四川盆地早白垩世红层磁倾角偏低研究

赵千, 王彬, 张浩东, 王志瑶. 2017. 四川盆地早白垩世红层磁倾角偏低研究. 地球物理学报, 60(5): 1825-1837, doi: 10.6038/cjg20170518
引用本文: 赵千, 王彬, 张浩东, 王志瑶. 2017. 四川盆地早白垩世红层磁倾角偏低研究. 地球物理学报, 60(5): 1825-1837, doi: 10.6038/cjg20170518
ZHAO Qian, WANG Bin, ZHANG Hao-Dong, WANG Zhi-Yao. 2017. Inclination shallowing of the Early Cretaceous red beds in the Sichuan Basin. Chinese Journal of Geophysics (in Chinese), 60(5): 1825-1837, doi: 10.6038/cjg20170518
Citation: ZHAO Qian, WANG Bin, ZHANG Hao-Dong, WANG Zhi-Yao. 2017. Inclination shallowing of the Early Cretaceous red beds in the Sichuan Basin. Chinese Journal of Geophysics (in Chinese), 60(5): 1825-1837, doi: 10.6038/cjg20170518

四川盆地早白垩世红层磁倾角偏低研究

  • 基金项目:

    国家自然科学基金重大项目子课题(41190071),国家自然科学基金“大陆构造与动力学”创新研究群体项目(41421002),长江学者和创新团队发展计划(IRT1281),国家自然科学基金青年基金(40902063)资助

详细信息
    作者简介:

    赵千,男,1988年生,硕士研究生,固体地球物理学专业.E-mail:leonselqian@outlook.com

    通讯作者: 王彬,男,1976年生,副教授,主要从事古地磁与构造地质学研究.E-mail:wangbin@nwu.edu.cn
  • 中图分类号: P541

Inclination shallowing of the Early Cretaceous red beds in the Sichuan Basin

More Information
  • 对四川盆地东北部巴中地区和西部雅安地区早白垩世红层分别采集9块手标本,进行了详细的古地磁学研究.系统退磁获得两地的特征剩磁,其中巴中地区平均方向为,倾斜校正之前:Dg/Ig=25.3°/19.0°,k=18.6,α95=8.8°;倾斜校正之后:Ds/Is=25.8°/18.9°,k=24.3,α95=7.6°.雅安地区平均方向为,倾斜校正之前:Dg/Ig=24.5°/45.0°,k=15.7,α95=9.0°;倾斜校正之后:Ds/Is=356.7°/35.6°,k=28.5,α95=6.6°.磁化率各向异性实验结果显示两地均未受到显著的构造应力影响.等温剩磁各向异性(AIR)实验结果,巴中地区IRMz/IRMx平均值为0.8194,表明18%的压实率;雅安地区IRMz/IRMx平均值为0.8909,表明11%的压实率,计算得到巴中和雅安地区校正后的磁倾角分别为22.7°和38.8°.根据等温剩磁各向异性(AIR)实验和Tauxe and Kent(2004)提出的EI校正法得到的结果表明,四川盆地早白垩世陆相碎屑岩层中存在沉积压实作用造成的磁倾角偏低现象,而且川东北巴中地区的偏低程度强于川西雅安地区.

  • 加载中
  • 图 1 

    (a) 中国及临区大地构造简图 (修绘自Yang et al., 1992);(b) 四川盆地区域地质简图(修绘自《中国地质图集》) (马丽芳, 2002)

    Figure 1. 

    (a) Simplified tectonic map of China and adjacent area (modified from Yang et al., 1992);(b) Geological map of the Sichuan Basin (modified from《Geological Atlas of China》 in Ma, 2002)

    图 2 

    巴中地区1:200000地质简图 (修绘自Wang et al., 2013)

    Figure 2. 

    Simplified geological map of Bazhong area (modified from Wang et al., 2013)

    图 3 

    雅安地区采样区地质简图(修绘自Enkin et al., 1991b)

    Figure 3. 

    Geological map of Ya′an area (modified from Enkin et al., 1991b)

    图 4 

    野外采样照片

    Figure 4. 

    Photos in the study areas

    图 5 

    雅安地区早白垩世样品

    Figure 5. 

    (a) Isothermal remanent magnetization acquisition and opposite field demagnetization curves of red bed sample;(b) Three-component IRM thermal demagnetization curves of red bed sample

    图 6 

    代表样品系统热退磁的天然剩磁矢量图

    Figure 6. 

    Representative Zijderveld diagrams of thermal demagnetization of natural remnant magnetism (NRM) from the Early Cretaceous samples (in situ coordinates). Solid circles, horizontal projection; Open circles, vertical projection

    图 7 

    巴中 (a, b) 和雅安地区 (c, d) 以样品为单位统计的低温分量 (LTC) 倾斜校正前后等面积投影图

    Figure 7. 

    Equal-area stereographic projections of low temperature components (LTC) for samples from Bazhong (a, b) and Ya′an (c, d) areas before and after tilt correction

    图 8 

    巴中 (a, b) 和雅安 (c, d) 地区以样品为单位统计的高温分量 (HTC) 倾斜校正前后等面积投影图 (实心圆、空心圆分别代表上、下球面投影)

    Figure 8. 

    Equal-area stereographic projections of high temperature components (HTC) for samples from Bazhong (a, b) and Ya′an (c, d) areas before and after tilt correction. Lower (upper) hemisphere directions are marked with closed (open) symbols

    图 9 

    巴中和雅安地区样品磁化率各向异性 (AMS) 数据在地理 (a, b)和地层 (c, d) 坐标下等面积投影图;形状参数 (T) 与各向异性度 (Pj)关系图 (e, f)

    Figure 9. 

    Stereographic projection of AMS data in geographic (a, b) and stratigraphic coordinates (c, d) of sample from Bazhong and Ya′an areas, respectively. Plots of shape parameter (T) versus anisotropy degree (Pj) of samples from Bazhong (e) and Ya′an areas (f), respectively. K1=maximum, K2=intermediate, K3=minimum. N is number of samples

    图 10 

    巴中和雅安代表性样品以45°角逐步递增外加磁场过程中,IRMx (平行与地层层面)和IRMz (垂直于地层层面) 对比图 (a, d); 外加磁场强度10~800 mT过程中IRMz/IRMx对比图 (b, e); 热退磁过程中IRMz/IRMx对比图 (c, f)

    Figure 10. 

    Plots of IRMx (parallel to bedding) and IRMz (perpendicular to bedding) acquisitions produced by applying magnetic field at 45°to bedding as function of increasing field (a, d). The slope (IRMz/IRMx) of the least\-squares-fit for data points between 200 mT and 800 mT (b, e) is used to estimate the magnetic anisotropy of hematite. The slope of the thermal demagnetization of IRMz and IRMx between 600 ℃ and 680 ℃ (c, f)

    图 11 

    巴中地区古地磁数据(Wang et al., 2013)的E/I校正结果

    Figure 11. 

    (a) Equal area projection of paleomagnetic direction of samples from Wang et al. (2013); (b) Left: plots of elongation and inclination versus different values of f for Bazhong area;(c) Middle: elongation versus inclination plots for TK03.GAD model and for the paleomagnetic data for different values of f for Bazhong area; (d) The crossing points represent the inclination/ elongation pair most consistent with the TK03.GAD. Right: crossing points from bootstrapped datasets of Bazhong area

    表 1 

    巴中和雅安地区样品等温剩磁各向异性(AIR)数据表

    Table 1. 

    Anisotropy of isothermal remanent magnetization for early Cretaceous red beds at Bazhong and Ya′an area, respectively

    样品号 进行AIR
    实验样
    品数
    实测
    倾角
    (Iobs)
    校正
    倾角
    (IF)
    IRMz/IRMx
    (200~800 mT
    获得)
    IRMz/IRMx
    (600~680 ℃
    获得)
    巴中
    TK2 4 28.9 32.4 0.9201 0.8701
    TK4 5 10.5 14.3 0.8896 0.7270
    TK8 6 32.2 36.8 0.9545 0.8459
    TK9 5 11.9 14.2 0.9308 0.8348
    平均 0.9237 0.8194
    雅安
    YK3 4 45.6 51.7 0.9461 0.8039
    YK4 4 25.7 27.4 1.0725 0.9256
    YK5 5 31.1 32.9 1.0532 0.9384
    YK7 4 39.5 40.9 1.0209 0.9509
    YK8 3 36.7 41.4 0.9158 0.8437
    平均 1.0017 0.8909
    下载: 导出CSV
  •  

    Borradaile G J, Henry B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42(1-2): 49-93. doi: 10.1016/S0012-8252(96)00044-X

     

    Bureau of Geology Mineral Resources of Sichuan Province. 1991. Regional Geology of Sichuan Province (in Chinese). Beijing: Geological Publishing House.

     

    Chauvin A, Perroud H, Bazhenov M L. 1996. Anomalous low palaeomagnetic inclinations from Oligocene-lower Miocene red beds of the south-west Tien Shan, Central Asia. Geophysical Journal International, 126(2): 303-313. doi: 10.1111/gji.1996.126.issue-2

     

    Chen Y, Cogné J P, Courtillot V, et al. 1993. Cretaceous paleomagnetic results from western Tibet and tectonic implications. Journal of Geophysical Research, 98(B10): 17981-17999. doi: 10.1029/93JB01006

     

    Chen Z X, Jia D, Wei G Q, et al. 2008. Meso-Cenozoic sediment transport and tectonic transition in the western Sichuan foreland basin. Geology in China (in Chinese), 35(3): 472-481.

     

    Cogné J P, Halim N, Chen Y, et al. 1999. Resolving the problem of shallow magnetizations of Tertiary age in Asia: insights from paleomagnetic data from the Qiangtang, Kunlun, and Qaidam blocks (Tibet, China), and a new hypothesis. Journal of Geophysical Research, 104(B8): 17715-17734. doi: 10.1029/1999JB900153

     

    Cogné J P. 2003. PaleoMac: a MacintoshTM application for treating paleomagnetic data and making plate reconstructions. Geochemistry, Geophysics, Geosystems, 4(1): 1007.

     

    Ding J K, Zhang S H, Chen W W, et al. 2015. Paleomagnetism of the Oligocene Kangtuo Formation red beds (Central Tibet): Inclination shallowing and tectonic implications. Journal of Asian Earth Sciences, 104: 55-68. doi: 10.1016/j.jseaes.2014.10.006

     

    Dong Y P, Shen Z Y, Xiao A C, et al. 2011. Construction and structural analysis of regional geological sections of the southern Daba Shan thrust-fold belts. Acta Petrologica Sinica (in Chinese), 27(3): 689-698.

     

    Enkin R J, Courtillot V, Xing L, et al. 1991a. The stationary Cretaceous paleomagnetic pole of Sichuan (South China Block). Tectonics, 10(3): 547-559. doi: 10.1029/90TC02554

     

    Enkin R J, Chen Y, Courtillot V, et al. 1991b. A Cretaceous pole from south China, and the Mesozoic hairpin turn of the Eurasian apparent polar wander path. Journal of Geophysical Research: Solid Earth, 96(B3): 4007-4027. doi: 10.1029/90JB01904

     

    Enkin R J, Yang Z Y, Chen Y, et al. 1992. Paleomagnetic constraints on the geodynamic history of the major blocks of China from the Permian to the present. Journal of Geophysical Research: Solid Earth (1978—2012), 97(B10): 13953-13989. doi: 10.1029/92JB00648

     

    Enkin R J. 2003. The direction-correction tilt test: an all-purpose tilt/fold test for paleomagnetic studies. Earth and Planetary Science Letters, 212(1-2): 151-166. doi: 10.1016/S0012-821X(03)00238-3

     

    Fisher R. 1953. Dispersion on a sphere. Proceedings of the Royal Society A, 217: 295-305. doi: 10.1098/rspa.1953.0064

     

    Gao L, Tong Y B, Wang H, et al. 2014. Magnetic fabric study of the Paleocene Ninglang Formation in the Chuandian Fragment and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 57(1): 199-213, doi: 10.6038/cjg20140117.

     

    Garcés M, Parés J M, Cabrera L. 1996. Further evidence for inclination shallowing in red beds. Geophysical Research Letters, 23(16): 2065-2068. doi: 10.1029/96GL02060

     

    Gilder S, Chen Y, Cogné J P, et al. 2003. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA?) chron. Earth and Planetary Science Letters, 206(3-4): 587-600. doi: 10.1016/S0012-821X(02)01074-9

     

    Graham J W. 1954. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geological Society of America Bulletin, 65: 1257-1258.

     

    Guo Z W, Deng K L, Han Y H, et al. 1996. The Formation and Development of Sichuan Basin (in Chinese). Beijing: Geological Publishing House.

     

    Hankard F, Cogné J P, Kravchinsky V A, et al. 2007. New Tertiary paleomagnetic poles from Mongolia and Siberia at 40, 30, 20, and 13 Ma: clues on the inclination shallowing problem in central Asia. Journal of Geophysical Research, 112: B02101.

     

    He J K, Lu H F, Zhang Q L, et al. 1997. The thrust tectonics and it's transpressive geodynamics in Southern Dabashan Mountains. Geological Journal of China Universities (in Chinese), 3(4): 419-428.

     

    Hodych J P, Buchan K. 1994. Early Silurian palaeolatitude of the Springdale Group redbeds of central Newfoundland: a palaeomagnetic determination with a remanence anisotropy test for inclination error. Geophysical Journal International, 117(3): 640-652. doi: 10.1111/gji.1994.117.issue-3

     

    Hrouda F. 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 5(1): 37-82. doi: 10.1007/BF01450244

     

    Huang W, Dupont-Nivet G, Lippert P C, et al. 2013. Inclination shallowing in the Eocene Linzizong sediments from Tibet: correction, possible causes and implications for reconstructing the India-Asia collision. Geophysical Journal International, 194(3): 1390-1411. doi: 10.1093/gji/ggt188

     

    Iosifidi A G, Mac Niocaill C, Khramov A N, et al. 2010. Palaeogeographic implications of differential inclination shallowing in permo-carboniferous sediments from the donets basin, Ukraine. Tectonophysics, 490(3-4): 229-240. doi: 10.1016/j.tecto.2010.05.017

     

    Jia D, Chen Z X, Luo L, et al. 2007. Magnetic fabrics in fault-related fold and its relation with finite strain: an example from Mingjiang thrust structures in Western Sichuan. Progress in Natural Science (in Chinese), 17(2): 188-195.

     

    Kent D V, Smethurst M A. 1998. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth and Planetary Science Letters, 160(3-4): 391-402. doi: 10.1016/S0012-821X(98)00099-5

     

    Kirschvink J L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International, 62(3): 699-718. doi: 10.1111/gji.1980.62.issue-3

     

    Li Y Q, He D F, Chen L B, et al. 2016. Cretaceous sedimentary basins in Sichuan, SW China: Restoration of tectonic and depositional environments. Cretaceous Research, 57: 50-65. doi: 10.1016/j.cretres.2015.07.013

     

    Liu Y Y, Morinaga H. 1999. Cretaceous palaeomagnetic results from Hainan Island in south China supporting the extrusion model of Southeast Asia. Tectonophysics, 301(1-2): 133-144. doi: 10.1016/S0040-1951(98)00216-9

     

    Long K, Chen H D, Lin L B, et al. 2011. Cretaceous tectonic sequence and litho-paleogeographic evolution in the Sichuan Basin. Journal of Stratigraphy (in Chinese), 35(3): 328-336.

     

    Lowrie W. 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17(2): 159-162. doi: 10.1029/GL017i002p00159

     

    Luo L, Qi J F, Jia D, et al. 2013. Magnetic fabric investigation in Tianquan-Leshan section in front of Longmenshan fold-thrust belt and its indicative significance for the Cenozoic deformation. Chinese Journal of Geophysics (in Chinese), 56(2): 558-566, doi: 10.6038/cjg20130219.

     

    Ma L F. 2002. Geological Atlas of China (in Chinese). Beijing: Geological Publishing House.

     

    Mcfadden P L, Mcelhinny M W. 1990. Classification of the reversal test in palaeomagnetism. Geophysical Journal International, 103(3): 725-729. doi: 10.1111/gji.1990.103.issue-3

     

    Morinaga H, Liu Y Y. 2004. Cretaceous paleomagnetism of the eastern South China Block: establishment of the stable body of SCB. Earth and Planetary Science Letters, 222(3-4): 971-988. doi: 10.1016/j.epsl.2004.02.035

     

    Narumoto K, Yang Z Y, Takemoto K, et al. 2006. Anomalously shallow inclination in middle—northern part of the South China block: palaeomagnetic study of Late Cretaceous red beds from Yichang area. Geophysical Journal International, 164(2): 290-300. doi: 10.1111/gji.2006.164.issue-2

     

    Otofuji Y, Inoue Y, Funahara S, et al. 1990. Palaeomagnetic study of eastern Tibet-deformation of the Three Rivers region. Geophysical Journal International, 103(1): 85-94. doi: 10.1111/gji.1990.103.issue-1

     

    Parés J M, van der Pluijm B V, Dinarès-Turell J. 1999. Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, Northern Spain). Tectonophysics, 307(1-2): 1-14. doi: 10.1016/S0040-1951(99)00115-8

     

    Qiu Y M, Gao S, McNaughton N J, et al. 2000. First evidence of > 3.2Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology, 28(1): 11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2

     

    Rapalini A E, Fazzito S, Orué D. 2006. A new Late Permian paleomagnetic pole for stable South America: The Independencia group, eastern Paraguay. Earth, Planets and Space, 58(10): 1247-1253. doi: 10.1186/BF03352620

     

    Saint-Bezar B, Hebert R L, Aubourg C, et al. 2002. Magnetic fabric and petrographic investigation of hematite-bearing sandstones within ramp-related folds: examples from the South Atlas Front (Morocco). Journal of Structural Geology, 24(9): 1507-1520. doi: 10.1016/S0191-8141(01)00140-7

     

    Sato S, Yang Z Y, Tong Y B, et al. 2011. Inclination variation in the Late Jurassic to Eocene red beds from southeast Asia: lithological to locality scale approach. Geophysical Journal International, 186(2): 471-491. doi: 10.1111/j.1365-246X.2011.05030.x

     

    Sun Z M, Yang Z Y, Yang T S, et al. 2006. New Late Cretaceous and Paleogene paleomagnetic results from south China and their geodynamic implications. Journal of Geophysical Research, 111(B3): B03101.

     

    Tan X D, Kodama K P. 2002. Magnetic anisotropy and paleomagnetic inclination shallowing in red beds: Evidence from the Mississippian Mauch Chunk Formation, Pennsylvania. Journal of Geophysical Research, 107(B11): EPM 9-1-EPM 9-17. doi: 10.1029/2001JB001636

     

    Tan X D, Kodama K P, Chen H L, et al. 2003. Paleomagnetism and magnetic anisotropy of Cretaceous red beds from the Tarim basin, northwest China: Evidence for a rock magnetic cause of anomalously shallow paleomagnetic inclinations from central Asia. Journal of Geophysical Research, 108(B2): 2107.

     

    Tan X D, Kodama K P, Gilder S, et al. 2007. Rock magnetic evidence for inclination shallowing in the Passaic Formation red beds from the Newark basin and a systematic bias of the Late Triassic apparent polar wander path for North America. Earth and Planetary Science Letters, 254(3-4): 345-357. doi: 10.1016/j.epsl.2006.11.043

     

    Tan X D, Gilder S, Kodama K P, et al. 2010. New paleomagnetic results from the Lhasa block: Revised estimation of latitudinal shortening across Tibet and implications for dating the India—Asia collision. Earth and Planetary Science Letters, 293(3-4): 396-404. doi: 10.1016/j.epsl.2010.03.013

     

    Tauxe L, Kent D V. 2004. A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: was the ancient magnetic field dipolar?.// Timescales of the Paleomagnetic Field. Washington, D.C.: American Geophysical Union, 101-115.

     

    Tauxe L. 2005. Inclination flattening and the geocentric axial dipole hypothesis. Earth and Planetary Science Letters, 233(3-4): 247-261. doi: 10.1016/j.epsl.2005.01.027

     

    Tauxe L, Kodama K P, Kent D V. 2008. Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach. Physics of the Earth and Planetary Interiors, 169(1-4): 152-165. doi: 10.1016/j.pepi.2008.05.006

     

    Thébault E, Finlay C C, Beggan C D, et al. 2015. International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space, 67: 79. doi: 10.1186/s40623-015-0228-9

     

    Wang B, Zhang G W, Yang Z Y. 2013. New Mesozoic paleomagnetic results from the northeastern Sichuan basin and their implication. Tectonophysics, 608: 418-427. doi: 10.1016/j.tecto.2013.09.005

     

    Wang B, Yang Z Y. 2007. Late Cretaceous paleomagnetic results from southeastern China, and their geological implication. Earth and Planetary Science Letters, 258(1-2): 315-333. doi: 10.1016/j.epsl.2007.03.045

     

    Wang F, Yang L K, Wang L, et al. 2010. The boundary ages of the late Mesozoic volcanic-sedimentary strata on South China: Constrains from 40Ar/39Ar geochronology and paleomagnetism. Scientia Sinica Terrae (in Chinese), 40(11): 1552-1570.

     

    Wang Y B, Xu H J. 2001. Relations between evolution of sedimentary cycles and tectonic uplift around Sichuan Basin from Jurassic to early Cretaceous. Earth Science-Journal of China University of Geosciences (in Chinese), 26(3): 241-264.

     

    Yang Z Y, Courtillot V, Besse J, et al. 1992. Jurassic paleomagnetic constraints on the collision of the North and South China Blocks. Geophysical Research Letters, 19(6): 577-580. doi: 10.1029/91GL02416

     

    Yang Z Y, Bess J. 2001. New Mesozoic apparent polar wander path for south China: tectonic consequence. Journal of Geophysical Research, 106(B5): 8493-8520. doi: 10.1029/2000JB900338

     

    Yukutake T, Tachinaka H. 1968. 52. The westward drift of the geomagnetic secular variation. Bulletin of the Earthquake Research Institute, University of Tokyo, 46(5): 1075-1102.

     

    Zhang Y Q, Dong S W, Li J H, et al. 2011. Mesozoic multi-directional compressional tectonics and formation-reformation of Sichuan basin. Geology in China (in Chinese), 38(2): 233-250.

     

    Zheng J P, Griffin W L, O'Reilly S Y, et al. 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417-420. doi: 10.1130/G22282.1

     

    陈竹新, 贾东, 魏国齐等. 2008.川西前陆盆地中—新生代沉积迁移与构造转换.中国地质, 35(3): 472-481. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200803013.htm

     

    董有浦, 沈中延, 肖安成等. 2011.南大巴山冲断褶皱带区域构造大剖面的构建和结构分析.岩石学报, 27(3): 689-698. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103010.htm

     

    高亮, 仝亚博, 王恒等. 2014.川滇地块古新统宁蒗组磁组构特征及构造意义.地球物理学报, 57(1): 199-213, doi: 10.6038/cjg20140117. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract10059.shtml

     

    郭正吾, 邓康岭, 韩永辉等. 1996.四川盆地形成与演化.北京:地质出版社.

     

    何建坤, 卢华复, 张庆龙等. 1997.南大巴山冲断构造及其剪切挤压动力学机制.高校地质学报, 3(4): 419-428. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX199704009.htm

     

    贾东, 陈竹新, 罗良等. 2007.断层相关褶皱的磁组构与有限应变:川西岷江冲断构造的实例分析.自然科学进展, 17(2): 188-195. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200702007.htm

     

    隆轲, 陈洪德, 林良彪等. 2011.四川盆地白垩纪构造层序、岩相古地理及演化.地层学杂志, 35(3): 328-336. http://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201103015.htm

     

    罗良, 漆家福, 贾东等. 2013.龙门山南段山前天全—乐山剖面磁组构研究及其对新生代构造变形的指示意义.地球物理学报, 56(2): 558-566, doi: 10.6038/cjg20130219. http://manu39.magtech.com.cn/Geophy/CN/abstract/abstract9301.shtml

     

    马丽芳. 2002.中国地质图集.北京:地质出版社.

     

    四川省地质矿产勘查开发局. 1991.四川省区域地质志.北京:地质出版社.

     

    王非, 杨列坤, 王磊等. 2010.中国东南晚中生代火山沉积地层界线时代-40Ar/39Ar年代学及磁性地层研究.中国科学:地球科学, 40(11): 1552-1570.

     

    王永标, 徐海军. 2001.四川盆地侏罗纪至早白垩世沉积旋回与构造隆升的关系.地球科学:中国地质大学学报, 26(3): 241-264. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103003.htm

     

    张岳桥, 董树文, 李建华等. 2011.中生代多向挤压构造作用与四川盆地的形成和改造.中国地质, 38(2): 233-250. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201102002.htm

  • 加载中

(11)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2016-01-18
修回日期:  2016-09-12
上线日期:  2017-05-05

目录