The edge detection method and its application in the south China sea based on the gravity gradient structure tensor eigenvalue
-
摘要:
边界识别对地质构造解释具有十分重要的意义,其可以指出地下断层、接触带和其他构造单元的边界位置.现有的边界识别滤波器大多数基于重力梯度数据及其水平和垂直导数.然而,这些传统方法具有一定的局限性,对噪音的敏感,且不能有效的均衡深浅异常的振幅,尤其是当测量异常中同时出现正异常和负异常将产生假的边界结果,对后期构造解释带来误导.针对传统方法的缺点,本文提出Tilt-Eigen边界识别方法,利用重力梯度结构张量矩阵特征值通过倾斜角计算结果的最大值实现边界识别.通过理论模型试验,该方法不仅能均衡深部浅部振幅异常的边界,避免引入额外的虚假边界异常,且识别的边界结果更加准确、收敛.将Tilt-Eigen方法用于南海实际重力数据处理,获得了20条比较清晰的边界结果.根据这些边界结果,本文推断红河断裂往ES方向延伸到南海南部区域后,开始朝正南方向延伸,与越东万安断裂相连接;推断出南沙海槽东北部为古南海缝合带,而其西南部并不是缝合带,缝合带位于其南侧的文莱沙巴附近;将南海分为8个地质构造单元.
Abstract:Boundary identification is of great significance to the interpretation of geological structure and can point out the horizontal position of underground faults, contact zones and other boundaries. Most of the existing boundary recognition methods are based on gravity horizontal and vertical derivatives. However, these traditional methods have certain limitations, are sensitive to noise, and cannot be effectively balanced depth anomaly amplitude, especially when there are positive and negative anomaly at the same time, and which will produce the false boundary, and bring misleading later structure explanation. Aiming at the shortcomings of traditional methods, this paper proposes an algorithm called Tilt-Eigen method which identifies the boundary through the maximum value of the calculated result of the Tilt Angle. Theoretical model test shows that this method can not only balance the boundaries of the deep and shallow anomaly, avoid introducing additional false boundary anomaly, but also can result more accurate and convergent boundary. The Tilt-Eigen method is used for the actual gravity data in the south China sea, and 20 clear boundary results are obtained. According to these boundary results and geological analysis, this paper concludes that the red river fault extends to the southern region of the south China sea, and then connects with the Yuedong Wanan fault. The southeast part of the Nansha Trough is the ancient South China Sea suture, and its southwestern part is not a suture zone, whereas suture zone is near the north of Brunei Saba. The south China sea can be divided into eight geologic tectonic units.
-
-
-
Cooper G R J, Cowan D R. 2006. Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32:1585-1591. http://www.sciencedirect.com/science/article/pii/S0098300406000422
Cordell L, Grauch V J S. 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan basin, New Mexico, in: Hinzc, W. J. The Utility of Regional Gravity and Magnetic Anomaly Society of Exploration Geophysics, 181-197.
Cordell L. 1979. Gravimetric expression of graben faulting in Santa Fe Country and the Espanola Basin, New Mexico. New Mexico Geological Society Guidebook, 30th Field Conference, 59-64. http://nmgs.nmt.edu/publications/guidebooks/Abstract.cfml?ID=1062
Ferreira F, Souza J, Bongiolo A, Castro L. 2013. Enhancement of the total horizontal gradient of magnetic anomalies using the tilt angle. Geophysics, 78(3):J33-J41. doi: 10.1190/geo2011-0441.1
Florio G, Fedi M, Pasteka R. 2006. On the application of Euler deconvolution to the analytic signal. Geophysics, 71:L87-L93. doi: 10.1190/1.2360204
Hall R. 1996. Reconstructing Cenozoic SE Asia. //Hall R Blundell. Tectonic Evolution of Southeast Asia London: Geological Society of London Special Publication, 153-184.
Hinz K, Fritsh J, Kempter E H K, et al. 1989. Thrust Tectonics Along the Northwestern Continental Margin of Sabah/Borneo. Geologische Rundscau, 78(3):705-730. doi: 10.1007/BF01829317
Hinz K, Schlvter H U. 1985. Gelogy of the Dangerous Grounds, South China Sea, and the Continetal Margin off Southwest Palawan:Results of SONNE Cruises SO-23 and SO-27. Energy, 10(3/4):297-315. http://www.sciencedirect.com/science/article/pii/0360544285900489
Jin Q H, Li T G. 2000. The geological structure in Nansha sea area. Marine Geology& Quaternary Geology (in Chinese), 20(0):1-8.
Leloup P H, Lacassin R, Tapponnier P, et al. 1995. The Ailao Shan-Red River shear zone(Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251(1-4):3-10, 13-84. doi: 10.1016/0040-1951(95)00070-4
Li J B, Ding W W, Gao J Y, et al. 2011b. Cenozoic evolution model of the sea-floor spreading in South China Sea:new constraints from high resolution geophysical data. Chinese Journal of Geophysics (in Chinese), 54(12):3004-3015, doi:10.3969/j.issn.0001-5733.2011.12.003.
Li J B. 2011a. Dynamics of the continental margins of South China Sea:scientific experiments and research progresses. Chinese Journal of Geophysics (in Chinese), 54(12):2993-3003, doi:10.3969/j.issn.0001-5733.2011.12.002.
Liu B M, Xia B, Li X X, et al. 2006. The extending of Honghe Faults in South-eastern and its tectonic significance. Science in China Series D:Earth Sciences (in Chinese), 36(10):914-924.
Liu G D. 1992. Geophysical Field Features of China Sea and Adjacent Regions (in Chinese). Beijing:Science Press.
Liu S Z, Zhao H T, Fan S Q, et al. 2002. South China Sea Geology (in Chinese). Beijing:Science Press.
Lu B L, Wang P J, Zhang G C, et al. 2015. Characteristic of regional fractures in South China Sea and its basement tectonic framework. Progress in Geophysics (in chinese), 30(4):1544-1553, doi:10.6038/pg20150408.
Ma G Q, Li L L. 2012. Edge detection in potential fields with the normalized total horizontal derivative. Computers & Geosciences, 41:83-87. http://www.sciencedirect.com/science/article/pii/S0098300411002846
Marson I, Klingele E E. 1993. Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58(11):1588-1595. doi: 10.1190/1.1443374
Miller HG, Singh V. 1994. Potential field tilt-a new concept for location of potential field sources. Journal of Applied Geophysics, 32:213-217. doi: 10.1016/0926-9851(94)90022-1
Sertcelik I, Kafadar O. 2012. Application of edge detection to potential field data using eigenvalue analysis of structure tensor. Journal of Applied Geophysics, 84:127-136. https://www.deepdyve.com/lp/elsevier/application-of-edge-detection-to-potential-field-data-using-eigenvalue-EfDL5xQPNe
Song H B, Hao T Y, Jiang W W, et al. 2002. Researches on Geophysical Field Characteristics and Basement Fault System of South China Sea. Progress in Geophysics (in Chinese), 17(1):24-34, http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ200201003.htm
Tapponnier P, Peltzer G, Armijo R. 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1):113-157. doi: 10.1144/GSL.SP.1986.019.01.07
Tapponnier P, Peltzer G, Le Dain A Y, et al. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine. Geology, 10(12):611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Verduzco B, Fairhead J D. 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23:116-119. doi: 10.1190/1.1651454
Wan L, Yao B C, Wu N Y, et al. 2000. Extension of the Honghe fault zone after its entry into the sea and its tectonic significance. Gresearch of Eological South China Sea, 12:22-32.
Wang M, He H, Wang L F, et al. 2015. Field Source Boundary Recognition Method of Gauss-Laplace Operators. Geophysical and Geochemical Exploration, 39(SI):137-143. http://www.doc88.com/p-6837790546549.html
Weickert J.1999b. Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31:111-127. doi: 10.1023/A:1008009714131
Weickert J. 1999a. Coherence-enhancing diffusion of color images. Image Vis. Comput. 17:199-210. http://www.sciencedirect.com/science/article/pii/S0262885698001024
Wijns C, Perez C, Kowalczyk P. 2005. Theta map:Edge detection in magnetic data. Geophysics. 70:L39-L43. doi: 10.1190/1.1988184
Wu Z C, Gao J Y, Ding W W, et al. 2017. Moho depth of the South China Sea basin from three-dimensional gravity inversion with constraint points. Chinese Journal of Geophysics (in Chinese), 60(7):2599-2613, doi:10.6038/cjg20170709.
Yao B C, Zeng W J, Chen Y Z, et al. 1994. Xisha trough of South China Sea-An ancient suture. Marine Geology & Quaternary Geology (in Chinese), 14(1):1-10. http://cat.inist.fr/?amodele=affichen&cpsidt=4002396
Yao B C. 2006. Three-dimensional structure and evolution of lithosphere in the South China Sea (in Chinese). Beijing:Geological Publishing House.
Yu C H, Zhao J F, Shi X B, et al. 2017. Sediment density correction of gravity anomaly in the South China Sea and its significance to analyze regional tectonic characteristics. Chinese Journal of Geophysics (in Chinese), 60(8):3151-3166, doi:10.6038/cjg20170822.
金庆焕, 李唐根. 2000.南沙海域区域地质构造.海洋地质与第四纪地质, 20(0):1-8. http://www.cqvip.com/QK/96122X/200001/4231454.html
李家彪, 丁巍伟, 高金耀等. 2011b.南海新生代海底扩张的构造演化模式式:来自高分辨率地球物理数据的新认识.地球物理学报, 54(12):3004-3015, doi:10.3969/j.issn.0001-5733.2011.12.003. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8291.shtml
李家彪. 2011a.南海大陆边缘动力学:科学实验与研究进展.地球物理学报, 54(12):2993-3003, doi:10.3969/j.issn.0001-5733.2011.12.002. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract8290.shtml
刘宝民, 夏斌, 李绪宣等. 2006.红河断裂带东南的延伸及其构造演化意义.中国科学D辑:地球科学, 36(10):914-924. http://www.cqvip.com/QK/98491X/2006010/23098340.html
刘光鼎. 1992.中国海区及邻域地质地球物理特征.北京:科学出版社.
刘昭蜀, 赵焕庭, 范时清等. 2002.南海地质.北京:科学出版社.
鲁宝亮, 王璞珺, 张功成等.2015.南海区域断裂特征及其基底构造格局.地球物理学进展, 30(4):1544-1553, doi:10.6038/pg20150408.
宋海斌, 郝天珧, 江为为等. 2002.南海地球物理场特征与基底断裂体系研究.地球物理学进展, 17(1):24-34. http://www.cqvip.com/QK/98047X/2002001/6155072.html
万玲, 姚伯初, 吴能友. 2000.红河断裂带入海后的延伸及其构造意义.南海地质研究, 12:22-32. http://www.cqvip.com/QK/91083X/200012/5182735.html
王明, 何辉, 王林飞等. 2015.高斯-拉普拉斯算子场源边界识别方法.物探与化探, 39(SI):137-143. http://www.cqvip.com/QK/95670X/2015B12/668283757.html
吴招才, 高金耀, 丁巍伟等. 2017.南海海盆三维重力约束反演莫霍面深度及其特征.地球物理学报, 60(7):2599-2613, doi:10.6038/cjg20170709. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract13878.shtml
姚伯初, 曾维军, 陈艺中等. 1994.南海西沙海槽, 一条古缝合线.海洋地质与第四纪地质, 14(1):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401003.htm
姚伯初. 2006.中国南海海域岩石圈三维结构及演化.北京:地质出版社.
于传海, 赵俊峰, 施小斌等. 2017.南海重力异常的沉积层密度改正及其对区域构造特征分析的意义.地球物理学报, 60(8):3151-3166, doi:10.6038/cjg20170822. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract13926.shtml
-