基于TIE方程的空间域相位恢复迭代算法

唐巍, 王彦飞. 2017. 基于TIE方程的空间域相位恢复迭代算法. 地球物理学报, 60(5): 1851-1860, doi: 10.6038/cjg20170520
引用本文: 唐巍, 王彦飞. 2017. 基于TIE方程的空间域相位恢复迭代算法. 地球物理学报, 60(5): 1851-1860, doi: 10.6038/cjg20170520
TANG Wei, WANG Yan-Fei. 2017. Iterative regularization methods for phase retrieval in the space domain based on TIE equation. Chinese Journal of Geophysics (in Chinese), 60(5): 1851-1860, doi: 10.6038/cjg20170520
Citation: TANG Wei, WANG Yan-Fei. 2017. Iterative regularization methods for phase retrieval in the space domain based on TIE equation. Chinese Journal of Geophysics (in Chinese), 60(5): 1851-1860, doi: 10.6038/cjg20170520

基于TIE方程的空间域相位恢复迭代算法

  • 基金项目:

    中国科学院先导科技专项(XDB10020100)与国家自然科学基金项目(91630202,41325016)资助

详细信息
    作者简介:

    唐巍,男,中国科学院地质与地球物理研究所博士研究生,研究方向为勘探地球物理.E-mail: tw9202@163.com

    通讯作者: 王彦飞,男,研究员,2002年于中国科学院数学与系统科学研究院获博士学位,主要从事计算及勘探地球物理领域的研究工作.E-mail: yfwang@mail.iggcas.ac.cn
  • 中图分类号: P631

Iterative regularization methods for phase retrieval in the space domain based on TIE equation

More Information
  • 利用同步辐射X射线同轴显微层析(CT)方法对页岩进行扫描成像是一种无损的,对研究页岩孔裂隙大小、形态、三维结构及连通性等微观结构特征有重要意义的方法.同步辐射的引入将在物理上为提高页岩成像的分辨率提供了可能,在相位-吸收二重性假设下利用光强传递TIE(transport-of-intensity)方程可以较好地抑制由于相位信息带来的“边缘增强”效应,但该问题本质上是不适定的反演问题.本文根据实际问题构造模型,提出了一种与传统基于频域方法不同的,基于空间域的相位恢复迭代算法,并采用迭代Tikhonov正则化在数值上解决了噪声干扰下的不稳定性问题.研究结果表明,新方法的残差仅为频域方法的1%左右,该方法可用于未来实际数据的处理.

  • 加载中
  • 图 1 

    待测物体坐标系和观测平面

    Figure 1. 

    Coordinate system for the measured object and the plane of observation

    图 2 

    线性吸收系数模型

    Figure 2. 

    Model of linear absorption coefficients

    图 3 

    观测系统示意图

    Figure 3. 

    Schematic diagram of observational system

    图 4 

    模型正演的投影数据

    Figure 4. 

    Projection data of forward modeling of model

    图 5 

    未经处理直解反投影

    Figure 5. 

    Anti-projection of direct solution without phase retrieval

    图 6 

    线性吸收系数反演结果

    Figure 6. 

    Inversion results of linear absorption coefficients

    图 7 

    噪声1%下线性吸收系数反演结果

    Figure 7. 

    Inversion results of linear absorption coefficients with noise 1%

    图 8 

    图 7b, 7c中方框内的细节图

    Figure 8. 

    Details in the square of Figs. 7b and 7c

    表 1 

    模型成分在30 keV能量下β的理论值

    Table 1. 

    Theoretical β values for materials in the model at energy E=30 keV

    序号 成分 百分比 β
    1 石英 75.04% 7.4×10-10
    2 高岭石 3.20% 6.5×10-10
    3 伊蒙间层 3.20% 7.2×10-10
    4 斜长石 3.20% 9.0×10-10
    5 白云石 2.92% 11.5×10-10
    6 伊利石 3.02% 12.4×10-10
    7 方解石 3.10% 16.0×10-10
    8 绿泥石 3.04% 20.5×10-10
    9 孔隙 3.27% 0
    下载: 导出CSV
  •  

    Beltran M A, Paganin D M, Uesugi K, et al. 2010. 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance. Opt. Express, 18(7): 6423-6436, doi: 10.1364/OE.18006423.

     

    Bravin A. 2003. Exploiting the X-ray refraction contrast with an analyser: the state of the art. J. Phys. D: Appl. Phys., 36(10A): A24-29, doi: 10.1088/0022-3727/36/10A/306.

     

    Bravin A, Coan P, Suortti P. 2013. X-ray phase-contrast imaging: from pre-clinical applications towards clinics. Phys. Med. Biol., 58(1): R1, doi: 10.1088/0031-9155/58/1/R1.

     

    Bronnikov A V. 1999. Reconstruction formulas in phase-contrast tomography. Opt. Commun., 171(4-6): 239-244, doi: 10.1016/S0030-4018(99)00575-1.

     

    Bronnikov A V. 2002. Theory of quantitative phase-contrast computed tomography. Opt. Soc. Am. J., 19(3): 472-480, doi: 10.1364/JOSAA.19.000472.

     

    Bronnikov A V. 2006. Phase-contrast CT: fundamental theorem and fast image reconstruction algorithms.//Proc. SPIE 6318, Developments in X-Ray Tomography V. SPIE, doi: 10.1117/12.679389.

     

    Chen R C, Du G H, Xie H L, et al. 2009. Preliminary results for X-Ray phase contrast micro-tomography on the biomedical imaging beamline at SSRF. Nuclear Techniques (in Chinese), 32(4): 241-245.

     

    Gfrerer H. 1987. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Math. Comp., 49(180): 507-522. doi: 10.1090/S0025-5718-1987-0906185-4

     

    Groetsch C W. 1983. On the asymptotic order of accuracy of Tikhonov regularization. J. Optim. Theory Appl., 41(2): 293-298, doi: 10.1007/BF00935225.

     

    Gureyev T, Mohammadi S, Nesterets Y, et al. 2013. Accuracy and precision of reconstruction of complex refractive index in near-field single-distance propagation-based phase-contrast tomography. J. Appl. Phys., 114: 144906, doi: 10.1063/1.4824491.

     

    Lee P C. 2015. Phase retrieval method for in-line phase contrast x-ray imaging and denoising by regularization. Opt. Express, 23(8): 10668-10679, doi: 10.1364/OE.23.010668.

     

    Li B L, Li X D, Yang M. 2008. Review of development in X-ray computed tomography imaging technology.//Proceeding of the 12th National Conference on Stereology and Image Analysis (in Chinese). Jiamusi: Chinese Society of Stereology.

     

    Liu H Q, Wang Y D, Ren Y Q, et al. 2012. Investigation on X-ray Micro-computed tomography suitable for organic compound samples based on modified Bronnikov algorithm. Acta Opt. Sin. (in Chinese), 32(4): 434001, doi: 10.3788/AOS201232.0434001.

     

    Mayo S C, Stevenson A W, Wilkins S W. 2012. In-line phase-contrast X-ray imaging and tomography for materials science. Materials, 5(5): 937-965, doi: 10.3390/ma5050937.

     

    Nashed M Z. 1976. Generalized Inverses and Applications. New York: Academic Press.

     

    Natterer F. 2001. The Mathematics of Computerized Tomography. New York: Society for Industrial and Applied Mathematics.

     

    Nesterets Y I, Wilkins S W. 2008. Phase-contrast imaging using a scanning-double-grating configuration. Opt. Express, 16(8): 5849-5867, doi: 10.1364/OE.16.005849.

     

    Olivo A, Diemoz P C, Bravin A. 2012. Amplification of the phase contrast signal at very high X-ray energies. Opt. Lett., 37(5): 915-917, doi: 10.1364/OL.37.000915.

     

    Paganin D, Barty A, Mcmahon P J, et al. 2004. Quantitative phase-amplitude microscopy. Ⅲ. The effects of noise. J. Microsc., 214(1):51-61, doi: 10.1111/j.0022-2720.2004.01295.x

     

    Paganin D, Mayo S C, Gureyev T E, et al. 2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc., 206(1): 33-40, doi: 10.1046/j.1365-2818.2002.01010.x.

     

    Sixou B. 2015. Regularization methods for phase retrieval and phase contrast tomography. Abstr. Appl. Anal., 2015: Article ID 943501, doi: 10.1155/2015/943501.

     

    Wang Y D, Yang Y S, Liu K Y, el. 2015. Quantitative and multi-scale characterization of pore connections in tight reservoirs with micro-CT and DCM. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 86-92, doi: 10.3969/j.issn.1007-2802.2015.01.010.

     

    Wang Y F. 2007. Computational Methods for Inverse Problems and Their Applications (in Chinese). Beijing: Higher Education Press.

     

    Wu X Z, Liu H. 2005. X-Ray cone-beam phase tomography formulas based on phase-attenuation duality. Opt. Express, 13(16): 6000-6014, doi: 10.1364/OPEX.13.006000.

     

    Xiao T Y, Yu S G, Wang Y F. 2003. Numerical Methods for the Solution of Inverse Problems (in Chinese). Beijing: Science Press.

     

    Ye L L, Xue Y L, Tan H, et al. 2013. X-Ray phase contrast micro-tomography and its application in quantitative 3D imaging study of wild ginseng characteristic microstructures. Acta Opt. Sin. (in Chinese), 33(12): 1234002, doi: 10.3788/AOS201333.1234002.

     

    Zschornack G H. 2007. Handbook of X-Ray Data. Berlin Heidelberg: Springer.

     

    陈荣昌, 杜国浩, 谢红兰等. 2009.上海光源X射线成像实验站相位衬度CT初步结果.核技术, 32(4): 241-245. http://www.cnki.com.cn/Article/CJFDTOTAL-HJSU200904003.htm

     

    李保磊, 李兴东, 杨民. 2008. X射线CT成像技术进展综述. //第十二届中国体视学与图像分析学术会议论文集. 佳木斯: 中国体视学学会.

     

    刘慧强, 王玉丹, 任玉琦等. 2012.采用吸收修正Bronnikov算法的有机复合样品的X射线显微计算机层析研究.光学学报, 32(4): 434001, doi: 10.3788/AOS201232.0434001.

     

    王玉丹, 杨玉双, 刘可禹等. 2015.非常规油气储集孔隙多尺度连通性的定量显微CT研究.矿物岩石地球化学通报, 34(1): 86-92, doi: 10.3969/j.issn.1007-2802.2015.01.010.

     

    王彦飞. 2007.反演问题的计算方法及其应用.北京:高等教育出版社.

     

    肖庭延, 于慎根, 王彦飞. 2003.反问题的数值解法.北京:科学出版社.

     

    叶琳琳, 薛艳玲, 谭海等. 2013. X射线相衬显微层析及其在野山参特征结构的定量三维成像研究.光学学报, 33(12): 1234002, doi: 10.3788/AOS201333.1234002.

  • 加载中

(8)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2016-04-21
修回日期:  2016-08-02
上线日期:  2017-05-05

目录