反映高纬深水变暖程度更高,与海表温度重建和模拟结果相吻合。因此,联合多钻孔的底栖有孔虫氧同位素是分辨区域古海洋变化的有效手段,在未来气候变暖中北大西洋高纬和中层海域的变化是气候模式需要重点关注的区域之一。

  • 加载中
  • 图 1 

    北大西洋47个钻孔的位置图

    Figure 1. 

    The locations of the 47 sediment cores in the North Atlantic. The cores are divided into four regions by symbols in different colours:①INA(green), ②N. DNA(blue), ③W. DNA(orange), ④E. DNA(yellow). Same colour coding in the following Fig. 3 and Fig. 4

    图 2 

    北大西洋中层水(INA)全新世(a)和MIS 5e (b)、高纬北大西洋深水(N. DNA)全新世(c)和MIS 5e (d)、中低纬西北大西洋深水(W. DNA)全新世(e)和MIS 5e (f)以及中低纬东北大西洋深水(E. DNA)全新世(g)和MIS 5e (h)的底栖有孔虫氧同位素序列对比

    Figure 2. 

    The Holocene(left column)and MIS 5e(right column)benthic δ18O records(corrected to Uvigerina peregrina) in the four regions:(a, b)INA; (c, d)N. DNA; (e, f)W. DNA; (g, h)E. DNA. Analytical errors(1σ=0.1 ‰) are shown on the left corner of each panel

    图 3 

    北大西洋中层水(a)、高纬北大西洋深水(b)、中低纬西北大西洋深水(c)和中低纬东北大西洋深水(d)钻孔底栖有孔虫全新世(实心)和MIS 5e(空心)氧同位素平均值随深度的分布

    Figure 3. 

    Depth distribution of averaged Holocene(filled symbols)and MIS 5e(open symbols)benthic δ18O in (a)INA, (b)N. DNA, (c)W.DNA, (d)E.DNA. Analytical errors(1σ=0.1 ‰) are shown on the top of each panel

    图 4 

    北大西洋中层水(a)、高纬北大西洋深水(b)、中低纬西北大西洋深水(c)和中低纬东北大西洋深水(d)钻孔底栖有孔虫氧同位素平均值在全新世和MIS 5e的对比

    Figure 4. 

    Comparison between the averaged Holocene and MIS 5e benthic δ18O in (a) INA, (b)N. DNA, (c)W. DNA, (d)E. DNA. Analytical errors(1σ=0.1 ‰)are shown on the right corner of each panel

  • [1]

    Broecker W S. The great ocean conveyor[J]. Oceanography, 1991, 4(2):79-89. doi: 10.5670/oceanog

    [2]

    Marshall J, Speer K. Closure of the meridional overturning circulation through Southern Ocean upwelling[J]. Nature Geoscience, 2012, 5(3):171-180. doi: 10.1038/ngeo1391

    [3]

    Rahmstorf S, Box J E, Feulner G, et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation[J]. Nature Climate Change, 2015, 5:475-480. doi: 10.1038/nclimate2554

    [4]

    Ganopolski A, Rahmstorf S. Rapid changes of glacial climate simulated in a coupled climate model[J]. Nature, 2001, 409:153-158. doi: 10.1038/35051500

    [5]

    于雷, 郜永祺, 王会军, 等.高纬度淡水强迫增强背景下大西洋经向翻转环流的响应及其机制[J].大气科学, 2009(1):179-196. doi: 10.3878/j.issn.1006-9895.2009.01.16

    Yu Lei, Gao Yongqi, Wang Huijun, et al. Transient response of the Atlantic Meridional Overturning Circulation to the enhanced freshwater forcing and its mechanism[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(1):179-196. doi: 10.3878/j.issn.1006-9895.2009.01.16

    [6]

    Past Interglacials Working Group of PAGES. Interglacials of the last 800, 000-years[J]. Reviews of Geophysics, 2016, 54:doi:10.1002/2015RG000482.

    [7]

    裴巧敏, 马玉贞, 胡彩莉, 等.全球典型地区MIS 5e阶段气候特征研究进展[J].地球科学进展, 2016, 31(11):1182-1196. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201611008

    Pei Qiaomin, Ma Yuzhen, Hu Caili, et al. Climatic character of Marine Isotope Stage(MIS) 5e in the representative regions of the world:A review[J]. Advances in Earth Science, 2016, 31(11):1182-1196. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201611008

    [8]

    Hoffman J S, Clark P U, Parnell A C, et al. Regional and global sea-surface temperatures during the last interglaciation[J]. Science, 2017, 355(6322):276-279. doi: 10.1126/science.aai8464

    [9]

    Otto-Bliesner B L, Rosenbloom N, Stone E J, et al. How warm was the last interglacial? New model-data comparisons[J]. Philosophical Transactions of the Royal Society A, 2013, 371(2001):20130097. doi: 10.1098/rsta.2013.0097

    [10]

    Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349(6244):aaa4019. doi: 10.1126/science.aaa4019

    [11]

    Urey H C. The thermodynamic properties of isotopic substances[J]. Journal of the Chemical Society (Resumed), 1947, (4):562-581. http://d.old.wanfangdata.com.cn/NSTLQK/10.1039-jr9470000562/

    [12]

    Labeyrie L D, Duplessy J C, Blanc P L. Variations in mode of formation and temperature of oceanic deep waters over the past 125, 000 years[J]. Nature, 1987, 327(6122):477-482. doi: 10.1038/327477a0

    [13]

    Cortijo E, Duplessy J C, Labeyrie L, et al. Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth[J]. Nature, 1994, 372:446. doi: 10.1038/372446a0

    [14]

    罗琼一, 金海燕, 翦知盡, 等.南海现代浮游有孔虫的垂直分布及其古海洋学意义[J].第四纪研究, 2015, 35(6):1342-1353. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201506004

    Luo Qiongyi, Jin Haiyan, Jian Zhimin, et al. Vertical distribution of living planktonic foraminifera in the northern South China Sea and its paleoceanographic implications[J]. Quaternary Sciences, 2015, 35(6):1342-1353. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201506004

    [15]

    杨策, 徐建, 张鹏, 等. 27万年来南海南部上部水体结构和古生产力变化的古海洋学记录[J].第四纪研究, 2017, 37(3):452-462. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11326.shtml

    Yang Ce, Xu Jian, Zhang Peng, et al. Paleoceanographic records of upper ocean water structure and paleoproductivity in the southern south China sea since 270 ka[J]. Quaternary Sciences, 2017, 37(3):452-462. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11326.shtml

    [16]

    何毓新, 孙奕映, 孙大洋, 等. 4 Ma来澳大利亚西海岸带的环境变化历史及其与印尼贯穿流的联系[J].第四纪研究, 2017, 37(5):1131-1140. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11393.shtml

    He Yuxin, Sun Yiying, Sun Dayang, et al. History of environmental changes on the Western Australia Shelf over the past 4 million years and its indication on the Indonesian Throughflow[J]. Quaternary Sciences, 2017, 37(5):1131-1140. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11393.shtml

    [17]

    Shackleton N J. Oxygen isotope analyses and Pleistocene temperatures re-assessed[J]. Nature, 1967, 215(5096):15-17. doi: 10.1038/215015a0

    [18]

    Shackleton N J, Opdyke N D. Oxygen isotope and palaeomagnetic stratigraphy of Equatorial Pacific core V28-238:Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale[J]. Quaternary Research, 1973, 3(1):39-55. doi: 10.1016/0033-5894(73)90052-5

    [19]

    Fairbanks R G, Wiebe P H, Bé A W. Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic[J]. Science, 1980, 207(4426):61-63. doi: 10.1126/science.207.4426.61

    [20]

    Schrag D P, Hampt G, Murray D W. Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean[J]. Science, 1996, 272(5270):1930-1932. doi: 10.1126/science.272.5270.1930

    [21]

    Rohling E J. Oxygen isotope composition of seawater[M]//Elias S A. The Encyclopedia of Quaternary Sciences. Amsterdam: Elsevier, 2013: 915-922.

    [22]

    Marchitto T M, Curry W B, Lynch-Stieglitz J, et al. Improved oxygen isotope temperature calibrations for cosmopolitan benthic foraminifera[J]. Geochimica et Cosmochimica Acta, 2014, 130:1-11. doi: 10.1016/j.gca.2013.12.034

    [23]

    Kim S-T, O'Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16):3461-3475. doi: 10.1016/S0016-7037(97)00169-5

    [24]

    Lisiecki L, Raymo M. A Plio-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):1-16. doi:10.1029/2004PA001071.

    [25]

    Coplen T B. Editorial:More uncertainty than necessary[J]. Paleoceanography, 1996, 11(4):369-370. doi: 10.1029/96PA01420

    [26]

    Oppo D W, Raymo M E, Lohmann G P, et al. A δ13C record of upper North Atlantic Deep Water during the past 2.6 million years[J]. Paleoceanography, 1995, 10(3):373-394. doi: 10.1029/95PA00332

    [27]

    Keigwin L D. Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic[J]. Paleoceanography, 2004, 19(4):PA4012. http://onlinelibrary.wiley.com/doi/10.1029/2004PA001029/abstract

    [28]

    Venz K A, Hodell D A, Stanton C, et al. A 1.0 Myr record of glacial North Atlantic intermediate water variability from ODP Site 982 in the Northeast Atlantic[J]. Paleoceanography, 1999, 14(1):42-52. http://onlinelibrary.wiley.com/doi/10.1029/1998PA900013/abstract

    [29]

    Channell J E T. Geomagnetic paleointensity and directional secular variation at Ocean Drilling Program(ODP) Site 984(Bjorn Drift) since 500 ka:Comparisons with ODP Site 983(Gardar Drift)[J]. Journal of Geophysical Research:Solid Earth, 1999, 104(B10):22937-22951. doi: 10.1029/1999JB900223

    [30]

    Channell J E T, Hodell D A, Lehman B. Relative geomagnetic paleointensity and δ18O at ODP Site 983(Gardar Drift, North Atlantic) since 350 ka[J]. Earth and Planetary Science Letters, 1997, 153(1):103-118. https://www.sciencedirect.com/science/article/pii/S0012821X97001647

    [31]

    Sarnthein M, Winn K, Jung S J A, et al. Changes in East Atlantic deepwater circulation over the last 30, 000 years:Eight time slice reconstructions[J]. Paleoceanography, 1994, 9(2):209-267. doi: 10.1029/93PA03301

    [32]

    Oliver K I C, Hoogakker B A A, Crowhurst S, et al. A synthesis of marine sediment core δ13C data over the last 150000 years[J]. Climate of the Past, 2010, 6(5):645-673. doi: 10.5194/cp-6-645-2010

    [33]

    Freudenthal T, Meggers H, Henderiks J, et al. Upwelling intensity and filament activity off Morocco during the last 250, 000 years[J]. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 2002, 49(17):3655-3674. doi: 10.1016/S0967-0645(02)00101-7

    [34]

    Schlünz B, Schneider R R, Müller P J, et al. Late Quaternary organic carbon accumulation south of Barbados:Influence of the Orinoco and Amazon rivers?[J]. Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 2000, 47(6):1101-1124. doi: 10.1016/S0967-0637(99)00076-X

    [35]

    Duplessy J C, Shackleton N J, Fairbanks R G, et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation[J]. Paleoceanography, 1988, 3(3):343-360. doi: 10.1029/PA003i003p00343

    [36]

    Oppo D W, Lehman S J. Suborbital timescale variability of North Atlantic deep water during the past 200, 000 years[J]. Paleoceanography, 1995, 10(5):901-910. doi: 10.1029/95PA02089

    [37]

    McManus J F, Oppo D W, Cullen J L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic[J]. Science, 1999, 283(5404):971-975. doi: 10.1126/science.283.5404.971

    [38]

    Jung S J A, Sarnthein M. Stable isotope analysis of foraminifera from sediment cores GIK 17049-6[DB]. PANGAEA, 2004, doi: 10.1594/PANGAEA.112908.

    [39]

    Jung S J A, Sarnthein M. Stable isotope analysis of foraminifera from sediment cores GIK 23414-9[DB]. PANGAEA, 2003, doi: 10.1594/PANGAEA.112911.

    [40]

    Jung S J A, Sarnthein M. Stable isotope analysis of foraminifera from sediment cores GIK 23415-9[DB]. PANGAEA, 2003, doi: 10.1594/PANGAEA.112912.

    [41]

    Hodell D A, Minth E K, Curtis J H, et al. Surface and deep-water hydrography on Gardar Drift(Iceland Basin) during the last interglacial period[J]. Earth and Planetary Science Letters, 2009, 288(1):10-19. https://www.sciencedirect.com/science/article/pii/S0012821X09005147

    [42]

    Jung S J A, Sarnthein M. Stable isotope analysis of foraminifera from sediment cores GIK 23418-8[DB]. PANGAEA, 2003, doi: 10.1594/PANGAEA.112915.

    [43]

    Jung S J A, Sarnthein M. Stable isotope analysis of foraminifera from sediment cores GIK 23416-4[DB]. PANGAEA, 2004, doi: 10.1594/PANGAEA.136423.

    [44]

    Hodell D A, Channell J E T, Curtis J H, et al. Onset of "Hudson Strait" Heinrich events in the eastern North Atlantic at the end of the Middle Pleistocene transition (~640 ka)?[J]. Paleoceanography, 2008, 23(4):PA4218. doi:10.1029/2008PA001591.

    [45]

    Labeyrie L, Vidal L, Cortijo E, et al. Surface and deep hydrology of the Northern Atlantic Ocean during the past 150000 years[J]. Philosophical Transactions of the Royal Society of London, Series B:Biological Sciences, 1995, 348(1324):255-264. doi: 10.1098/rstb.1995.0067

    [46]

    Jullien E, Grousset F E, Hemming S R, et al. Contrasting conditions preceding MIS 3 and MIS 2 Heinrich events[J]. Global and Planetary Change, 2006, 54(3-4):225-238. doi: 10.1016/j.gloplacha.2006.06.021

    [47]

    Waelbroeck C, Duplessy J-C, Michel E, et al. The timing of the last deglaciation in North Atlantic climate records[J]. Nature, 2001, 412:724. doi: 10.1038/35089060

    [48]

    Boyle E A, Keigwin L D. Comparison of Atlantic and Pacific paleochemical records for the last 215, 000 years:Changes in deep ocean circulation and chemical inventories[J]. Earth and Planetary Science Letters, 1985, 76(1-2):135-150. doi: 10.1016/0012-821X(85)90154-2

    [49]

    Mix A C, Fairbanks R G. North Atlantic surface-ocean control of Pleistocene deep-ocean circulation[J]. Earth and Planetary Science Letters, 1985, 73(2):231-243. https://www.sciencedirect.com/science/article/pii/0012821X8590072X

    [50]

    Hagen S, Keigwin L D. Sea-surface temperature variability and deep water reorganisation in the subtropical North Atlantic during Isotope Stage 2-4[J]. Marine Geology, 2002, 189(1):145-162. https://www.sciencedirect.com/science/article/pii/S0025322702003274

    [51]

    Oppo D W, Fairbanks R G. Atlantic ocean thermohaline circulation of the last 150, 000 years:Relationship to climate and atmospheric CO2[J]. Paleoceanography, 1990, 5(3):277-288.

    [52]

    Bickert T, Mackensen A. Last glacial to Holocene changes in South Atlantic deep water circulation[M]//Wefer G, Mulitza S, Ratmeyer V. The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Berlin, Heidelberg: Springer, 1996: 671-693.

    [53]

    Bickert T, Curry W B, Wefer G. Late Pliocene to Holocene(2.60 Ma) western equatorial Atlantic deep-water circulation:Inferences from stable isotopes[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1997, 154:239~253 https://www.sciencedirect.com/science/article/pii/S0025322702003225

    [54]

    Howe J N W, Piotrowski A M. Atlantic deep water provenance decoupled from atmospheric CO2 concentration during the lukewarm interglacials[J]. Nature Communications, 2017, 8(1):2003. doi: 10.1038/s41467-017-01939-w

    [55]

    Curry W B, Oppo D W. Synchronous, high-frequency oscillations in tropical sea surface temperatures and North Atlantic deep production during the last glacial cycle[J]. Paleoceanography, 1997, 12(1):1-14. http://onlinelibrary.wiley.com/doi/10.1029/96PA02413/full

    [56]

    Rasmussen T L, Oppo D W, Thomsen E, et al. Deep sea records from the southeast Labrador Sea:Ocean circulation changes and ice-rafting events during the last 160, 000 years[J]. Paleoceanography, 2003, 18(1):1018. doi:10.1029/2001PA000736.

    [57]

    Mulitza S. Stable isotopes of sediment core GeoB 1523-2[DB]. PANGAEA, 1998, doi: 10.1594/PANGAEA.54618.

    [58]

    Zabel M, Bickert T, Dittert L. Significance of the sedimentary Al!Ti ratio as an indicator for variations in the circulation patterns of the equatorial North Atlantic[J]. Paleoceanography, 1999, 14(6):789-799. doi: 10.1029/1999PA900027

    [59]

    McIntyre A, Ruddiman W F, Karlin K, et al. Surface water response of the equatorial Atlantic Ocean to orbital forcing[J]. Paleoceanography, 1989, 4(1):19-55. doi: 10.1029/PA004i001p00019

    [60]

    Thomson J, Nixon S, Summerhayes C P, et al. Implications for sedimentation changes on the Iberian margin over the last two glacial/interglacial transitions from (230Thexcess)0 systematics[J]. Earth and Planetary Science Letters, 1999, 165(3):255-270. https://www.sciencedirect.com/science/article/pii/S0012821X98002659

    [61]

    Schønfeld J, Zahn R, De Abreu L. Surface and deep water response to rapid climate changes at the Western Iberian margin[J]. Global and Planetary Change, 2003, 36(4):237-264. doi: 10.1016/S0921-8181(02)00197-2

    [62]

    Shackleton N J, Hall M A, Vincent E. Phase relationships between millennial-scale events 64, 000-24, 000 years ago[J]. Paleoceanography, 2000, 15(6):565-569. doi: 10.1029/2000PA000513

    [63]

    Zahn-Knoll R, Sarnthein M. Stable isotope analysis of foraminifera from sediment core GIK 15637-1[DB]. PANGAEA, 2003, doi: 10.1594/PANGAEA.106213.

    [64]

    Zahn R, Winn K, Sarnthein M. Benthic foraminiferal δ13C and accumulation rates of organic carbon:Uvigerina peregrina group and Cibicidoides wuellerstorfi[J]. Paleoceanography, 1986, 1(1):27-42. doi: 10.1029/PA001i001p00027

    [65]

    Zhao M, Beveridge N A S, Shackleton N J, et al. Molecular stratigraphy of cores off northwest Africa:Sea surface temperature history over the last 80 ka[J]. Paleoceanography, 1995, 10(3):661-675. doi: 10.1029/94PA03354

    [66]

    deMenocal P, Ortiz J, Guilderson T, et al. Abrupt onset and termination of the African Humid Period:Rapid climate responses to gradual insolation forcing[J]. Quaternary Science Reviews, 2000, 19(1):347-361. https://www.sciencedirect.com/science/article/pii/S0277379199000815

    [67]

    Tiedemann R, Sarnthein M, Shackleton N J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659[J]. Paleoceanography, 1994, 9(4):619-638. doi: 10.1029/94PA00208

    [68]

    Bloemendal J, Lamb B, King J. Paleoenvironmental implications of rock-magnetic properties of Late Quaternary sediment cores from the eastern Equatorial Atlantic[J]. Paleoceanography, 1988, 3(1):61-87. doi: 10.1029/PA003i001p00061

    [69]

    Curry W B, Duplessy J C, Labeyrie L D, et al. Changes in the distribution of δ13C of deep water ΣCO2 between the Last Glaciation and the Holocene[J]. Paleoceanography, 1988, 3(3):317-341. doi: 10.1029/PA003i003p00317

    [70]

    Adegbie A T. Reconstruction of paleoenvironmental conditions in Equatorial Atlantic and the Gulf of Guinea Basins for the last 245, 000 years[D]. Bremen, Germany: The Ph.D Thesis of University of Bremen, 2001.https://www.researchgate.net/publication/27336745_Reconstruction_of_paleoenvironmental_conditions_in_Equatorial_Atlantic_and_the_Gulf_of_Guinea_Basins_for_the_last_245000_years

    [71]

    Bickert T, Wefer G. Late Quaternary deep water circulation in the South Atlantic: Reconstruction from carbonate dissolution and benthic stable isotopes[M]//Wefer G, Mulitza S, Ratmeyer V. The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Berlin, Heidelberg: Springer, 1996: 599-620.

    [72]

    Stirling C H, Esat T M, Lambeck K, et al. Timing and duration of the last interglacial:Evidence for a restricted interval of widespread coral reef growth[J]. Earth and Planetary Science Letters, 1998, 160(3-4):745-762. doi: 10.1016/S0012-821X(98)00125-3

    [73]

    Veeh H H. Th230/U238 and U234/U238 ages of Pleistocene high sea level stand[J]. Journal of Geophysical Research, 1966, 71(14):3379-3386. doi: 10.1029/JZ071i014p03379

    [74]

    Kopp R E, Simons F J, Mitrovica J X, et al. Probabilistic assessment of sea level during the last interglacial stage[J]. Nature, 2009, 462:863-868. doi: 10.1038/nature08686

    [75]

    Dutton A, Lambeck K. Ice volume and sea level during the last interglacial[J]. Science, 2012, 337(6091):216-219. doi: 10.1126/science.1205749

    [76]

    Lea D W, Martin P A, Pak D K, et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 2002, 21(1-3):283-293. doi: 10.1016/S0277-3791(01)00081-6

    [77]

    Fairbanks R G. A 17, 000-year glacio-eustatic sea level record:Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation[J]. Nature, 1989, 342:637. doi: 10.1038/342637a0

    [78]

    Fairbanks R G, Matthews R K. The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies[J]. Quaternary Research, 1978, 10(2):181-196. doi: 10.1016/0033-5894(78)90100-X

    [79]

    Dwyer G S, Cronin T M, Baker P A, et al. North Atlantic deepwater temperature change during Late Pliocene and Late Quaternary climatic cycles[J]. Science, 1995, 270(5240):1347-1351. doi: 10.1126/science.270.5240.1347

    [80]

    Martin P A, Lea D W, Rosenthal Y, et al. Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca[J]. Earth and Planetary Science Letters, 2002, 198(1):193-209. https://www.sciencedirect.com/science/article/pii/S0012821X02004727

    [81]

    Elderfield H, Yu J, Anand P, et al. Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis[J]. Earth and Planetary Science Letters, 2006, 250(3):633-649. https://www.sciencedirect.com/science/article/pii/S0012821X06005504

    [82]

    Yu J, Broecker W S. Comment on "Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions"[J]. Science, 2010, 328(5985):1480. http://science.sciencemag.org/content/328/5985/1480.3

    [83]

    Sosdian S, Rosenthal Y. Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions[J]. Science, 2009, 325(5938):306-310. doi: 10.1126/science.1169938

    [84]

    Cronin T M, Dwyer G S, Baker P A, et al. Orbital and suborbital variability in North Atlantic bottom water temperature obtained from deep-sea ostracod Mg/Ca ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(1):45-57. https://www.sciencedirect.com/science/article/pii/S0031018200001048

    [85]

    Elderfield H, Ferretti P, Greaves M, et al. Evolution of ocean temperature and ice volume through the Mid-Pleistocene climate transition[J]. Science, 2012, 337(6095):704-709. doi: 10.1126/science.1221294

    [86]

    Manabe S, Stouffer R J. Century-scale effects of increased atmospheric CO2 on the ocean-atmosphere system[J]. Nature, 1993, 364:215. doi: 10.1038/364215a0

    [87]

    Shaffer G, Bendtsen J. Role of the Bering Strait in controlling North Atlantic ocean circulation and climate[J]. Nature, 1994, 367:354. doi: 10.1038/367354a0

    [88]

    Fronval T, Jansen E. Eemian and Early Weichselian(140-60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions[J]. Paleoceanography, 1997, 12(3):443-462. doi: 10.1029/97PA00322

    [89]

    Kawase M, Sarmiento J L. Circulation and nutrients in middepth Atlantic waters[J]. Journal of Geophysical Research:Oceans, 1986, 91(C8):9749-9770. doi: 10.1029/JC091iC08p09749

    [90]

    Adkins J F, Boyle E A. Changing atmospheric Δ14C and the record of deep water paleoventilation ages[J]. Paleoceanography, 1997, 12(3):337-344. doi: 10.1029/97PA00379

    [91]

    Bohm E, Lippold J, Gutjahr M, et al. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle[J]. Nature, 2015, 517(7532):73-76. doi: 10.1038/nature14059

    [92]

    Lukashina N P, Bashirova L D. Deep water masses in the Iceland Basin during the Last Interglacial (MIS 5e):Evidence from benthic foraminiferal data[J]. Oceanologia, 2015, 57(2):212-221. doi: 10.1016/j.oceano.2014.11.004

    [93]

    Reid J L. On the total geostrophic circulation of the North Atlantic Ocean:Flow patterns, tracers, and transports[J]. Progress in Oceanography, 1994, 33(1):1-92. doi: 10.1016/0079-6611(94)90014-0

    [94]

    Martrat B, Grimalt J O, Lopez-Martinez C, et al. Abrupt temperature changes in the western Mediterranean over the past 250, 000 years[J]. Science, 2004, 306(5702):1762-1765. doi: 10.1126/science.1101706

    [95]

    Irvalı N, Ninnemann U S, Galaasen E V, et al. Rapid switches in subpolar North Atlantic hydrography and climate during the Last Interglacial(MIS 5e)[J]. Paleoceanography, 2012, 27(2):PA2207. https://www.researchgate.net/publication/234840148_Rapid_switches_in_subpolar_North_Atlantic_hydrography_and_climate_during_the_Last_Interglacial_MIS_5e

    [96]

    Toucanne S, Jouet G, Ducassou E, et al. A 130, 000-year record of Levantine Intermediate Water flow variability in the Corsica Trough, western Mediterranean Sea[J]. Quaternary Science Reviews, 2012, 33:55-73. doi: 10.1016/j.quascirev.2011.11.020

    [97]

    Singh A D, Rai A K, Tiwari M, et al. Fluctuations of Mediterranean Outflow Water circulation in the Gulf of Cadiz during MIS 5 to 7:Evidence from benthic foraminiferal assemblage and stable isotope records[J]. Global and Planetary Change, 2015, 133:125-140. doi: 10.1016/j.gloplacha.2015.08.005

    [98]

    范维佳, 陈荣华.南海北部5万年来的表层海水盐度及东亚季风降水[J].第四纪研究, 2011, 21(2):227-235. doi: 10.3969/j.issn.1001-7410.2011.02.04 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ201102003&dbname=CJFD&dbcode=CJFQ

    Fan Weijia, Chen Ronghua. Sea surface salinity and East Asian monsoon precipitation since the last 50000 years in the nothern South China Sea[J]. Quaternary Sciences, 2011, 21(2):227-235. doi: 10.3969/j.issn.1001-7410.2011.02.04 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ201102003&dbname=CJFD&dbcode=CJFQ

    [99]

    Cramp A, O'Sullivan G. Neogene sapropels in the Mediterranean:A review[J]. Marine Geology, 1999, 153(1):11-28. https://www.researchgate.net/publication/222494709_Neogene_sapropels_in_the_Mediterranean_A_review

    [100]

    Emeis K C, Schulz H, Struck U, et al. Eastern Mediterranean surface water temperatures and δ18O composition during deposition of sapropels in the Late Quaternary[J]. Paleoceanography, 2003, 18(1):1005. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2000PA000617?regionCode=US-WA&identityKey=02fdc807-d12a-45f2-b47f-ddd58b8b6d5b&isReportingDone=true&wol1URL=%2Fdoi%2F10.1029%2F2000PA000617%2Ffull

    [101]

    Bahr A, Kaboth S, Jiménez-Espejo F J, et al. Persistent monsoonal forcing of Mediterranean Outflow Water dynamics during the Late Pleistocene[J]. Geology, 2015, 43(11):951-954. doi: 10.1130/G37013.1

    [102]

    Galaasen E V, Ninnemann U S, Irvalı N, et al. Rapid reductions in North Atlantic deep water during the peak of the last interglacial period[J]. Science, 2014, 343(6175):1129-1132. doi: 10.1126/science.1248667

    [103]

    Wood R A, Keen A B, Mitchell J F B, et al. Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model[J]. Nature, 1999, 399:572. doi: 10.1038/21170

    [104]

    Hillaire-Marcel C, de Vernal A, Bilodeau G, et al. Absence of deep-water formation in the Labrador Sea during the last interglacial period[J]. Nature, 2001, 410:1073. doi: 10.1038/35074059

    [105]

    Berger A, Loutre M F. Astronomical solutions for paleoclimate studies over the last 3 million years[J]. Earth and Planetary Science Letters, 1992, 111(2):369-382. https://www.sciencedirect.com/science/article/pii/0012821X92901907

    [106]

    曲维政, 邓声贵, 黄菲, 等.深海温度变化对太阳活动的响应[J].第四纪研究, 2004, 24(3):285-292. doi: 10.3321/j.issn:1001-7410.2004.03.007 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200403006&dbname=CJFD&dbcode=CJFQ

    Qu Weizheng, Deng Shenggui, Huang Fei, et al. Response of change of deep sea temperature to sun activity[J]. Quaternary Sciences, 2004, 24(3):285-292. doi: 10.3321/j.issn:1001-7410.2004.03.007 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200403006&dbname=CJFD&dbcode=CJFQ

    [107]

    Fronval T, Jansen E. Rapid changes in ocean circulation and heat flux in the Nordic seas during the last interglacial period[J]. Nature, 1996, 383:806. doi: 10.1038/383806a0

    [108]

    Oppo D W, McManus J F, Cullen J L. Evolution and demise of the Last Interglacial warmth in the subpolar North Atlantic[J]. Quaternary Science Reviews, 2006, 25(23-24):3268-3277. doi: 10.1016/j.quascirev.2006.07.006

    [109]

    Robson J, Sutton R, Lohmann K, et al. Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s[J]. Journal of Climate, 2012, 25(12):4116-4134. doi: 10.1175/JCLI-D-11-00443.1

    [110]

    Smeed D A, McCarthy G D, Cunningham S A, et al. Observed decline of the Atlantic meridional overturning circulation 2004-2012[J]. Ocean Science, 2014, 10(1):29-38. doi: 10.5194/os-10-29-2014

    [111]

    Robson J, Ortega P, Sutton R. A reversal of climatic trends in the North Atlantic since 2005[J]. Nature Geoscience, 2016, 9:513-517. doi: 10.1038/ngeo2727

    [112]

    汪品先, 翦知盡.寻求高分辨率的古环境记录[J].第四纪研究, 1999, (1):1-17. doi: 10.3321/j.issn:1001-7410.1999.01.001 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ199901000&dbname=CJFD&dbcode=CJFQ

    Wang Pinxian, Jian Zhimin. Searching high-resolution paleoenvironmental records:A review[J]. Quaternary Sciences, 1999(01):1-17. doi: 10.3321/j.issn:1001-7410.1999.01.001 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ199901000&dbname=CJFD&dbcode=CJFQ

    [113]

    汪品先. Xlll届INQUA大会上的"全球变化"[J].第四纪研究, 1992, (1):33-35. doi: 10.3321/j.issn:1001-7410.1992.01.006 http://www.oalib.com/paper/4881365

    Wang Pinxian. Global climate change in Xlll INQUA Conference. Quaternary Sciences, 1992, (1):33-35. doi: 10.3321/j.issn:1001-7410.1992.01.006 http://www.oalib.com/paper/4881365

    [114]

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: Summery for Policymakers[R]. Cambridge, United Kingdom: Cambridge University Press, 2013: 21.http://www.climatechange2013.org/

  • 加载中

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-06-17
修回日期:  2018-08-09
刊出日期:  2018-09-30

目录