基于高分辨地形的黄土滑坡特征参数提取及其应用意义

胡胜, 邱海军, 王新刚, 谢婉丽, 龙永清, 土祥, 杨冬冬, 马舒悦, 张焱, 曹明明. 基于高分辨地形的黄土滑坡特征参数提取及其应用意义[J]. 第四纪研究, 2018, 38(2): 367-379. doi: 10.11928/j.issn.1001-7410.2018.02.09
引用本文: 胡胜, 邱海军, 王新刚, 谢婉丽, 龙永清, 土祥, 杨冬冬, 马舒悦, 张焱, 曹明明. 基于高分辨地形的黄土滑坡特征参数提取及其应用意义[J]. 第四纪研究, 2018, 38(2): 367-379. doi: 10.11928/j.issn.1001-7410.2018.02.09
胡胜, 邱海军, 王新刚, 谢婉丽, 龙永清, 土祥, 杨冬冬, 马舒悦, 张焱, 曹明明. 基于高分辨地形的黄土滑坡特征参数提取及其应用意义[J]. 第四纪研究, 2018, 38(2): 367-379. doi: 10.11928/j.issn.1001-7410.2018.02.09 Hu Sheng, Qiu Haijun, Wang Xingang, Xie Wanli, Long Yongqing, Tu Xiang, Yang Dongdong, Ma Shuyue, Zhang Yan, Cao Mingming. Extracting characteristic parameters of loess landslides based on high-resolution topography and its application prospect[J]. Quaternary Sciences, 2018, 38(2): 367-379. doi: 10.11928/j.issn.1001-7410.2018.02.09
Citation: Hu Sheng, Qiu Haijun, Wang Xingang, Xie Wanli, Long Yongqing, Tu Xiang, Yang Dongdong, Ma Shuyue, Zhang Yan, Cao Mingming. Extracting characteristic parameters of loess landslides based on high-resolution topography and its application prospect[J]. Quaternary Sciences, 2018, 38(2): 367-379. doi: 10.11928/j.issn.1001-7410.2018.02.09

基于高分辨地形的黄土滑坡特征参数提取及其应用意义

  • 基金项目:

    国家自然科学基金项目(批准号:41771539)和中国科学院国际合作局对外合作重点项目(批准号:131551KYSB20160002)共同资助

详细信息

Extracting characteristic parameters of loess landslides based on high-resolution topography and its application prospect

More Information
  • 黄土高原是地质灾害的易发区和频发区,传统的野外调查方法费时费力,且难以满足地质灾害精细化制图要求。而近些年来兴起的无人机(UAVs)摄影测量技术和SfM(Structure from Motion)三维建模技术已成为获取野外高分辨率地形数据的新技术。在无人机精度初步验证和野外调查的基础上,建立了11个黄土滑坡的三维数字模型,生成了高分辨率的数字正射影像(DOM)和数字高程模型(DEM)产品。在Agisoft PhotoScan、ArcGIS 10.2、Global Mapper 17、Origin Pro 9.0等平台下,完成了黄土滑坡特征参数提取和分析。研究结果表明:不同飞行高度下,无人机获取的DOM存在0.5 m左右的水平偏移,获取的DEM高程与飞行高度呈正相关,但剖面线趋势高度吻合,无人机DEM高程校准后的垂直精度可达±3 cm;与传统野外调查相比,无人机摄影测量技术和SfM建模技术能够快速、准确地获取黄土滑坡几何特征、地形特征、剖面结构等基本特征参数;低成本无人机系统在坡面尺度下非常适合黄土高原地区的滑坡调查与分析,这个新方法具有巨大的潜在应用价值。

  • 加载中
  • 图 1 

    黄土高原位置与黄土滑坡

    Figure 1. 

    The location of Loess Plateau and loess landslides

    图 2 

    无人机精度初步验证

    Figure 2. 

    Preliminary verification of UAVs accuracy

    图 3 

    不同飞行高度获取的剖面高程对比

    Figure 3. 

    Comparison of profile elevations obtained by UAVs at different flight heights

    图 4 

    校准后无人机高程剖面与实测高程剖面对比

    Figure 4. 

    Profile elevations comparison of the revisionary UAVs-based DEM and the measured DEM

    图 5 

    典型黄土滑坡高分辨率3D模型、DOM和DEM

    Figure 5. 

    High-resolution 3D model, DOM, DEM of typical loess landslides

    图 6 

    相对高差与其他参数的相关性分析

    Figure 6. 

    Correlation analysis of relative height and other parameters

    图 7 

    泾阳南塬黄土滑坡(L06)的地形特征参数频率分布

    Figure 7. 

    The frequency distribution of characteristic parameters in the south Jingyang Tableland landslide(L06)

    图 8 

    高程频率曲线识别滑坡(L06)外部结构

    Figure 8. 

    Identifying external structure of L06 landslide according to its elevation frequency curve

    图 9 

    志丹县纸坊小学滑坡主剖面位置与剖面结构

    Figure 9. 

    Main profile position and sectional structure of Zhifang Primary School landslide in Zhidan County

    表 1 

    滑坡位置与飞行参数

    Table 1. 

    Landslides locations and flight parameters

    滑坡
    编号
    滑坡名称 行政区 地形区 纬度 经度 影像
    数量
    飞行
    高度
    (m)
    DOM
    分辨率
    (cm)
    DEM
    分辨率
    (cm)
    航向
    重叠率
    (%)
    旁向
    重叠率
    (%)
    倾斜
    角度
    (°)
    L01 机瓦厂滑坡 西安市灞桥区 黄土台塬区B 34.26°N 109.09°E 525 149.7 5.65 11.3 75 75 -45
    L02 霸陵滑坡 西安市灞桥区 黄土台塬区B 34.25°N 109.11°E 64 143 4.4 8.8 70 70 -45
    L03 三杨坡村滑坡 西安市灞桥区 黄土台塬区B 34.25°N 109.12°E 40 165 5.12 10.24 75 75 -45
    L04 宏福寺滑坡 西安市长安区 黄土台塬区B 34.10°N 108.97°E 25 76.5 2.42 4.84 80 80 -45
    L05 庙店滑坡 咸阳市泾阳县 黄土台塬区C 34.50°N 108.81°E 139 93.4 2.9 5.8 75 75 -45
    L06 大堡子村滑坡 咸阳市泾阳县 黄土台塬区C 34.48°N 108.86°E 322 90 2.82 5.64 75 75 -45
    L07 磨坪村滑坡 榆林市靖边县 黄土丘陵区A 37.07°N 108.58°E 114 171 5.24 10.48 75 75 -45
    L08 乔岔村滑坡 延安市志丹县 黄土丘陵区A 36.96°N 108.62°E 67 148 4.62 9.24 75 75 -45
    L09 宋庄村滑坡 延安市志丹县 黄土丘陵区A 36.96°N 108.57°E 59 115.5 3.63 7.26 80 75 -45
    L10 韩家沟滑坡 延安市志丹县 黄土丘陵区A 36.67°N 108.49°E 43 146.4 4.54 9.08 75 75 -45
    L11 纸坊小学滑坡 延安市志丹县 黄土丘陵区A 36.84°N 108.61°E 162 107.1 3.37 6.73 75 75 -45
    下载: 导出CSV

    表 2 

    黄土滑坡几何特征参数统计

    Table 2. 

    Statistics of loess landslides' characteristics in geometry

    滑坡编号 滑坡名称 相对高差(m) 长度(m) 宽度(m) 周长(m) 面积(m2) 平面形态 剖面形态
    L01 机瓦厂滑坡 114.47 339.33 315.27 1143 100900 舌形 凹形
    L02 霸陵滑坡 85.51 58.75 200.01 455.84 6940 钝角三角形 凸形
    L03 三杨坡村滑坡 66.09 157.66 80.72 492.92 13460 舌形 凸形
    L04 宏福寺滑坡 26.79 26.245 23.01 100.54 687 扇形 复合型
    L05 庙店滑坡 68.18 119.39 86.10 387.37 10640 扇形 凹形
    L06 大堡子村滑坡 65.56 121.55 133.46 501.95 15660 长方形 凹形
    L07 磨坪村滑坡 28.87 23.87 44.62 135.68 753 半圆形 直线形
    L08 乔岔村滑坡 42.05 35.98 124.96 329.8 3269 半椭圆形 直线形
    L09 宋庄村滑坡 46.88 46.53 43.26 193.11 2135 矩形 直线形
    L10 韩家沟滑坡 75.57 68.05 125 355.90 6850 锐角三角形 直线形
    L11 纸坊小学滑坡 103.14 174.23 172.23 650.66 24080 半圆形 凸形
    下载: 导出CSV

    表 3 

    黄土滑坡地形特征参数统计

    Table 3. 

    Statistics of loess landslides' characteristics parameters in topography

    滑坡
    编号
    平均海拔
    (m)
    平均坡度
    (°)
    平均起伏度*
    (m)
    主滑方向
    (°)
    L01 490.07 20.97 1.43 355
    L02 498.72 43.23 6.82 132
    L03 510.39 23.54 3.08 47
    L04 545.50 35.03 6.01 30
    L05 466.64 30.64 4.53 34
    L06 474.48 27.50 3.73 350
    L07 1420.57 38.10 6.30 223
    L08 1327.61 39.84 6.26 151
    L09 1310.32 35.41 4.87 91
    L10 1294.15 41.24 6.49 97
    L11 1399.04 29.85 4.02 168
    *起伏度邻域分析窗口为5 m×5 m
    下载: 导出CSV

    表 4 

    两种无人机在黄土滑坡研究中的对比

    Table 4. 

    Comparison of loess landslide research about two UAVs

    对比内容 测绘级无人机(四旋翼无人机) 消费级无人机(DJI)
    价格 70万以上 0.3万~1万
    便携程度 携带不便,需要团队作业 便携式,单人即可操作
    专业程度 测绘级精度,配有专业地面站,需要布设地面控制点,相机像素高 相对精度高,但绝对精度略差,GPS精度低,相机像素低
    续航能力 单块电池续航约45 min 单块电池续航约25 min
    前处理和后处理流程 程序复杂 程序简单
    三维建模软件 Pix4d PhotoScan
    在黄土滑坡
    中的应用
    1.获取高分辨率和高精度的正射影像和数字地形数据
    2.能够实现滑坡的特征参数提取和分析
    3.能够开展高精度的滑坡变形监测,估算滑坡体积
    4.能够开展滑坡形态分析、动态变化过程和地貌制图
    5.能够开展高分辨率的黄土滑坡数字地形分析
    6.能够实现高精度滑坡测绘,可满足工程治理需求
    1.获取高分辨率的正射影像和数字地形数据,相对精度高
    2.能够实现滑坡的特征参数提取和分析
    3.能够开展低精度的滑坡变形监测,估算滑坡体积
    4.能够开展滑坡形态分析、动态变化过程和地貌制图
    5.能够开展高分辨率的黄土滑坡数字地形分析
    6.能够实现低精度滑坡测绘,可满足科学研究
    下载: 导出CSV
  • [1]

    Liu Tungsheng, et al. Loess and Environment[M]. Beijing:China Ocean Press, 1985:11-14.

    [2]

    Derbyshire E, Mellors T W. Geological and geotechnical characteristics of some loess and loessic soils from China and Britain:A comparison[J]. Engineering Geology, 1988, 25(2-4):135-175. doi: 10.1016/0013-7952(88)90024-5

    [3]

    安芷生, Kukla G, 刘东生.洛川黄土地层学[J].第四纪研究, 1989, (2):155-168. http://www.dsjyj.com.cn/CN/abstract/abstract9931.shtml

    An Zhisheng, Kukla G, Liu Dongsheng. Loess stratigraphy in Luochuan of China[J]. Quaternary Sciences, 1989, (2):155-168. http://www.dsjyj.com.cn/CN/abstract/abstract9931.shtml

    [4]

    刘东生, 安芷生, 袁宝印.中国的黄土与风尘堆积[J].第四纪研究, 1985, (1):113-125. http://www.dsjyj.com.cn/CN/abstract/abstract10354.shtml

    Liu Dongsheng, An Zhisheng, Yuan Baoyin. Eolian process and dust mantle(loess)in China[J]. Quaternary Sciences, 1985, (1):113-125. http://www.dsjyj.com.cn/CN/abstract/abstract10354.shtml

    [5]

    Qiu H J, Regmi A D, Cui P, et al. Size distribution of loess slides in relation to local slope height within different slope morphologies[J]. Catena, 2016, 145:155-163. doi: 10.1016/j.catena.2016.06.005

    [6]

    郭正堂, 刘东生.黄土与地球系统——李希霍芬对黄土研究的贡献及对地球系统科学研究的现实意义[J].第四纪研究, 2005, 25(4):443-448. http://www.dsjyj.com.cn/CN/abstract/abstract9005.shtml

    Guo Zhengtang, Liu Tungsheng. Loess and Earth system[J]. Quaternary Sciences, 2005, 25(4):443-448. http://www.dsjyj.com.cn/CN/abstract/abstract9005.shtml

    [7]

    袁宝印, 汤国安, 周力平, 等.新生代构造运动对黄土高原地貌分异与黄河形成的控制作用[J].第四纪研究, 2012, 32(5):829-838. http://www.dsjyj.com.cn/CN/abstract/abstract10664.shtml

    Yuan Baoyin, Tang Guo'an, Zhou Liping, et al. Control action on the geomorphic differentiation in Loess Plateau and the formation of Yellow River by Cenozoic tectogenesis[J]. Quaternary Sciences, 2012, 32(5):829-838. http://www.dsjyj.com.cn/CN/abstract/abstract10664.shtml

    [8]

    陈建新, 王勇智, 宋飞, 等.黄土滑坡灾害特征及防治对策[M].北京:冶金工业出版社, 2013:1-10.

    Chen Jianxin, Wang Yongzhi, Song Fei, et al. Characteristics and Prevention Measures of Loess Landslide Hazards[M]. Beijing:Metallurgical Industry Press, 2013:1-10.

    [9]

    Zhuang J Q, Peng J B, Wang G H, et al. Distribution and characteristics of landslide in Loess Plateau:A case study in Shaanxi Province[J]. Engineering Geology, 2017, http://dx.doi.org/10.1016/j.enggeo.2017.03.001. doi: 10.1016/j.enggeo.2017.03.001

    [10]

    Qiu H J, Cui P, Regmi A D, et al. Slope height and slope gradient controls on the loess slide size within different slip surfaces[J]. Physical Geography, 2017, 38(4):303-317. doi: 10.1080/02723646.2017.1284581

    [11]

    Niethammer U, James M R, Rothmund S, et al. UAV-based remote sensing of the super-Sauze landslide:Evaluation and results[J]. Engineering Geology, 2012, 128(11):2-11. https://www.sciencedirect.com/science/article/pii/S0013795211000755

    [12]

    Casagli N, Cigna F, Bianchini S, et al. Landslide mapping and monitoring by using radar and optical remote sensing:Examples from the EC-FP7 project SAFER[J]. Remote Sensing Applications:Society and Environment, 2016, 4:92-108. doi: 10.1016/j.rsase.2016.07.001

    [13]

    Shafique M, van der M M, Khan M A. A review of the 2005 Kashmir earthquake-induced landslides:From a remote sensing prospective[J]. Journal of Asian Earth Sciences, 2016, 118:68-80. doi: 10.1016/j.jseaes.2016.01.002

    [14]

    魏永明, 魏显虎, 李德文, 等.滇西北地区鹤庆-洱源断裂带遥感影像特征及活动性分析[J].第四纪研究, 2017, 37(2):234-249. http://www.dsjyj.com.cn/CN/abstract/abstract11307.shtml

    Wei Yongming, Wei Xianhu, Li Dewen, et al. Remote sensing imagery features and activity analyses of Heqing-Eryuan Fault Zone in the northwestern area of Yunnan Province[J]. Quaternary Sciences, 2017, 37(2):234-249. http://www.dsjyj.com.cn/CN/abstract/abstract11307.shtml

    [15]

    殷志强, 许强, 赵无忌, 等.黄河上游夏藏滩巨型滑坡演化过程及形成机制[J].第四纪研究, 2016, 36(2):474-483. http://www.dsjyj.com.cn/CN/abstract/abstract11186.shtml

    Yin Zhiqiang, Xu Qiang, Zhao Wuji, et al. Study on the developmental characteristic, evolution processes and forming mechanism of Xiazangtan super large scale landslide of the upper reaches of Yellow River[J]. Quaternary Sciences, 2016, 36(2):474-483. http://www.dsjyj.com.cn/CN/abstract/abstract11186.shtml

    [16]

    Yang W T, Qi W W, Wang M, et al. Spatial and temporal analyses of post-seismic landslide changes near the epicentre of the Wenchuan earthquake[J]. Geomorphology, 2017, 276:8-15. doi: 10.1016/j.geomorph.2016.10.010

    [17]

    Sun W Y, Tian Y S, Mu X M, et al. Loess landslide inventory map based on GF-1 satellite imagery[J]. Remote Sensing, 2017, 9(314):1-17. http://www.mdpi.com/2072-4292/9/4/314

    [18]

    Bayer B, Simoni A, Schmidt D, et al. Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the northern Apennines, Italy[J]. Engineering Geology, 2017, 226:20-32. doi: 10.1016/j.enggeo.2017.03.026

    [19]

    Sun Q, Zhang L, Ding X L, et al. Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis[J]. Remote Sensing of Environment, 2015, 156:45-57. doi: 10.1016/j.rse.2014.09.029

    [20]

    Tarolli P. High-resolution topography for understanding Earth surface processes:Opportunities and challenges[J]. Geomorphology, 2016, 216:295-312. https://www.sciencedirect.com/science/article/pii/S0169555X14001202

    [21]

    秦翔, 施炜, 李恒强, 等.基于DEM地形特征因子的青藏高原东北缘宁南弧形断裂带活动性分析[J].第四纪研究, 2017, 37(2):213-223. http://www.dsjyj.com.cn/CN/abstract/abstract11305.shtml

    Qin Xiang, Shi Wei, Li Hengqiang, et al. Tectonic differences of the Southern Ningxia arc-shape faults in the northeast Tibetan Plateau based on Digital Elevation Model[J]. Quaternary Sciences, 2017, 37(2):213-223. http://www.dsjyj.com.cn/CN/abstract/abstract11305.shtml

    [22]

    Dąbski M, Zmarz A, Pabjanek P, et al. UAV-based detection and spatial analyses of periglacial landforms on Demay Point(King George Island, South Shetland Islands, Antarctica)[J]. Geomorphology, 2017, 290:29-38. doi: 10.1016/j.geomorph.2017.03.033

    [23]

    Carter W E, Shrestha R L, Slatton K C. Geodetic laser scanning[J]. Physics Today, 2007, 60(12):41-47. doi: 10.1063/1.2825070

    [24]

    Watanabe Y, Kawahara Y. UAV photogrammetry for monitoring changes in river topography and vegetation[J]. Procedia Engineering, 2016, 154:317-325. doi: 10.1016/j.proeng.2016.07.482

    [25]

    Turner I L, Harley M D, Drummond C D. UAVs for coastal surveying[J]. Coastal Engineering, 2016, 114:19-24. doi: 10.1016/j.coastaleng.2016.03.011

    [26]

    Kršák B, Blišt'an P, Pauliková A, et al. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study[J]. Measurement, 2016, 91:276-287. doi: 10.1016/j.measurement.2016.05.028

    [27]

    Pineux N, Lisein J, Swerts G, et al. Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?[J]. Geomorphology, 2017, 280:122-136. doi: 10.1016/j.geomorph.2016.12.003

    [28]

    Cook K L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection[J]. Geomorphology, 2017, 278:195-208. doi: 10.1016/j.geomorph.2016.11.009

    [29]

    王朋涛, 邵延秀, 张会平, 等. sUAV摄影技术在活动构造研究中的应用——以海原断裂骟马沟为例[J].第四纪研究, 2016, 36(2):433-442. http://www.dsjyj.com.cn/CN/abstract/abstract11182.shtml

    Wang Pengtao, Shao Yanxiu, Zhang Huiping, et al. The application of sUAV photogrammetry in active tectonics:Shanmagou site of Haiyuan fault, for example[J]. Quaternary Sciences, 2016, 36(2):433-442. http://www.dsjyj.com.cn/CN/abstract/abstract11182.shtml

    [30]

    邱海军, 曹明明, 刘闻.地质灾害的幂律相依性:以宁强县为例[J].地质科技情报, 2013, 32(3):183-187. http://www.oalib.com/paper/4512395

    Qiu Haijun, Cao Mingming, Liu Wen. Power-law correlations of landslides:A case of Ningqiang County[J]. Geological Science and Technology Information, 2013, 32(3):183-187. http://www.oalib.com/paper/4512395

    [31]

    邱海军, 胡胜, 崔鹏, 等.黄土滑坡灾害空间格局及其空间尺度依赖性研究[J].第四纪研究, 2017, 37(2):307-318. http://www.dsjyj.com.cn/CN/abstract/abstract11313.shtml

    Qiu Haijun, Hu Sheng, Cui Peng, et al. Pattern analysis of loess landslides and their scale dependency[J]. Quaternary Sciences, 2017, 37(2):307-318. http://www.dsjyj.com.cn/CN/abstract/abstract11313.shtml

    [32]

    宿星, 孟兴民, 王思源, 等.陇中黄土高原典型地区滑坡特征参数统计及发育演化机制研究——以天水市为例[J].第四纪研究, 2017, 37(2):319-330. http://www.dsjyj.com.cn/CN/abstract/abstract11314.shtml

    Su Xing, Meng Xingmin, Wang Siyuan, et al. Statistics of characteristic parameters and evolutionary mechanism of landslides in typical area of Longzhong Loess Plateau:A case study of Tianshui City[J]. Quaternary Sciences, 2017, 37(2):319-330. http://www.dsjyj.com.cn/CN/abstract/abstract11314.shtml

    [33]

    Shi J S, Wu L Z, Wu S R, et al. Analysis of the causes of large-scale loess landslides in Baoji, China[J]. Geomorphology, 2016, 264:109-117. doi: 10.1016/j.geomorph.2016.04.013

    [34]

    Leng Y Q, Peng J B, Wang Q Y, et al. A fluidized landslide occurred in the Loess Plateau:A study on loess landslide in south Jingyang Tableland[J]. Engineering Geology, 2017, http://dx.doi.org/10.1016/j.enggeo.2017.05.006. doi: 10.1016/j.enggeo.2017.05.006

    [35]

    Peng J B, Fan Z J, Wu D, et al. Heavy rainfall triggered loess-mudstone landslide and subsequent debris flow in Tianshui, China[J]. Engineering Geology, 2015, 186:79-90. doi: 10.1016/j.enggeo.2014.08.015

    [36]

    Tu X B, Kwong A K L, Dai F C, et al. Field monitoring of rainfall infiltration in a loess slope and analysis of failure mechanism of rainfall-induced landslides[J]. Engineering Geology, 2009, 105(1-2):134-150. doi: 10.1016/j.enggeo.2008.11.011

    [37]

    Zhang Z L, Wang T, Wu S, et al. Seismic performance of loess-mudstone slope in Tianshui-Centrifuge model tests and numerical analysis[J]. Engineering Geology, 2017, 222:225-235. doi: 10.1016/j.enggeo.2017.04.006

    [38]

    陈永明, 石玉成.中国西北黄土地区地震滑坡基本特征[J].地震研究, 2006, 29(3):276-280. http://d.old.wanfangdata.com.cn/Periodical/dzyj200603012

    Chen Yongming, Shi Yucheng. Basic characteristics of seismic landslides in loess area of Northwest China[J]. Journal of Seismological Research, 2006, 29(3):276-280. http://d.old.wanfangdata.com.cn/Periodical/dzyj200603012

    [39]

    陈永明, 石玉成, 刘红玫, 等.黄土地区地震滑坡的分布特征及其影响因素分析[J].中国地震, 2005, 21(2):235-243. http://d.old.wanfangdata.com.cn/Periodical/zgdz200502011

    Chen Yongming, Shi Yucheng, Liu Hongmei, et al. Distribution characteristics and infuencing factors analysis of seismic loess landslides[J]. Earthquake Research in China, 2005, 21(2):235-243. http://d.old.wanfangdata.com.cn/Periodical/zgdz200502011

    [40]

    张帅. 天水地区地震滑坡机理研究[D]. 北京: 中国地质大学(北京)硕士论文, 2016: 1-2.

    Zhang Shuai. Research on The Formation Mechanism of Large Landslides Triggered by Earthquakes in Tianshui Area[D]. Beijing:The Master's Thesis of China University of Geosciences(Beijing), 2016:1-2.

    [41]

    雷祥义, 屈红军.西安白鹿塬边黄土滑坡的稳定性与人类活动[J].地质论评, 1991, 37(3):258-264. http://www.oalib.com/paper/4888369

    Lei Xiangyi, Qu Hongjun. The stability of loess landslides on the edges of the Bailu Tableland, Xi'an and their relationship with human activities[J]. Geological Review, 1991, 37(3):258-264. http://www.oalib.com/paper/4888369

    [42]

    庄建琦, 彭建兵, 李同录, 等."9·17"灞桥灾难性黄土滑坡形成因素与运动模拟[J].工程地质学报, 2015, 23(4):747-754. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201504029

    Zhuang Jianqi, Peng Jianbing, Li Tonglu, et al. Triggerred factores and motion simulation of "9·17" Baqiao catastrophic landslide[J]. Journal of Engineering Geology, 2015, 23(4):747-754. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcdzxb201504029

    [43]

    许领, 戴福初, 闵弘, 等.泾阳南塬黄土滑坡类型与发育特征[J].地球科学——中国地质大学学报, 2010, 35(1):155-160. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dqkx201001016

    Xu Ling, Dai Fuchu, Min Hong, et al. Loess landslide types and topographic features at south Jingyang Plateau, China[J]. Earth Science-Journal of China University of Geosciences, 2010, 35(1):155-160. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_dqkx201001016

    [44]

    许领, 戴福初, 邝国麟, 等.黑方台黄土滑坡类型与发育规律[J].山地学报, 2008, 26(3):364-371. http://www.docin.com/p-698299684.html

    Xu Ling, Dai Fuchu, Kwong A K L, et al. Types and characteristics of loess landslides at Heifangtai Loess Plateau, China[J]. Journal of Mountain Science, 2008, 26(3):364-371. http://www.docin.com/p-698299684.html

    [45]

    彭大雷, 许强, 董秀军, 等.基于高精度低空摄影测量的黄土滑坡精细测绘[J].工程地质学报, 2017, 25(2):424-435. http://www.cnki.com.cn/Article/CJFDTotal-DBCH201802040.htm

    Peng Dalei, Xu Qiang, Dong Xiujun, et al. Accurate and efficient method for loess landslide fine mapping with high resolution close-range photogrammetry[J]. Journal of Engineering Geology, 2017, 25(2):424-435. http://www.cnki.com.cn/Article/CJFDTotal-DBCH201802040.htm

    [46]

    雷祥义.黄土地质灾害的形成机理与防治对策[M].北京:北京大学出版社, 2014:1-135.

    Lei Xiangyi. The Cause of Formation, Prenevtion and Cure of Geological Disasters of Loess[M]. Beijing:Peking University Press, 2014:1-135.

    [47]

    Gruszczyński W, Matwij W, Ćwiakala P. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2017, 126:168-179. doi: 10.1016/j.isprsjprs.2017.02.015

    [48]

    James M R, Robson S, d'Oleire-Oltmanns S, et al. Optimising UAV topographic surveys processed with structure-from-motion:Ground control quality, quantity and bundle adjustment[J]. Geomorphology, 2017, 280:51-66. doi: 10.1016/j.geomorph.2016.11.021

    [49]

    Sona G, Pinto L, Pagliari D, et al. Experimental analysis of different software packages for orientation and digital surface modelling from UAV images[J]. Earth Science Informatics, 2014, 7(2):97-107. doi: 10.1007/s12145-013-0142-2

    [50]

    Ouédraogo M M, Degré A, Debouche C, et al. The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds[J]. Geomorphology, 2014, 214:339-355. doi: 10.1016/j.geomorph.2014.02.016

    [51]

    Travelletti J, Malet J P. Characterization of the 3D geometry of flow-like landslides:A methodology based on the integration of heterogeneous multi-source data[J]. Engineering Geology, 2012, 128(6):30-48. https://www.sciencedirect.com/science/article/pii/S0013795211001165

    [52]

    Flageollet J C, Malet J P, Maquaire O. The 3D structure of the super-sauze earthflow:A first stage towards modelling its behaviour[J]. Physics & Chemistry of the Earth, Part B, 2000, 25(9):785-791. https://www.sciencedirect.com/science/article/pii/S1464190900001027

    [53]

    Benoit L, Briole P, Martin O, et al. Monitoring landslide displacements with the Geocube wireless network of low-cost GPS[J]. Engineering Geology, 2015, 195:111-121. doi: 10.1016/j.enggeo.2015.05.020

    [54]

    Lucieer A, Jong S M, Turner D. Mapping landslide displacements using Structure from Motion(SfM)and image correlation of multi-temporal UAV photography[J]. Progress in Physical Geography, 2014, 38(1):97-116. doi: 10.1177/0309133313515293

    [55]

    中华人民共和国国家标准—1: 5001: 10001: 2000地形图航空摄影规范(GB/T 6962-2005)[S]. http://doc.mbalib.comview8835fc0c7e84af62b311ebd4b4c6dd25.html.

    Specification for Aerial Photography of 1:5001:10001:2000 Scale Topographic Maps(GB/T 6962-2005)[S]. http://doc.mbalib.comview8835fc0c7e84af62b311ebd4b4c6dd25.html.

  • 加载中

(9)

(4)

计量
  • 文章访问数:  805
  • PDF下载数:  748
  • 施引文献:  0
出版历程
收稿日期:  2017-11-06
修回日期:  2018-01-16
刊出日期:  2018-03-30

目录