海底热流长期观测系统研制进展

杨小秋, 曾信, 石红才, 于传海, 施小斌, 郭兴伟, 王迎春, 任自强, 邵佳, 许鹤华, 卫小冬, 陈顺, 赵鹏, 庞忠和. 2022. 海底热流长期观测系统研制进展. 地球物理学报, 65(2): 427-447, doi: 10.6038/cjg2022P0190
引用本文: 杨小秋, 曾信, 石红才, 于传海, 施小斌, 郭兴伟, 王迎春, 任自强, 邵佳, 许鹤华, 卫小冬, 陈顺, 赵鹏, 庞忠和. 2022. 海底热流长期观测系统研制进展. 地球物理学报, 65(2): 427-447, doi: 10.6038/cjg2022P0190
YANG XiaoQiu, ZENG Xin, SHI HongCai, YU ChuanHai, SHI XiaoBin, GUO XingWei, WANG YingChun, REN ZiQiang, SHAO Jia, XU HeHua, WEI XiaoDong, CHEN Shun, ZHAO Peng, PANG ZhongHe. 2022. Development progress of long-term seafloor heat flow monitoring system. Chinese Journal of Geophysics (in Chinese), 65(2): 427-447, doi: 10.6038/cjg2022P0190
Citation: YANG XiaoQiu, ZENG Xin, SHI HongCai, YU ChuanHai, SHI XiaoBin, GUO XingWei, WANG YingChun, REN ZiQiang, SHAO Jia, XU HeHua, WEI XiaoDong, CHEN Shun, ZHAO Peng, PANG ZhongHe. 2022. Development progress of long-term seafloor heat flow monitoring system. Chinese Journal of Geophysics (in Chinese), 65(2): 427-447, doi: 10.6038/cjg2022P0190

海底热流长期观测系统研制进展

  • 基金项目:

    南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0104),国家自然科学基金项目(41874099,41430319,42130809,41106086,U20A20100,41704085,41766001),中国科学院科研装备研制项目(YZ201136)及国家重点研发计划重点专项(2021YFC3100604)资助

详细信息
    作者简介:

    杨小秋, 男, 1981年, 博士, 研究员, 研究方向为地热地质与同震温度响应机制.E-mail: yxq2081@scsio.ac.cn

  • 中图分类号: P314

Development progress of long-term seafloor heat flow monitoring system

  • 浅海和俯冲海沟等海域,不仅是矿产和油气资源主潜力区,也是构造地震频发区,其浅表热流和深部温度信息对于了解板块俯冲和岩浆活动等过程至关重要.这些区域浅层地温场和热流场受到底水温度波动(BTV)强烈扰动,其背景热流需由长期观测来获取.在全面分析了国内外海底热流长期观测技术特点后,我们提出了系缆式海底热流长期观测方案,2013年起陆续开展了部分核心技术的预研究及一系列海底、湖底及浅孔试验.结果表明:(1)自主研制的长周期低功耗微型测温单元,在2~36℃的环境下可连续观测1年;系缆式投放与回收方案即使在地形陡峭、1.5 kn流速及无动力定位等条件下仍然可行.(2)南海北部BTV总体随水深变浅而增强,在浅水区对浅层地温场扰动不可忽略.例如,在水深2600~3200 m和850~1200 m海域分别为0.025~0.053℃(17天内)、0.182~0.417℃(2天内),而台西南盆地北坡(水深763 m)夏季的海底热流由浅表的0.69 W·m-2转变为0.83 m以深的-0.25~-0.05 W·m-2.(3)兴伊措和湖光岩玛珥湖BTV向深部传导过程中其幅度逐渐减弱、相位滞后,进而导致热流方向与强度随季节发生变化.而康定中谷浅层(7 m内)地温在不同深度处同步波动,且冬高(35~36℃)夏低(28~32℃).推测为夏季大量降雨所致;其热流浅部低(0.504 W·m-2)深部高(0.901 W·m-2),指示着鲜水河断裂带深部热流体上涌.这些预研究工作为后续系缆式海底热流长期观测系统的正式研制与应用奠定了扎实基础.

  • 加载中
  • 图 1 

    全球地表热流(q)分布图(Lucazeau, 2019)

    Figure 1. 

    Global map of earth surface heat flow (Lucazeau, 2019)

    图 2 

    海底热流探测基本方法与原理示意图(以可取柱样的Ewing型探针为例)

    Figure 2. 

    Schematic diagram of the basic method and principle of seafloor heat flow measurements (take the Ewing-type probe with column sample as an example)

    图 3 

    东海浅水区(64~69 m) KX90-1_HF16站位春季与秋季海底表层沉积物温度剖面(Li et al., 2006)

    Figure 3. 

    Seafloor sediment temperature profiles in Spring and Autumn at station KX90-1_HF16 in shallow waters of the East China Sea (64~69 m) (Li et al., 2006)

    图 4 

    日本Nankai海槽A、B两站位海底表层不同深度沉积物温度随时间波动记录(a1, b1)及消除BTV影响后不同深度沉积物温度(a2, b2) (Hamamoto et al., 2005) (CH1是最浅层的测温通道, CH7和CH4是A、B两站位最深的测温通道)

    Figure 4. 

    Seafloor shallow sediment temperature variations at different depths at stations A and B in the Nankai Trough, Japan (a1, b1), and residual temperature variations after correction for the influence of BTV (a2, b2) (Hamamoto et al., 2005) (CH1 is the shallowest temperature channel; CH7, CH4 is the deepest temperature channels at stations A and B, respectively)

    图 5 

    日本东北地震后日本海沟钻孔测温示意图

    Figure 5. 

    Schematic diagram of borehole temperature measurement in Japan Trench after Tohoku Earthquake

    图 6 

    CORKs系统海底钻孔测温示意图(Kinoshita et al., 2009)

    Figure 6. 

    Schematic diagram of borehole temperature measurement in CORKs system

    图 7 

    自浮式海底热流长期观测系统(PLHF) (Yamano, 2009)

    Figure 7. 

    Pop-up Long-term Heat Flow Instrument (PLHF) (Yamano, 2009)

    图 8 

    基于ROV作业的海底热流长期观测系统(LTMS) (a)及海底工作照(b) (Ashi, 2006)

    Figure 8. 

    Long-term Heat Flow Monitoring system (LTMS) (a) which is based on ROV and its working photo on seafloor (b) (Ashi, 2006)

    图 9 

    基于ROV作业的独立海底热流探针(SAHF) (Morita et al., 2007)

    Figure 9. 

    Stand-Alone Heat Flow meter (SAHF) which is also based on ROV (Morita et al., 2007)

    图 10 

    基于ROV作业的海底热流探针“针鱼”(a)及工作照(b)(梁康康等, 2014)

    Figure 10. 

    Seafloor heat flow Probe (Zhenyu) which is also based on ROV (a) and its working photo on seafloor (b) (Liang et al., 2014)

    图 11 

    系缆式海底热流长期观测系统投放与回收示意图

    Figure 11. 

    Deployment and Recovering diagram of long-term heat flow monitoring system with rope

    图 12 

    长周期低功耗测温电路与集成后的微型测温单元实物图

    Figure 12. 

    Long-term low power consumption temperature measurement circuit and integrated miniature temperature probe

    图 13 

    南海北部底水温度长期观测站位(a)与低功耗测温单元海上工作照(b)

    Figure 13. 

    Distribution map of the long-term observation stations for BTV in Northern South China Sea (SCS) (a) and the working photo of the low power consumption temperature measurement probe (b)

    图 14 

    南海北部西沙、东沙6个站位底水温度长期观测结果

    Figure 14. 

    Long-term observation results of the BTV at 6 stations in Xisha and Dongsha Areas, Northern SCS

    图 15 

    自主研制长期观测探针及长周期测试概况

    Figure 15. 

    Self-developed long-term temperature monitoring probe and its test overview

    图 16 

    台西南盆地北坡温度探针系缆式投放与回收海试概况

    Figure 16. 

    Deployment and Recovering test for the temperature probe with rope in North Slope of Taixinan Basin

    表 1 

    2013年和2014年南海北部底水温度长期观测信息表

    Table 1. 

    Information about the long-term observations of BTV in Northern SCS during 2013 and 2014

    站位 东经(°) 北纬(°) 水深(m) 采样间隔
    (s)
    观测时长
    (d)
    最低温度
    (℃)
    最高温度
    (℃)
    最大温差
    (℃)
    下落速度
    (m·s-1)
    2013-OBS05 111.449318 16.261945 856 20 2.00 3.873 4.290 0.417 0.684
    2013-OBS10 112.261610 17.432561 1204 20 1.66 3.177 3.358 0.182 0.586
    2014-OBS30 117.594834 19.871084 2815 150 17.35 2.241 2.266 0.025 0.626
    2014-OBS33 117.822796 19.379849 3516 150 17.35 2.494 2.784 0.290 0.634
    2014-OBS36 118.014252 19.650944 3168 150 17.35 2.425 2.478 0.053 0.640
    2014-OBS39 117.783268 20.147523 2643 150 16.16 4.624 4.673 0.049 0.551
    注:2013年使用的微型测温单元为常规Ewing型探针专用型,不具备低功耗功能.因此2013年的2个站位只获得了2天左右的底水温度波动数据;而2014年使用的是经过低功耗改造后的新版微型测温单元,理论观测时间可达1年以上.但这两个航次实施的是主动源地震探测,OBS在海底只工作17天左右就被收回.因此低功耗改造后的微型测温单元也只获得了~17天的底水温度波动数据.
    下载: 导出CSV

    表 2 

    2015年至2019年湖底与浅孔温度长期观测信息表

    Table 2. 

    Information about the long-term temperature observations in lakes and shallow borehole during 2015 and 2019

    站位 东经 北纬 海拔(m) 水深(m) 采样间隔 观测时长(d) 观测深度(m)
    兴伊措 100°04′58.820″ 29°24′08.560″ 4420 ~12 10 min ~13 0.25~1.00
    康定中谷 101°52′16.412″ 30°15′55.006″ 3054 30 min 348 3.00~7.00
    湖光岩玛珥湖 110°16′20.770″ 21°08′44.490″ 16 ~7 2 s ~93 0.00~1.00
    下载: 导出CSV

    表 3 

    台西南盆地北坡2020-S86站位海底浅层2 m内温度测量结果

    Table 3. 

    Temperature measurement results within 2 m of the seafloor at site 2020-S86 in North Slope of Taixinan Basin

    微型测温单元 Z(m) T(℃) GT(℃·km-1) q(W·m-2)
    #151 0.00 5.943 689 0.689
    #666 0.83 6.512 -248 -0.248
    #668 1.24 6.409 -53 -0.053
    #669 1.66 6.387
    注:各深度处温度为探针起拔前(21∶43∶52)的测量值.沉积物热导率λ取为1.0 W·(m·K)-1.
    下载: 导出CSV
  •  

    Ashi J. 2006. SHINKAI 6500/YOKOSUKA Cruise YK06-03 Onboard Report, Nankai Trough, April 24, 2006-May 7, 2006. Yokosuka Cruise Report, JAMSTEC, Yk06-03.

     

    Bullard E C. 1954. The flow of heat through the floor of the Atlantic Ocean. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 222(1150): 408-429, doi:10.1098/rspa.1954.0085.

     

    Bullard E C, Day A. 1961. The flow of heat through the floor of the Atlantic Ocean. Geophysical Journal International, 4(S1): 282-292, doi:10.1111/j.1365-246X.1961.tb06820.x.

     

    Cai S Q, He J L, Xie J S. 2011. Recent decadal progress of the study on internal solitons in the South China Sea. Advances in Earth Science (in Chinese), 26(7): 703-710. https://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201107005.htm

     

    CCGM/CGMW. 2000. Geological map of the world at 1: 25 000 000 CD Rom. http://ccgm.free.fr/cartes_monde_gb.html, 2nd edition.

     

    Chang H I, Shyu C T. 2011. Compact high-resolution temperature loggers for measuring the thermal gradients of marine sediments. Marine Geophysical Research, 32(4): 465-479. doi: 10.1007/s11001-011-9136-y

     

    Chen G X, Wang D X, Dong C M, et al. 2015. Observed deep energetic eddies by seamount wake. Sci. Rep. , 5: 17416, doi:10.1038/srep17416.

     

    Chen L W, Chiang H T, Wu J N, et al. 2020. The focus thermal study around the spreading center of southwestern Okinawa trough. Tectonophysics, 796: 228649, doi:10.1016/j.tecto.2020.228649.

     

    Chen Z H, Luo X H, Xu X. 2009. Development of marine geothermal gradient measurement system. Geological Research of South China Sea (in Chinese), (0): 123-127.

     

    Chester F M, Mori J J, Toczko S, et al. 2012. Integrated ocean drilling program expedition 343/343T preliminary report. Japan Trench Fast Drilling Project (JFAST), 1 April-24 May 2012 and 5-19 July 2012, Integrated Ocean Drilling Project Preliminary Report, 343.

     

    Conrad C P, Lithgow-Bertelloni C. 2006. Influence of continental roots and asthenosphere on plate-mantle coupling. Geophysical Research Letters, 33(5): L05312, doi:10.1029/2005gl025621.

     

    Davies J H, Davies D R. 2010. Earth's surface heat flux. Solid Earth, 1(1): 5-24, doi:10.5194/se-1-5-2010.

     

    Davies J H. 2013. Global map of solid Earth surface heat flow. Geochemistry, Geophysics, Geosystems, 14(10): 4608-4622, doi:10.1002/ggge.20271.

     

    Davis E E, Wang K L, Becker K, et al. 2003. Deep-ocean temperature variations and implications for errors in seafloor heat flow determinations. Journal of Geophysical Research: Solid Earth, 108(B1): 2034, doi:10.1029/2001JB001695.

     

    Ding Z J, Liu B H, Li G B. 2008. Research on high precision fast detection system for sea sediment heat conductivity. Chinese Journal of Scientific Instrument (in Chinese), 29(5): 1049-1053.

     

    Expedition 349 Scientists. 2014. South China Sea tectonics: opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic. International Ocean Discovery Program, Expedition 349 Preliminary Report, doi: 10.14379/iodp.pr.349.2014.

     

    Fulton P M, Brodsky E E, Kano Y, et al. 2013. Low Coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science, 342(6163): 1214-1217, doi:10.1126/science.1243641.

     

    Furlong K P, Chapman D S. 2013. Heat flow, heat generation, and the thermal state of the lithosphere. Annual Review of Earth and Planetary Sciences, 41(1): 385-410, doi:10.1146/annurev.earth.031208.100051.

     

    Gao X, Wang K L. 2014. Strength of stick-slip and creeping subduction megathrusts from heat flow observations. Science, 345(6200): 1038-1041, doi:10.1126/science.1255487.

     

    Gao X. 2017. Thermo-mechanics of interplate seismicity at subduction zones. Oceanologia et Limnologia Sinica (in Chinese), 48(6): 1235-1243.

     

    Gao X, Wang K L. 2017. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature, 543(7645): 416-419, doi:10.1038/nature21389.

     

    Gerard R, Langseth M G, Ewing M. 1962. Thermal gradient measurements in the water and bottom sediment of the western Atlantic. Journal of Geophysical Research, 67(2): 785-803, doi:10.1029/JZ067i002p00785.

     

    Hamamoto H, Yamano M, Goto S. 2005. Heat flow measurement in shallow seas through long-term temperature monitoring. Geophysical Research Letters, 32(21): L21311, doi:10.1029/2005GL024138.

     

    Hamamoto H, Yamano M, Goto S, et al. 2011. Heat flow distribution and thermal structure of the Nankai subduction zone off the Kii Peninsula. Geochemistry, Geophysics, Geosystems, 12(10): Q0AD20, doi:10.1029/2011GC003623.

     

    Hess H H. 1962. History of ocean basins. //Engel A E J, James H L, Leonard B F eds. Petrologic Studies: A Volume to Honor A. F. Buddington. Boulder: Geological Society of America, 599-620.

     

    Hu S B, Long Z L, Zhu J Z, et al. 2019. Characteristics of geothermal field and the tectonic-thermal evolution in Pear River Mouth Basin. Acta Petrolei Sinica (in Chinese), 40(S1): 178-187.

     

    Hyndman R D, Wang K. 1993. Thermal constraints on the zone of major thrust earthquake failure: the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 98(B2): 2039-2060, doi:10.1029/92jb02279.

     

    Jaupart C, Labrosse S, Mareschal J C. 2007. Temperatures, heat and energy in the mantle of the earth. Treatise on Geophysics, 7: 253-303, doi:10.1016/B978-044452748-6.00114-0.

     

    Kautz S. 2017. Global 30 Arc-Second Elevation (GTOPO30). U.S. Geological Survey, doi: 10.5066/F7DF6PQS.

     

    Kawada Y, Yamano M, Seama N. 2014. Hydrothermal heat mining in an incoming oceanic plate due to aquifer thickening: Explaining the high heat flow anomaly observed around the Japan Trench. Geochemistry, Geophysics, Geosystems, 15(4): 1580-1599, doi:10.1002/2014GC005285.

     

    Kinoshita M, Sayanagi K, Kasaya T, et al. 2009. Long-term temperatures measurements at some onland and sub-seafloor boreholes. JAMSTEC Report of Research and Development, 89-102.

     

    Langseth M G Jr, Le Pichon X, Ewing M. 1966. Crustal structure of the mid-ocean ridges: 5. Heat flow through the Atlantic Ocean floor and convection currents. Journal of Geophysical Research, 71(22): 5321-5355, doi:10.1029/JZ071i022p05321.

     

    Lee T C. 1977. On shallow-hole temperature measurements-a test study in the Salton Sea geothermal field. Geophysics, 42(3): 572-583, doi:10.1190/1.1440728.

     

    Lee T C, Cohen L H. 1979. Onshore and offshore measurements of temperature gradients in the Salton Sea geothermal area, California. Geophysics, 44(2): 206-215, doi:10.1190/1.1440962.

     

    Lee W H K, Cox C S. 1966. Time variation of ocean temperatures and its relation to internal waves and oceanic heat flow measurements. Journal of Geophysical Research, 71(8): 2101-2111, doi:10.1029/JZ071i008p02101.

     

    LePichon X. 1968. Sea-floor spreading and continental drift. Journal of Geophysical Research, 73(12): 3661-3697. doi: 10.1029/JB073i012p03661

     

    Li C F, Lu Y, Wang J. 2017. A global reference model of Curie-point depths based on EMAG2. Sci. Rep. , 7: 45129, doi:10.1038/srep45129.

     

    Li G B, Liu B H, Li N S. 2006. A probe heat flow value of the East China Sea shelf. Chinese Journal of Oceanology and Limnology, 24(3): 243-249, doi:10.1007/BF02842623.

     

    Li G B, Liu B H, Ding Z J. 2009. Data processing technique for Dual-Probe Heat-Pulse method to determine thermal conductivity of marine sediments. Geophysical & Geochemical Exploration (in Chinese), 33(6): 663-667. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH200906013.htm

     

    Li G B, Liu B H, Ding Z J. 2010a. A simplified algorithm for sediment thermal conductivity measured by Dual-Probe Heat-Pulse technique. Advances in Marine Science (in Chinese), 28(2): 237-243. http://en.cnki.com.cn/Article_en/CJFDTotal-HBHH201002014.htm

     

    Li G B, Liu B H, Ding Z J. 2010b. Methodology for extracting the thermal conductivity parameter from Dual-Probe Heat-Pulse data. Progress in Geophysics (in Chinese), 25(4): 1406-1412, doi:10.3969/j.issn.1004-2903.2010.04.032.

     

    Li N S. 1994. Primary study on heat flow measurement in the shallow sea. Journal of Ocean University of Qingdao (in Chinese), 24(2): 263-270.

     

    Li Y M, Luo X H, Xu X, et al. 2010. Seafloor in-situ heat flow measurements in the deep-water area of the northern slope, South China Sea. Chinese Journal of Geophysics (in Chinese), 53(9): 2161-2170, doi:10.3969/j.issn.0001-5733.2010.09.016.

     

    Li Z G, Liu B H, Li G B, et al. 2011. A miniature probe for the in-situ detection of marine sediment thermal conductivity. Advances in Marine Science (in Chinese), 29(3): 404-410. http://en.cnki.com.cn/Article_en/CJFDTotal-HBHH201103019.htm

     

    Liang K K. 2014. Design and research of deepwater robot dedicated heat flow probes[Master's thesis] (in Chinese). Guangzhou: Guangdong University of Technology.

     

    Liang K K, Tong H, Xu M Y, et al. 2014. Design for deep sea vehicle dedicated heat flow probes. Transducer and Microsystem Technologies (in Chinese), 33(9): 62-64, 67. http://en.cnki.com.cn/Article_en/CJFDTotal-CGQJ201409019.htm

     

    Lin W R, Saito S, Mori J J, et al. 2014. Summary of the Japan Trench Drilling Project (JFAST) and its main achievements. J. Japan Soc. Eng. Geol. (in Japanese), 55(5): 241-250.

     

    Lister C R B. 1970. Measurement of in situ sediment Conductivity by means of a Bullard-type probe. Geophysical Journal International, 19(5): 521-532, doi:10.1111/j.1365-246X.1970.tb00157.x.

     

    Lister C R B. 1979. The pulse-probe method of conductivity measurement. Geophysical Journal International, 57(2): 451-461, doi:10.1111/j.1365-246X.1979.tb04788.x.

     

    Liu Q Q, Shi Y N, Wei D P, et al. 2017. Near-surface geothermal gradient observation and geothermal analyses in the Xianshuihe fault zone, Eastern Tibetan Plateau. Acta Geologica Sinica-English Edition, 91(2): 414-428, doi:10.1111/1755-6724.13108.

     

    Liu S W, Huang S P. 2015. Global heat flow. //Wang J Y, et al eds. Geothermics and Its Applications (in Chinese). Beijing: Science Press, 160-185.

     

    Lucazeau F. 2019. Analysis and mapping of an updated terrestrial heat flow data set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024, doi:10.1029/2019GC008389.

     

    Luo X H, Xu X, Zhang Z G, et al. 2007. Development and technical character of XXG-T marine geothermal gradient measurement system. Geological Research of South China Sea (in Chinese), (0): 102-110.

     

    Luo Y X, Zheng G Z, Sun Q Y. 2012. Design and application of the deep sea sediment geothermal probe. Ocean Technology (in Chinese), 31(1): 62-66. http://en.cnki.com.cn/Article_en/CJFDTotal-HYJS201201015.htm

     

    Lü J H, Liu J, Luo Y X. 2016. Design and implementation of a deep sea geothermal probe control system. Journal of Ocean Technology (in Chinese), 35(6): 72-76.

     

    Marcaillou B, Henry P, Kinoshita M, et al. 2012. Seismogenic zone temperatures and heat-flow anomalies in the To-nankai margin segment based on temperature data from IODP expedition 333 and thermal model. Earth and Planetary Science Letters, 349-350: 171-185, doi:10.1016/j.epsl.2012.06.048.

     

    Matsubara Y, Kinoshita H, Uyeda S, et al. 1982. Development of a new system for shallow sea heat flow measurement and its test application in the Gulf of Thailand. Tectonophysics, 83(1-2): 13-31. doi: 10.1016/0040-1951(82)90004-X

     

    Mi L J. 2018. Continuous breakthroughs on petroleum exploration of the eastern South China Sea with innovative understanding: review of recent exploration progress. China Offshore Oil and Gas (in Chinese), 30(1): 1-10. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201801001.htm

     

    Mi L J, Zhang X T, Pang X, et al. 2019. Formation mechanism and petroleum geology of Pear River Mouth Basin. Acta Petrolei Sinica (in Chinese), 40(S1): 1-10. http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB2019S1001.htm

     

    Morita S, Goto S, Tonai S. 2007. HYPER-DOLPHIN/NATSUSHIMA Cruise NT07-E01 Onboard Report, Nankai Trough, August 7, 2007-August 11, 2007, HYPER-DOLPHIN/NATSUSHIMA Cruise Report, JAMSTEC, NT07-E01.

     

    Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006, doi:10.1029/2007gc001743.

     

    Nagihara S, Lister C R B. 1993. Accuracy of marine heat-flow instrumentation: Numerical studies on the effects of probe construction and the data reduction scheme. Geophysical Journal International, 112(2): 161-177, doi:10.1111/j.1365-246X.1993.tb01447.x.

     

    Pang X, Shen J, Yuan L Z, et al. 2006. Petroleum prospect in deep-water fan system of the Pear River in the South China Sea. Acta Petrolei Sinica (in Chinese), 27(3): 11-15, 21. http://www.cqvip.com/QK/95667X/20063/21843811.html

     

    Peacock S M, Wang K L. 1999. Seismic consequences of warm versus cool subduction metamorphism: Examples from southwest and northeast Japan. Science, 286(5441): 937-939. doi: 10.1126/science.286.5441.937

     

    Peng D, Xu X, Luo X H. 2014. Design of marine sediment geothermal gradient measurement system. Electronic Design Engineering (in Chinese), 22(6): 1-3. http://en.cnki.com.cn/Article_en/CJFDTOTAL-GWDZ201406001.htm

     

    Pfender M, Villinger H. 2002. Miniaturized data loggers for deep sea sediment temperature gradient measurements. Marine Geology, 186(3-4): 557-570. doi: 10.1016/S0025-3227(02)00213-X

     

    Pollack H N, Hurter S J, Johnson J R. 1993. Heat flow from the Earth's interior: analysis of the global data set. Reviews of Geophysics, 31(3): 267-280. doi: 10.1029/93RG01249

     

    Qin Y Y, Yang X Q, Wu B Z, et al. 2013. High resolution temperature measurement technique for measuring marine heat flow. Sci. China Technol. Sci. , 56(7): 1773-1778, doi:10.1007/s11431-013-5239-9.

     

    Redfield A C. 1965. Terrestrial heat flow through salt-marsh peat. Science, 148(3674): 1219-1220, doi:10.1126/science.148.3674.1219.

     

    Sandwell D T, Smith W H F. 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research: Solid Earth, 114(B1): B01411, doi:10.1029/2008jb006008.

     

    Shapiro N M, Ritzwoller M H. 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophysical Journal International, 151(1): 88-105, doi:10.1046/j.1365-246X.2002.01742.x.

     

    Shi X B, Yang X Q, Shi H C, et al. 2015. Terrestrial heat flow in China Sea Area. //Wang J Y, et al eds. Geothermics and Its Applications (in Chinese). Beijing: Science Press, 123-159.

     

    Shyu C T, Hsu S K, Liu C S. 1998. Heat flows off southwest Taiwan: Measurements over mud diapirs and estimated from bottom simulating reflectors. Terrestrial Atmospheric and Oceanic Sciences, 9(4): 795-812. doi: 10.3319/TAO.1998.9.4.795(TAICRUST)

     

    Shyu C T, Chen Y J, Chiang S T, et al. 2006. Heat flow measurements over bottom simulating reflectors, offshore southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17(4): 845-869. doi: 10.3319/TAO.2006.17.4.845(GH)

     

    Spinelli G A, Wang K L. 2008. Effects of fluid circulation in subducting crust on Nankai margin seismogenic zone temperatures. Geology, 36(11): 887-890, doi:10.1130/g25145a.1.

     

    Spinelli G A, Harris R N. 2011. Thermal effects of hydrothermal circulation and seamount subduction: Temperatures in the Nankai Trough Seismogenic Zone Experiment transect, Japan. Geochemistry, Geophysics, Geosystems, 12(12): Q0AD21, doi:10.1029/2011GC003727.

     

    Tang X Y, Huang S P, Yang S C, et al. 2016. Correcting on logging-derived temperatures of the Pearl River Mouth Basin and characteristics of its present temperature field. Chinese Journal of Geophysics (in Chinese), 59(8): 2911-2921, doi:10.6038/cjg20160816.

     

    Villinger H, Grigel J, Heesemann B. 1999. Acceleration-monitored coring revisited. Geo-Marine Letters, 19(4): 275-281.

     

    Wang J Y, et al. 2015. Geothermics and its Applications (in Chinese). Beijing: Science Press.

     

    Wang K, Shen P Y, Beck A E. 1986. On the effects of thermal properties structure and water bottom temperature variation on temperature gradients in lake sediments. Canadian Journal of Earth Sciences, 23(9): 1257-1264. doi: 10.1139/e86-122

     

    Wang K, Beck A E. 1987. Heat flow measurement in lacustrine or oceanic sediments without recording bottom temperature variations. Journal of Geophysical Research: Solid Earth, 92(B12): 12837-12845. doi: 10.1029/JB092iB12p12837

     

    Wang K L, Hyndman R D, Yamano M. 1995. Thermal regime of the southwest Japan subduction zone: Effects of age history of the subducting plate. Tectonophysics, 248(1-2): 53-69. doi: 10.1016/0040-1951(95)00028-L

     

    Wu J N, Chiang H T, Chiao L Y, et al. 2019. Revisiting the data reduction of seafloor heat-flow measurement: The example of mapping hydrothermal venting site around Yonaguni Knoll IV in the South Okinawa Trough. Tectonophysics, 767: 228159, doi:10.1016/j.tecto.2019.228159.

     

    Wu S G, Yao G S, Dong D D, et al. 2008. Geological structures for forming gas hydrate reservoir in the huge deepwater gas field of the northern South China Sea. Acta Petrolei Sinica (in Chinese), 29(3): 324-328. http://www.researchgate.net/publication/289026473_Geological_structures_for_forming_gas_hydrate_reservoir_in_the_huge_deepwater_gas_field_of_the_northern_South_China_Sea

     

    Wu S G, Zhang H Y, Jiao D F, et al. 2020. Prospect analysis of submarine mineral resources exploitation in South China Sea. Science Technology and Engineering (in Chinese), 20(31): 12673-12682.

     

    Xie XN, Zhang C, Ren J Y, et al. 2011. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea. Chinese Journal of Geophysics (in Chinese), 54(12): 3280-3291, doi:10.3969/j.issn.0001-5733.2011.12.026.

     

    Xu X, Luo X H, Xiao B, et al. 2005. Research on the methods & technique of marine heat flow measurement. Ocean Technology (in Chinese), 24(1): 77-81.

     

    Xu X, Li Y M, Luo X H, et al. 2012. Comparison of different-type heat flows at typical sites in natural gas hydrate exploration area on the northern slope of the South China Sea. Chinese Journal of Geophysics (in Chinese), 55(3): 998-1006, doi:10.6038/j.issn.0001-5733.2012.03.030.

     

    Xu X, Dong M, Chen A H, et al. 2017. Contents of heat producing elements in drilling cores from IODP Expedition 349 in South China Sea Basin and geological implications. Geotectonica et Metallogenia (in Chinese), 41(6): 1128-1134.

     

    Yamano M, Uyeda S, Aoki Y, et al. 1982. Estimates of heat flow derived from gas hydrates. Geology, 10(7): 339-343. doi: 10.1130/0091-7613(1982)10<339:EOHFDF>2.0.CO;2

     

    Yamano M, Foucher J P, Kinoshita M, et al. 1992. Heat flow and fluid flow regime in the western Nankai accretionary prism. Earth and Planetary Science Letters, 109(3-4): 451-462, doi:10.1016/0012-821x(92)90105-5.

     

    Yamano M, Kinoshita M, Goto S, et al. 2003. Extremely high heat flow anomaly in the middle part of the Nankai Trough. Physics and Chemistry of the Earth, Parts A/B/C, 28(9-11): 487-497, doi:10.1016/s1474-7065(03)00068-8.

     

    Yamano M. 2009. KAIREI Cruise KR09-16 Report, Studies on the thermal structure and the water distribution in the upper part of the Pacific plate subducting along the Japan Trench, October 30, 2009-November 12, 2009, KAIREI Cruise Report, JAMSTEC, KR09-16.

     

    Yamano M, Hamamoto H, Kawada Y, et al. 2014. Heat flow anomaly on the seaward side of the Japan Trench associated with deformation of the incoming Pacific plate. Earth and Planetary Science Letters, 407: 196-204, doi:10.1016/j.epsl.2014.09.039.

     

    Yamano M, Kawada Y. 2017. Heat flow anomalies near trenches: heat transport by fluid circulation in oceanic crust. Journal of Geography-Chigaku Zasshi, 126(2): 147-161, doi:10.5026/jgeography.126.147.

     

    Yang X Q, Shi X B, Xu X, et al. 2007. Simulation of optimum structural parameters of dual-probe heat flow meter. //The 23rd Annual Meeting of Chinese Geophysical Society (in Chinese). Qingdao.

     

    Yang X Q, Shi X B, Xu H H. 2009a. Inversion of in-situ thermal conductivity of seafloor sediments based on BOBYQA method. //The 25th Annual Meeting of Chinese Geophysical Society (in Chinese). Hefei.

     

    Yang X Q, Shi X B, Xu H H, et al. 2009b. Optimizing probe structure for dual-probe seafloor heat flow meter. Chinese Journal of Geophysics (in Chinese), 52(5): 1280-1288, doi:10.3969/j.issn.0001-5733.2009.05.017.

     

    Yang X Q, Shi X B, Zhang Z G, et al. 2013. Improvement of seafloor in-situ heat flow measurement technology. //The 29th Annual Meeting of Chinese Geophysical Society (in Chinese). Kunming.

     

    Yang X Q, Sun Z H, Zeng X, et al. 2014. Development progress of pop-up long-term heat flow instrument. //The 2014 Annual Meeting of Chinese Geoscience Uniou (in Chinese). Beijing.

     

    Yang X Q, Lin W R, Tadai O, et al. 2017. Experimental and numerical investigation of the temperature response to stress changes of rocks. Journal of Geophysical Research: Solid Earth, 122(7): 5101-5117, doi:10.1002/2016JB013645.

     

    Yoshii T. 1979. A detailed cross-section of the deep seismic zone beneath northeastern Honshu, Japan. Tectonophysics, 55(3-4): 349-360, doi:10.1016/0040-1951(79)90183-5.

     

    Yu P Z, Li N S. 1992. Crustal Heat Flow in the East China Sea (in Chinese). Beijing: Ocean Press.

     

    Yuan Y S. 2007. Tectonothermal evolution and source rock maturation history in deep water area of the northern margin of the South China Sea[Ph. D. thesis] (in Chinese). Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences.

     

    Zeng X, Yang X Q, Yang J, et al. 2016. Design and implementation of the low-power temperature measuring circuit for long-term heat flow observation. Journal of Ocean Technology (in Chinese), 35(2): 1-8. http://en.cnki.com.cn/Article_en/CJFDTotal-HYJS201602001.htm

     

    Zhang J, Xu H H. 2015. Interal heat heat transfer in the earth. //Wang J Y, et al eds. Geothermics and Its Applications (in Chinese). Beijing: Science Press, 19-63.

     

    Zhang W T, Xu H H, Yang X Q. 2018. Geothermal data processing and analysis for IODP Expedition 349. Marine Geology & Quaternary Geology (in Chinese), 38(2): 156-164.

     

    Zheng G Z, Luo Y X, Sun Q Y. 2009. Analysis of framework design of geothermal probe of deep-sea sediments. Ocean Technology (in Chinese), 28(3): 114-117.

     

    Zhu W L, Zhang G C, Gao L. 2008. Geological characteristics and exploration objectives of hydrocarbons in the northern continental margin basin of South China Sea. Acta Petrolei Sinica (in Chinese), 29(1): 1-9. doi: 10.1111/j.1745-7254.2008.00742.x

     

    Zhu W L, Cui H Y, Wu P K, et al. 2017. New development and outlook for oil and gas exploration in passive continental margin basins. Acta Petrolei Sinica (in Chinese), 38(10): 1099-1109.

     

    蔡树群, 何建玲, 谢皆烁. 2011. 近10年来南海孤立内波的研究进展. 地球科学进展, 26(7): 703-710. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201107005.htm

     

    陈宗恒, 罗贤虎, 徐行. 2009. 海底地温梯度探测系统设计. 南海地质研究, (0): 123-127.

     

    丁忠军, 刘保华, 李官保. 2008. 海洋沉积物热导率高精度快速测量系统研究. 仪器仪表学报, 29(5): 1049-1053. doi: 10.3321/j.issn:0254-3087.2008.05.031

     

    高翔. 2017. 俯冲带板间地震活动的热-力学特征. 海洋与湖沼, 48(6): 1235-1243. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201706012.htm

     

    胡圣标, 龙祖烈, 朱俊章等. 2019. 珠江口盆地地温场特征及构造-热演化. 石油学报, 40(S1): 178-187. doi: 10.7623/syxb2019S1015

     

    李官保, 刘保华, 丁忠军. 2009. 基于DPHP技术测量沉积物热导率的数据处理. 物探与化探, 33(6): 663-667. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200906013.htm

     

    李官保, 刘保华, 丁忠军. 2010a. 基于DPHP技术测量热导率的简化算法. 海洋科学进展, 28(2): 237-243. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHH201002014.htm

     

    李官保, 刘保华, 丁忠军. 2010b. 基于DPHP测量数据提取热导率参数的方法研究. 地球物理学进展, 25(4): 1406-1412, doi:10.3969/j.issn.1004-2903.2010.04.032.

     

    李乃胜. 1994. 浅海地壳热流测量方法初探. 青岛海洋大学学报, 24(2): 263-270. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY402.024.htm

     

    李亚敏, 罗贤虎, 徐行等. 2010. 南海北部陆坡深水区的海底原位热流测量. 地球物理学报, 53(9): 2161-2170, doi:10.3969/j.issn.0001-5733.2010.09.016. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2010.09.016

     

    李正光, 刘保华, 李官保等. 2011. 海洋沉积物热导率的微型原位探测器. 海洋科学进展, 29(3): 404-410. doi: 10.3969/j.issn.1671-6647.2011.03.018

     

    梁康康. 2014. 深海机器人专用热流探针的设计与研究[硕士论文]. 广州: 广东工业大学.

     

    梁康康, 童怀, 徐鸣亚等. 2014. 深海机器人专用热流探针设计. 传感器与微系统, 33(9): 62-64, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201409019.htm

     

    刘绍文, 黄少鹏. 2015. 全球热流. //汪集暘等. 地热学及其应用. 北京: 科学出版社, 160-185.

     

    罗贤虎, 徐行, 张志刚等. 2007. XXG-T型海底地温梯度探测系统的研发及技术特点. 南海地质研究, (0): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-NHDZ200700015.htm

     

    罗玉玺, 郑国芝, 孙牵宇. 2012. 深海地热探针的设计及应用. 海洋技术, 31(1): 62-66. doi: 10.3969/j.issn.1003-2029.2012.01.016

     

    吕九红, 刘颉, 罗玉玺. 2016. 深海地热探针控制系统设计与实现. 海洋技术学报, 35(6): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201606016.htm

     

    米立军. 2018. 认识创新推动南海东部海域油气勘探不断取得突破——南海东部海域近年主要勘探进展回顾. 中国海上油气, 30(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801001.htm

     

    米立军, 张向涛, 庞雄等. 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001

     

    庞雄, 申俊, 袁立忠等. 2006. 南海珠江深水扇系统及其油气勘探前景. 石油学报, 27(3): 11-15, 21. doi: 10.3321/j.issn:0253-2697.2006.03.003

     

    彭登, 徐行, 罗贤虎. 2014. 海底沉积物地温梯度测量系统设计. 电子设计工程, 22(6): 1-3. doi: 10.3969/j.issn.1674-6236.2014.06.001

     

    施小斌, 杨小秋, 石红才等. 2015. 中国海域大地热流. //汪集暘等. 地热学及其应用. 北京: 科学出版社, 123-159.

     

    唐晓音, 黄少鹏, 杨树春等. 2016. 南海珠江口盆地钻井BHT温度校正及现今地温场特征. 地球物理学报, 59(8): 2911-2921, doi:10.6038/cjg20160816. http://www.geophy.cn/article/doi/10.6038/cjg20160816

     

    汪集暘等. 2015. 地热学及其应用. 北京: 科学出版社.

     

    吴时国, 姚根顺, 董冬冬等. 2008. 南海北部陆坡大型气田区天然气水合物的成藏地质构造特征. 石油学报, 29(3): 324-328. doi: 10.3321/j.issn:0253-2697.2008.03.002

     

    吴时国, 张汉羽, 矫东风等. 2020. 南海海底矿物资源开发前景. 科学技术与工程, 20(31): 12673-12682. doi: 10.3969/j.issn.1671-1815.2020.31.001

     

    解习农, 张成, 任建业等. 2011. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制. 地球物理学报, 54(12): 3280-3291, doi:10.3969/j.issn.0001-5733.2011.12.026. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2011.12.026

     

    徐行, 罗贤虎, 肖波等. 2005. 海洋地热流测量技术及其方法研究. 海洋技术, 24(1): 77-81. doi: 10.3969/j.issn.1003-2029.2005.01.019

     

    徐行, 李亚敏, 罗贤虎等. 2012. 南海北部陆坡水合物勘探区典型站位不同类型热流对比. 地球物理学报, 55(3): 998-1006, doi:10.6038/j.issn.0001-5733.2012.03.030. http://www.geophy.cn/article/doi/10.6038/j.issn.0001-5733.2012.03.030

     

    徐行, 董淼, 陈爱华等. 2017. 南海海盆IODP349钻井岩心的生热元素测试与应用研究. 大地构造与成矿学, 41(6): 1128-1134. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201706010.htm

     

    杨小秋, 施小斌, 徐行等. 2007. 双探针型热流计最佳结构参数模拟. //中国地球物理学会第二十三届年会. 青岛.

     

    杨小秋, 施小斌, 许鹤华. 2009a. 基于BOBYQA法反演海底沉积物原位热导率. //中国地球物理学会第二十五届年会. 合肥.

     

    杨小秋, 施小斌, 许鹤华等. 2009b. 双探针型海底热流计的结构优化. 地球物理学报, 52(5): 1280-1288, doi:10.3969/j.issn.0001-5733.2009.05.017. http://www.geophy.cn/article/doi/10.3969/j.issn.0001-5733.2009.05.017

     

    杨小秋, 施小斌, 张志刚等. 2013. 海底原位热流探测技术的改进. //中国地球物理学会第二十九届年会. 昆明.

     

    杨小秋, 孙兆华, 曾信等. 2014. 自浮式海底热流长期观测系统研制进展. //2014年中国地球科学联合学术年会——专题4: 地热: 从地表到深部. 北京.

     

    喻普之, 李乃胜. 1992. 东海地壳热流. 北京: 海洋出版社.

     

    袁玉松. 2007. 南海北部陆缘深水区构造-热演化与烃源岩成熟度史研究[博士论文]. 北京: 中国科学院地质与地球物理研究所.

     

    曾信, 杨小秋, 杨军等. 2016. 海底热流长期观测系统中低功耗测温单元的设计与实现. 海洋技术学报, 35(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HYJS201602001.htm

     

    张健, 许鹤华. 2015. 地球内热与热传递. //汪集暘等. 地热学及其应用. 北京: 科学出版社, 19-63.

     

    张文涛, 许鹤华, 杨小秋. 2018. IODP349航次地热调查数据分析. 海洋地质与第四纪地质, 38(2): 156-164. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201802016.htm

     

    郑国芝, 罗玉玺, 孙牵宇. 2009. 深海沉积物地热探针结构设计分析. 海洋技术, 28(3): 114-117. doi: 10.3969/j.issn.1003-2029.2009.03.030

     

    朱伟林, 张功成, 高乐. 2008. 南海北部大陆边缘盆地油气地质特征与勘探方向. 石油学报, 29(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200801002.htm

     

    朱伟林, 崔旱云, 吴培康等. 2017. 被动大陆边缘盆地油气勘探新进展与展望. 石油学报, 38(10): 1099-1109. doi: 10.7623/syxb201710001

     

    林為人, 斎藤実篤, モリジェームズ等. 2014. 東北地方太平洋沖地震調査掘削(JFAST)の概要とこれまでの主な成果. 応用地質, 55(5): 241-250.

  • 加载中

(16)

(3)

计量
  • 文章访问数:  3947
  • PDF下载数:  271
  • 施引文献:  0
出版历程
收稿日期:  2021-03-24
修回日期:  2021-12-22
上线日期:  2022-02-10

目录