俯冲带库仑楔形体力学

胡岩. 2022. 俯冲带库仑楔形体力学. 地球物理学报, 65(2): 417-426, doi: 10.6038/cjg2022P0894
引用本文: 胡岩. 2022. 俯冲带库仑楔形体力学. 地球物理学报, 65(2): 417-426, doi: 10.6038/cjg2022P0894
HU Yan. 2022. Coulomb subduction zone wedge mechanics. Chinese Journal of Geophysics (in Chinese), 65(2): 417-426, doi: 10.6038/cjg2022P0894
Citation: HU Yan. 2022. Coulomb subduction zone wedge mechanics. Chinese Journal of Geophysics (in Chinese), 65(2): 417-426, doi: 10.6038/cjg2022P0894

俯冲带库仑楔形体力学

  • 基金项目:

    科技部重点研发项目(2018YFC504103)和国家自然科学基金委员会面上项目(41774109)共同资助

详细信息
    作者简介:

    胡岩, 男, 1976年生, 研究员, 研究方向为岩石圈动力学和大地测量.E-mail: yanhu11@ustc.edu.cn

  • 中图分类号: P541

Coulomb subduction zone wedge mechanics

  • 楔形体理论研究楔形体在底部摩擦力、重力和边界外力共同作用下内部的应力状态,有助于我们定量分析断层强度和岩石性质与楔形体稳定状态之间的关系.本文首先简要介绍基于不同楔形体材料而得出的应力解析解.然后介绍基于理想弹塑性材料的俯冲带库仑楔应力解析解.最后介绍基于该解析解而提出的动态库仑楔形体理论.俯冲带地震反射剖面数据表明,弧前靠近海沟部分地表坡度比较陡,其内部经历复杂永久塑性变形(称为外部楔形体,outer wedge).而靠近内陆部分地表坡度比较平缓,反射剖面显示沉积层呈水平规则分布,常伴随沉积盆地(称为内部楔形体,inner wedge).动态库仑楔形体理论认为弧前这种地表形态和内部构造特征的不同,可能反映了断层面摩擦性质的差异性.内部楔形体对应于断层面上的生震带,在地震周期可能主要经历弹性变形.而外部楔形体对应于断层面上的无震蠕滑部分,在地震发生时可能产生塑性破坏、永久变形.

  • 加载中
  • 图 1 

    楔形体应力解析解和海沟增生楔地震反射剖面[(a) 修改自Yin and Kelty(2000)图 3.(b)来自Hu and Wang (2006)图 1b.(c)来自Wang and Hu (2006)图 2a]

    Figure 1. 

    Analytical stress solutions in the wedge and a seismic reflection profile in an accretionary prism [(a) Modified from Fig. 3 in Yin and Kelty (2000). (b) From Fig. 1b in Hu and Wang (2006). (c) From Fig. 2a in Wang and Hu (2006)]

    图 2 

    临界破裂状态下楔形体应力摩尔圆

    Figure 2. 

    Mohr circle of a critical wedge on the verge of failure

    图 3 

    楔形体内部应力状态随底部有效摩擦系数变化图[修改自Wang and Hu(2006)图 7]

    Figure 3. 

    Stress status in a wedge with a varying basal effective frictional coefficient [Modified from Fig. 7 in Wang and Hu (2006)]

    图 4 

    (a) 大坝和(b)三角形悬臂梁受力示意图

    Figure 4. 

    Illustration of the stress status in (a) a dam and (b) a triangle-shaped hanging beam

    图 5 

    外部和内部楔形体地震周期应力演化[(a)修改自Wang and Hu(2006)图 9a.(b)修改自Wang and Hu (2006)图 11a]

    Figure 5. 

    Earthquake-cycle stress evolution in an outer wedge and an inner wedge [(a) Modified from Fig. 9a in Wang and Hu (2006). (b) Modified from Fig. 11a in Wang and Hu (2006)]

    图 6 

    弧前外部和内部楔形体地震周期应力演化[修改自Wang and Hu (2006)图 12]

    Figure 6. 

    The earthquake-cycle stress evolution of the outer and inner wedge in a forearc [Modified from Fig. 12 in Wang and Hu (2006)]

  •  

    Bilek S L, Lay T. 2002. Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophys. Res. Lett. , 29(14): 1673, doi:10.1029/2002GL015215.

     

    Breen N A, Orange D L. 1992. The effects of fluid escape on accretionary wedges 1. Variable porosity and wedge convexity. J. Geophys. Res. , 97(B6): 9265-9275. doi: 10.1029/91JB02767

     

    Bruns T R, Von Huene R. 1986. Aleutian Trench, Shumagin segment, seismic section 104. //Von Huene R, Vath S, Sperber C, et al. Seismic Images of Modern Convergent Margins Tectonic Structure. Tulsa: American Association of Petroleum Geologists, 26: 14-19.

     

    Byrne D E, Davis D M, Sykes L R. 1988. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics, 7(4): 833-857. doi: 10.1029/TC007i004p00833

     

    Dahlen F A. 1984. Noncohesive critical Coulomb wedges: An exact solution. J. Geophys. Res. , 89(B12): 10125-10133. doi: 10.1029/JB089iB12p10125

     

    Dahlen F A, Suppe J, Davis D. 1984. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. J. Geophys. Res. , 89(B12): 10087-10101. doi: 10.1029/JB089iB12p10087

     

    Dahlen F A. 1990. Critical taper model of fold-and-thrust belts and accretionary wedges. Annu. Rev. Earth Planet. Sci. , 18: 55-99. doi: 10.1146/annurev.ea.18.050190.000415

     

    Davis D, Suppe J, Dahlen F A. 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. , 88(B2): 1153-1172. doi: 10.1029/JB088iB02p01153

     

    Davis EE, Becker K, Wang K, et al. 2006. A discrete episode of seismic and aseismic deformation of the Nankai trough subduction zone accretionary prism and incoming Philippine Sea plate. Earth Planet. Sci. Lett. , 242(1-2): 73-84. doi: 10.1016/j.epsl.2005.11.054

     

    Dieterich J. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. , 99(B2): 2601-2618. doi: 10.1029/93JB02581

     

    Gulick S P S, Meltzer A M, Clarke S H Jr. 1998. Seismic structure of the southern Cascadia subduction zone and accretionary prism north of the Mendocino triple junction. J. Geophys. Res. , 103(B11): 27207-27222. doi: 10.1029/98JB02526

     

    Hasegawa A, Yoshida K, Asano Y, et al. 2012. Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth Planet. Sci. Lett. , 355-356: 231-243, doi:10.1016/j.epsl.2012.08.042.

     

    Hu Y, Wang K L. 2006. Bending-like behavior of thin wedge-shaped elastic fault blocks. J. Geophys. Res. , 111(B6): B06409, doi:10.1029/2005JB003987.

     

    Hu Y, Wang K L. 2008. Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper. J. Geophys. Res. , 113(B12): B12411, doi:10.1029/2008JB005724.

     

    Hyndman R D, Davis E E. 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res. , 97(B5): 7025-7041. doi: 10.1029/91JB03061

     

    Hyndman R D, Wang K. 1993. Thermal constraints on the zone of major thrust earthquake failure: The Cascadia subduction zone. J. Geophys. Res. , 98(B2): 2039-2060. doi: 10.1029/92JB02279

     

    Kopp C, Fruehn J, Flueh E R, et al. 2000. Structure of the Makran subduction zone from wide-angle and reflection seismic data. Tectonophysics, 329(1-4): 171-191. doi: 10.1016/S0040-1951(00)00195-5

     

    Kopp H, Kukowski N. 2003. Backstop geometry and accretionary mechanics of the Sunda margin. Tectonics, 22(6): 1072, doi:10.1029/2002TC001420.

     

    Krabbenhöft A, Bialas J, Kopp H, et al. 2004. Crustal structure of the Peruvian continental margin from wide-angle seismic studies. Geophys. J. Int. , 159(2): 749-764. doi: 10.1111/j.1365-246X.2004.02425.x

     

    Kukowski N, Schillhorn T, Huhn K, et al. 2001. Morphotectonics and mechanics of the central Makran accretionary wedge off Pakistan. Mar. Geol. , 173(1-4): 1-19. doi: 10.1016/S0025-3227(00)00167-5

     

    Lallemand S E, Schnürle P, Malavieille J. 1994. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion. J. Geophys. Res. , 99(B6): 12033-12055. doi: 10.1029/94JB00124

     

    Liu J Y, Ranalli G. 1992. Stresses in an overthrust sheet and propagation of thrusting: An Airy stress function solution. Tectonics, 11(3): 549-559. doi: 10.1029/92TC00104

     

    McNeill L C, Piper K A, Goldfinger C, et al. 1997. Listric normal faulting on the Cascadia continental margin. J. Geophys. Res. , 102(B6): 12123-12138. doi: 10.1029/97JB00728

     

    Moore J C, Vrolijk P. 1992. Fluids in accretionary prisms. Rev. Geophys. , 30: 113-135. doi: 10.1029/92RG00201

     

    Moore J C, Saffer D. 2001. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology, 29(2): 183-186. doi: 10.1130/0091-7613(2001)029<0183:ULOTSZ>2.0.CO;2

     

    Nakamura W, Uchida N, Matsuzawa T. 2016. Spatial distribution of the faulting types of small earthquakes around the 2011 Tohoku-Oki earthquake: A comprehensive search using template events. J. Geophys. Res. : Solid Earth, 121(4): 2591-2607, doi:10.1002/2015JB012584.

     

    Oleskevich D A, Hyndman R D, Wang K. 1999. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan and Chile. J. Geophys. Res. , 104(B7): 14965-14991. doi: 10.1029/1999JB900060

     

    Park J O, Tsuru T, Kodaira S, et al. 2002. Splay fault branching along the Nankai subduction zone. Science, 297(5584): 1157-1160. doi: 10.1126/science.1074111

     

    Platt J P. 1993. Mechanics of oblique convergence. J. Geophys. Res. , 98(B9): 16239-16256. doi: 10.1029/93JB00888

     

    Ranero C R, Sallarès V. 2004. Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench. Geology, 32(7): 549-552, doi:10.1130/G20379.1.

     

    Ranero C R, Grevemeyer I, Sahling H, et al. 2008. Hydrogeological system of erosional convergent margins and its influence on tectonics and interplate seismogenesis. Geochem. Geophys. Geosys. , 9(3): Q03S04, doi:10.1029/2007GC001679.

     

    Ruina A. 1983. Slip instability and state variable friction laws. J. Geophys. Res. , 88(B12): 10359-10370. doi: 10.1029/JB088iB12p10359

     

    Scholl D W, McCarthy J, Ryan H. 1986. Forearc margin, central Aleutian Ridge. //Von Huene R, Vath S, Sperber C. Seismic Images of Modern Convergent Margin Tectonic Structure. Tulsa: American Association of Petroleum Geologists, 26: 10-13.

     

    von Huene R, Culotta R, Nasu N, et al. 1986. The Japan trench: line ORI 78-4. //Von Huene R, Vath S, Sperber C. Seismic Images of Modern Convergent Margin Tectonic Structure. Tulsa: American Association of Petroleum Geologists, 26: 57-60.

     

    von Huene R, Scholl D W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev. Geophys. , 29(3): 279-316. doi: 10.1029/91RG00969

     

    von Huene R, Klaeschen D, Cropp B, et al. 1994. Tectonic structure across the accretionary and erosional parts of the Japan Trench margin. J. Geophys. Res. , 99(B11): 22349-22361. doi: 10.1029/94JB01198

     

    von Huene R, Klaeschen D. 1999. Opposing gradients of permanent strain in the aseismic zone and elastic strain across the seismogenic zone of the Kodiak shelf and slope, Alaska. Tectonics, 18(2): 248-262. doi: 10.1029/1998TC900022

     

    von Huene R, Ranero C R. 2003. Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile. J. Geophys. Res. , 108(B2): 2079, doi:10.1029/2001JB001569.

     

    von Huene R, Ranero C R, Vannucchi P. 2004. Generic model of subduction erosion. Geology, 32(10): 913-916, doi:10.1130/G20563.1.

     

    Wang K, Brown L, Hu Y, et al. 2019. Stable forearc stressed by a weak megathrust: Mechanical and geodynamic implications of stress changes caused by the M=9 Tohoku-Oki earthquake. Journal of Geophysical Research: Solid Earth, 124, doi:10.1029/2018JB017043.

     

    Wang K L, Hu Y. 2006. Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. J. Geophys. Res. , 111(B6): B06410, doi:10.1029/2005JB004094.

     

    Wang W H, Davis D M. 1996. Sandbox model simulation of forearc evolution and noncritical wedges. J. Geophys. Res. , 101(B5): 11329-11339. doi: 10.1029/96JB00101

     

    Willett S, Beaumont C, Fullsack P. 1993. Mechanical model for the tectonics of doubly vergent compressional orogens. Geology, 21(4): 371-374. doi: 10.1130/0091-7613(1993)021<0371:MMFTTO>2.3.CO;2

     

    Williams C A, Connors C, Dahlen F A, et al. 1994. Effect of the brittle-ductile transition on the topography of compressive mountain belts on Earth and Venus. J. Geophys. Res. , 99(B10): 19947-19974. doi: 10.1029/94JB01407

     

    Yin A. 1993. Mechanics of wedge-shaped fault blocks: 1. An elastic solution for compressional wedges. J. Geophys. Res. , 98(B8): 14245-14256. doi: 10.1029/93JB00555

     

    Yin A. 1994. Mechanics of wedge-shaped fault blocks: 2. An elastic solution for extension wedges. J. Geophys. Res. , 99(B4): 7045-7055. doi: 10.1029/93JB02389

     

    Yin A, Kelty T K. 2000. An elastic wedge model for the development of coeval normal and thrust faulting in the Mauna Loa-Kilauea rift system in Hawaii. J. Geophys. Res. , 105(B11): 25909-25925. doi: 10.1029/2000JB900247

     

    Zhao W L, Davis D M, Dahlen F A, et al. 1986. Origin of convex accretionary wedges: Evidence from Barbados. J. Geophys. Res. , 91(B10): 10246-10258. doi: 10.1029/JB091iB10p10246

     

    王仁, 丁中一, 殷有泉. 1979. 固体力学基础. 北京: 地质出版社.

     

    徐芝纶. 1979. 弹性力学. 北京: 人民教育出版社.

  • 加载中

(6)

计量
  • 文章访问数:  4141
  • PDF下载数:  347
  • 施引文献:  0
出版历程
收稿日期:  2021-11-30
修回日期:  2022-01-11
上线日期:  2022-02-10

目录