陆-海碳收支过程驱动的晚中新世气候-碳循环耦合演变机制

杜金龙, 田军. 陆-海碳收支过程驱动的晚中新世气候-碳循环耦合演变机制[J]. 第四纪研究, 2023, 43(6): 1675-1687. doi: 10.11928/j.issn.1001-7410.2023.06.13
引用本文: 杜金龙, 田军. 陆-海碳收支过程驱动的晚中新世气候-碳循环耦合演变机制[J]. 第四纪研究, 2023, 43(6): 1675-1687. doi: 10.11928/j.issn.1001-7410.2023.06.13
杜金龙, 田军. 陆-海碳收支过程驱动的晚中新世气候-碳循环耦合演变机制[J]. 第四纪研究, 2023, 43(6): 1675-1687. doi: 10.11928/j.issn.1001-7410.2023.06.13 DU Jinlong, TIAN Jun. On the carbon-climate dynamics driven by land-sea carbon budget during the Late Miocene[J]. Quaternary Sciences, 2023, 43(6): 1675-1687. doi: 10.11928/j.issn.1001-7410.2023.06.13
Citation: DU Jinlong, TIAN Jun. On the carbon-climate dynamics driven by land-sea carbon budget during the Late Miocene[J]. Quaternary Sciences, 2023, 43(6): 1675-1687. doi: 10.11928/j.issn.1001-7410.2023.06.13

陆-海碳收支过程驱动的晚中新世气候-碳循环耦合演变机制

  • 基金项目:

    国家自然科学基金重点项目(批准号: 42030403)、国家自然科学基金基础科学中心项目(批准号: 42188102)和国家自然科学基金青年项目(批准号: 42306068)共同资助

详细信息

On the carbon-climate dynamics driven by land-sea carbon budget during the Late Miocene

More Information
  • 晚中新世见证了近10 Ma (1 Ma=1百万年)以来全球范围内最显著的大洋碳同位素负偏与全球气候变冷事件, 两者的先后发生为研究地球表层系统中碳循环与气候耦合演化机理提供了关键的时间窗口。但是, 大洋碳循环事件与全球气候变冷之间的联系却缺乏合理的解释。本研究综述前人对全球变冷和大洋碳位移事件的机制解释, 提出了陆-海碳收支变化驱动两者耦合演变的新假说。借助现有模式输出, 晚中新世8 Ma至6 Ma期间陆地向海洋的碳通量增加了约2.1万亿吨, 主导了大洋海水碳同位素的负偏移, 并通过海洋碱度和营养盐的增加促使大气二氧化碳浓度降低约25%, 从而可能进一步驱动了全球变冷事件; 而高纬海洋的冷却则可能通过影响海洋表面溶解泵效率, 调控洋盆尺度海洋储碳模式。

  • 加载中
  • 图 1 

    研究背景

    Figure 1. 

    Background of this study.

    图 2 

    箱式模式的模拟结果与古海洋学记录的对比

    Figure 2. 

    Comparison between the box-model outputs and paleoceanographic records.

    图 3 

    海洋-生物地球化学模式模拟的海表降温过程中的海表碳通量变化

    Figure 3. 

    Modeled air-sea carbon flux during sea surface cooling.

    图 4 

    本文提出的陆-海碳收支调控晚中新世气候-碳循环耦合机制的假说示意图

    Figure 4. 

    The hypothesis we proposed in this paper that the Late Miocene carbon-climate dynamics is driven by the land-sea carbon budget

  • [1]

    Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present[J]. Nature, 2008, 453(7193): 379-382. doi: 10.1038/nature06949

    [2]

    Hollis C J, Dunkley Jones T, Anagnostou E, et al. The DeepMIP contribution to PMIP4: Methodologies for selection, compilation and analysis of Latest Paleocene and Early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database[J]. Geoscientific Model Development, 2019, 12(7): 3149-3206. doi: 10.5194/gmd-12-3149-2019

    [3]

    Zhu J, Poulsen C J, Tierney J E. Simulation of Eocene extreme warmth and high climate sensitivity through cloud feedbacks[J]. Science Advances, 2019, 5(9). doi: 10.1126/sciadv.aax1874.

    [4]

    Lunt D J, Huber M, Anagnostou E, et al. The DeepMIP contribution to PMIP4: Experimental design for model simulations of the EECO, PETM, and Pre-PETM (Version 1.0)[J]. Geoscientific Model Development, 2017, 10(2): 889-901. doi: 10.5194/gmd-10-889-2017

    [5]

    Burke K D, Williams J W, Chandler M A, et al. Pliocene and Eocene provide best analogs for near-future climates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(52): 13288-13293.

    [6]

    Hall R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations[J]. Journal of Asian Earth Sciences, 2002, 20(4): 353-431. doi: 10.1016/S1367-9120(01)00069-4

    [7]

    Forrest M, Eronen J T, Utescher T, et al. Climate-vegetation modelling and fossil plant data suggest low atmospheric CO2 in the Late Miocene[J]. Climate of the Past, 2015, 11(12): 1701-1732. doi: 10.5194/cp-11-1701-2015

    [8]

    Micheels A, Bruch A A, Uhl D, et al. A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 253(1-2): 251-270. doi: 10.1016/j.palaeo.2007.03.042

    [9]

    Micheels A, Bruch A A, Eronen J, et al. Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 304(3-4): 337-350. doi: 10.1016/j.palaeo.2010.09.021

    [10]

    Frigola A, Prange M, Schulz M. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0)[J]. Geoscientific Model Development, 2018, 11: 1607-1626. doi: 10.5194/gmd-11-1607-2018.

    [11]

    Fretwell P, Pritchard H D, Vaughan D G, et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica[J]. Cryosphere, 2013, 7(1): 375-393. doi: 10.5194/tc-7-375-2013

    [12]

    Steinthorsdottir M, Coxall H K, De Boer A M, et al. The Miocene: The future of the past[J]. Paleoceanography and Paleoclimatology, 2021, 36(4). doi: 10.1029/2020PA004037.

    [13]

    Du J, Tian J, Ma W. The Late Miocene carbon isotope shift driven by synergetic terrestrial processes: A box-model study[J]. Earth and Planetary Science Letters, 2022, 584: 117457. doi: 10.1016/j.epsl.2022.117457

    [14]

    Stein R, Fahl K, Schreck M, et al. Evidence for ice-free summers in the Late Miocene Central Arctic Ocean[J]. Nature Communications, 2016, 7: 1-13. doi: 10.1038/ncomms11148.

    [15]

    St. John K E K, Krissek L A. The Late Miocene to Pleistocene ice-rafting history of Southeast Greenland[J]. Boreas, 2002, 31(1): 28-35.

    [16]

    Holbourn A E, Kuhnt W, Clemens S C, et al. Late Miocene climate cooling and intensification of Southeast Asian winter monsoon[J]. Nature Communications, 2018, 9(1). doi: 10.1038/s41467-018-03950-1.

    [17]

    Cerling T E, Harris J M, MacFadden B J, et al. Global vegetation change through the Miocene/Pliocene Boundary[J]. Nature, 1997, 389(6647): 153-158. doi: 10.1038/38229

    [18]

    Liu X, Sun H, Miao Y, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment[J]. Quaternary Science Reviews, 2015, 116: 1-14. doi: 10.1016/j.quascirev.2015.03.010.

    [19]

    Liu J, Li J, Song C, et al. Palynological evidence for Late Miocene stepwise aridification on the northeastern Tibetan Plateau[J]. Climate of the Past, 2016, 12(7): 1473-1484. doi: 10.5194/cp-12-1473-2016

    [20]

    Westerhold T, Marwan N, Drury A J, et al. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 2020, 369(6509): 1383-1388. doi: 10.1126/science.aba6853

    [21]

    Drury A J, Lee G P, Gray W R, et al. Deciphering the state of the Late Miocene to Early Pliocene Equatorial Pacific[J]. Paleoceanography and Paleoclimatology, 2018, 33(3): 246-263. doi: 10.1002/2017PA003245

    [22]

    Hou Z, Li J, Song C, et al. Late-Miocene palaeoecological evolution of the Tianshui Basin, NE Tibetan Plateau: Evidence from stable organic carbon isotope record[J]. Journal of Asian Earth Sciences, 2015, 98: 296-303. doi: 10.1016/j.jseaes.2014.11.010.

    [23]

    Herbert T D, Lawrence K T, Tzanova A, et al. Late Miocene global cooling and the rise of modern ecosystems[J]. Nature Geoscience, 2016, 9(11): 843-847. doi: 10.1038/ngeo2813

    [24]

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013-The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2014. doi: 10.1017/CBO9781107415324.

    [25]

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022-Impacts, Adaptation and Vulnerability[M]. Cambridge: Cambridge University Press, 2023. doi: 10.1017/9781009325844.

    [26]

    苏庆达, 聂军胜, 李祥忠, 等. 柴达木盆地中新世-早上新世有机碳同位素记录和植被演化历史[J]. 第四纪研究, 2022, 42(4): 948-957. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.04.03

    Su Qingda, Nie Junsheng, Li Xiangzhong, et al. Organic carbon isotopic record and vegetation evolution history in the Qaidam Basin during Miocene-Early Pliocene[J]. Quaternary Sciences, 2022, 42(4): 948-957. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.04.03

    [27]

    Haq B U, Worsley T R, Burckle L H, et al. Late Miocene marine carbon-isotopic shift and synchroneity of some phytoplanktonic biostratigraphic events[J]. Geology, 1980, 8(9): 427-431. doi: 10.1130/0091-7613(1980)8<427:LMMCSA>2.0.CO;2

    [28]

    Grant K M, Dickens G R. Coupled productivity and carbon isotope records in the Southwest Pacific Ocean during the Late Miocene-Early Pliocene biogenic bloom[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2002, 187(1-2): 61-82. doi: 10.1016/S0031-0182(02)00508-4

    [29]

    Diester-Haass L, Billups K, Emeis K C. In search of the Late Miocene-Early Pliocene"Biogenic Bloom"in the Atlantic Ocean (Ocean Drilling Program Sites 982, 925, and 1088)[J]. Paleoceanography, 2005, 20(4): 1-13.

    [30]

    Diester-Haass L, Billups K, Emeis K C. Late Miocene carbon iosotope records and marine biological productivity: Was there a (dusty) link?[J]. Paleoceanography, 2006, 21(4): 1-18.

    [31]

    Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224. doi: 10.1029/98PA00123

    [32]

    Tian J, Ma X, Zhou J, et al. Paleoceanography of the East Equatorial Pacific over the past 16 Myr and Pacific-Atlantic comparison: High resolution benthic foraminiferal Δ18O and Δ13C records at IODP Site U1337[J]. Earth and Planetary Science Letters, 2018, 499: 185-196. doi: 10.1016/j.epsl.2018.07.025.

    [33]

    Lyle M, Drury A J, Tian J, et al. Late Miocene to recent high resolution eastern Equatorial Pacific carbonate records: Stratigraphy linked by dissolution and paleoproductivity[J]. Climate of the Past Discussions, 2019, 15(5): 1715-1739. doi: 10.5194/cp-15-1715-2019

    [34]

    Tian J, Ma X, Zhou J, et al. Subsidence of the northern South China Sea and formation of the Bashi Strait in the Latest Miocene: Paleoceanographic evidences from 9-Myr high resolution benthic foraminiferal Δ18O and Δ13C records[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466: 382-391. doi: 10.1016/j.palaeo.2016.11.041.

    [35]

    Hodell D A, Kathryn A V C. Late Neogene history of deepwater ventilation in the Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(9). doi: 10.1029/2005GC001211.

    [36]

    Butzin M, Lohmann G, Bickert T. Miocene Ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records[J]. Paleoceanography, 2011, 26(1): 1-19.

    [37]

    Poore H R, Samworth R, White N J, et al. Neogene overflow of northern component water at the Greenland-Scotland Ridge[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(6). doi: 10.1029/2005GC001085.

    [38]

    Delaney M L. Miocene benthic foraminiferal Cd/Ca Records: South Atlantic and western Equatorial Pacific[J]. Paleoceanography, 1990, 5(5): 743-760. doi: 10.1029/PA005i005p00743

    [39]

    Tipple B J, Meyers S R, Pagani M. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies[J]. Paleoceanography, 2010, 25(3): 1-11.

    [40]

    Suarez C A, Edmonds M, Jones A P. Earth catastrophes and their impact on the carbon cycle[J]. Elements, 2019, 15(5): 301-306. doi: 10.2138/gselements.15.5.301

    [41]

    汪品先. 气候演变中的冰和碳[J]. 地学前缘, 2002, 9(1): 85-93. doi: 10.3321/j.issn:1005-2321.2002.01.011

    Wang Pinxian. Ice and carbon in the climate changes[J]. Earth Science Frontiers, 2002, 9(1): 85~93 doi: 10.3321/j.issn:1005-2321.2002.01.011

    [42]

    Hülse D, Arndt S, Wilson J D, et al. Understanding the causes and consequences of past marine carbon cycling variability through models[J]. Earth-Science Reviews, 2017, 171: 349-382. doi: 10.1016/j.earscirev.2017.06.004

    [43]

    Sanyal P, Bhattacharya S K, Kumar R, et al. Palaeovegetational reconstruction in Late Miocene: A case study based on early diagenetic carbonate cement from the Indian Siwalik[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 228(3-4): 245-259. doi: 10.1016/j.palaeo.2005.06.007

    [44]

    Hoetzel S, Dupont L, Schefuß E, et al. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution[J]. Nature Geoscience, 2013, 6(12): 1027-1030. doi: 10.1038/ngeo1984

    [45]

    Fox D L, Honey J G, Martin R A, et al. Pedogenic carbonate stable isotope record of environmental change during the Neogene in the Southern Great Plains, Southwest Kansas, USA: Carbon isotopes and the evolution of C4-dominated grasslands[J]. Bulletin of the Geological Society of America, 2012, 124(3-4): 444-462. doi: 10.1130/B30401.1

    [46]

    Tauxe L, Feakins S J. A reassessment of the chronostratigraphy of Late Miocene C3-C4 transitions[J]. Paleoceanography and Paleoclimatology, 2020, 35(7): 1-19.

    [47]

    Feakins S J, Liddy H M, Tauxe L, et al. Miocene C4 grassland expansion as recorded by the Indus Fan[J]. Paleoceanography and Paleoclimatology, 2020, 35(6): 1-18.

    [48]

    Cerling T E, Wang Y, Quade J. Expansion of C4 ecosystems as an indicator of global ecological change in the Late Miocene[J]. Nature, 1993, 361(6410): 344-345. doi: 10.1038/361344a0

    [49]

    Quade J, Cerling T E. Expansion of C4 grasses in the Late Miocene of Northern Pakistan: Evidence from stable isotopes in paleosols[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995, 115(1-4): 91-116. doi: 10.1016/0031-0182(94)00108-K

    [50]

    Bickert T, Haug G H, Tiedemann R. Late Neogene benthic stable isotope record of Ocean Drilling Program Site 999: Implications for caribbean paleoceanography, organic carbon burial, and the messinian salinity crisis[J]. Paleoceanography, 2004, 19(1): 1-11.

    [51]

    Wang W, Zheng W, Zhang P, et al. Expansion of the Tibetan Plateau during the Neogene[J]. Nature Communications, 2017, 8(1): 1-12. doi: 10.1038/s41467-016-0009-6

    [52]

    Willenbring J K, Von Blanckenburg F. Long-term stability of global erosion rates and weathering during Late-Cenozoic cooling[J]. Nature, 2010, 465(7295): 211-214. doi: 10.1038/nature09044

    [53]

    Hay W W, Sloan II J L, Wold C N. Mass/age distribution and composition of sediments on the ocean floor drilling project to estimate[J]. Journal of Geophysical Research, 1988, 93(B12): 14933-14940. doi: 10.1029/JB093iB12p14933

    [54]

    Zhang P, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 2001, 410(6831): 891-897. doi: 10.1038/35073504

    [55]

    Li G, Elderfield H. Evolution of carbon cycle over the past 100 million years[J]. Geochimica et Cosmochimica Acta, 2013, 103: 11-25. doi: 10.1016/j.gca.2012.10.014.

    [56]

    Li N, Xie M, Sack D, et al. Continuous aridification since the mid-Holocene as the main cause of C3/C4 dynamics in the grasslands of Northeastern China[J]. European Journal of Soil Science, 2021, 72(1): 356-371. doi: 10.1111/ejss.12960

    [57]

    Kump L R, Arthur M A. Interpreting carbon-isotope excursions: Carbonates and organic matter[J]. Chemical Geology, 1999, 161(1): 181-198.

    [58]

    Lariviere J P, Ravelo A C, Crimmins A, et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing[J]. Nature, 2012, 486(7401): 97-100. doi: 10.1038/nature11200

    [59]

    Farnsworth A, Lunt D J, Robinson S A, et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2[J]. Science Advances, 2019, 5(10): 1-14.

    [60]

    Gallagher T M, Serach L, Sekhon N, et al. Regional patterns in Miocene-Pliocene aridity across the Chinese Loess Plateau revealed by high resolution records of paleosol carbonate and occluded organic matter[J]. Paleoceanography and Paleoclimatology, 2021, 36(12): 1-13.

    [61]

    Knorr G, Butzin M, Micheels A, et al. A warm Miocene climate at low atmospheric CO2 levels[J]. Geophysical Research Letters, 2011, 38(20): 1-5.

    [62]

    Brown, R, Chalk, T, Crocker, A, et al. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity[J]. Nature Geoscience, 2022, 15(8) L664-670. doi: 10.1038/s41561-022-00982-7

    [63]

    Kageyama M, Braconnot P, Harrison S P, et al. The PMIP4 contribution to CMIP6-Part 1: Overview and over-arching analysis plan[J]. Geoscientific Model Development, 2018, 11(3): 1033-1057. doi: 10.5194/gmd-11-1033-2018

    [64]

    Pagani M. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses[J]. Science, 1999, 285(5429): 876-879. doi: 10.1126/science.285.5429.876

    [65]

    Cui Y, Schubert B A, Jahren A H. A 23 m. y. record of low atmospheric CO2[J]. Geology, 2020, 48(9): 888-892. doi: 10.1130/G47681.1

    [66]

    Bolton C T, Stoll H M. Late Miocene threshold response of marine algae to carbon dioxide limitation[J]. Nature, 2013, 500(7464): 558-562. doi: 10.1038/nature12448

    [67]

    Liu J, Tian J, Liu Z, et al. Eastern equatorial Pacific cold tongue evolution since the Late Miocene linked to extratropical climate[J]. Science Advances, 2019, 5(4): 1-8.

    [68]

    Burls N J, Bradshaw C D, De Boer A M, et al. Simulating Miocene warmth: Insights from an opportunistic multi-model ensemble (MioMIP1)[J]. Paleoceanography and Paleoclimatology, 2021, 36(5): 1-40.

    [69]

    Miao Y, Fang X, Sun J, et al. A new biologic paleoaltimetry indicating Late Miocene rapid uplift of northern Tibet Plateau[J]. Science, 2022, 378(6624): 1074-1079. doi: 10.1126/science.abo2475

    [70]

    Molnar P, Rajagopalan B. Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since~10 Ma[J]. Geophysical Research Letters, 2012, 39(9): L09702. 10.1029/2012GL051305">https://doi.org/10.1029/2012GL051305. doi: 10.1029/2012GL051305.

    [71]

    Tapponnie R P, Xu Z Q, Roge R F, et al. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 2001, 294(5547): 1671-1677. doi: 10.1126/science.105978

    [72]

    李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001

    Li Jijun, Fang Xiaomin, Pan Baotian, et al. Late cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J]. Quaternary Sciences, 2001, 21(5): 381-391. doi: 10.3321/j.issn:1001-7410.2001.05.001

    [73]

    王晓雪, 聂军胜, Joel Saylor, 等. 札达盆地晚中新世河湖相沉积物环境磁学特征与印度季风演化[J]. 第四纪研究, 2018, 38(5): 1094-1100. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.05.04

    Wang Xiaoxue, Nie Junsheng, Joel Saylor, et al. Environmental magnetic characteristics of Late Miocene fluvio-lacustrine sediments in Zhada Basin and Indian monsoon evolution[J]. Quaternary Sciences, 2018, 38(5): 1094-1100. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.05.04

    [74]

    Caves J K, Jost A B, Lau K V, et al. Cenozoic carbon cycle imbalances and a variable weathering feedback[J]. Earth and Planetary Science Letters, 2016, 450: 152-163. doi: 10.1016/j.epsl.2016.06.035.

    [75]

    Wen Y, Zhang L, Holbourn A E, et al. CO2-forced Late Miocene cooling and ecosystem reorganizations in East Asia[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(5). doi: 10.1073/pnas.2214655120.

    [76]

    Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2022[J]. Earth System Science Data, 2022, 14(11): 4811-4900. doi: 10.5194/essd-14-4811-2022

    [77]

    Screen J A, Simmonds I. The central role of diminishing sea ice in recent arctic temperature amplification[J]. Nature, 2010, 464(7293): 1334-1337. doi: 10.1038/nature09051

    [78]

    Khatiwala S, Schmittner A, Muglia J. Air-sea disequilibrium enhances ocean carbon storage during glacial periods[J]. Science Advances, 2019, 5(6): eaaw4981. doi: 10.1126/sciadv.aaw4981.

    [79]

    Kohfeld K E, Chase Z. Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle[J]. Earth and Planetary Science Letters, 2017, 472: 206-215. doi: 10.1016/j.epsl.2017.05.015.

    [80]

    Hauck J, Völker C, Wang T, et al. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode[J]. Global Biogeochemical Cycles, 2013, 27(4): 1236-1245. doi: 10.1002/2013GB004600

    [81]

    Du J, Ye Y, Zhang X, et al. Southern control of interhemispheric synergy on glacial marine carbon sequestration[J]. Geophysical Research Letters, 2022, 49(16): 1-12.

    [82]

    张彧瑞, 朱广坤, 覃国金, 等. 始新世大洋环流模拟的模式依赖性[J]. 第四纪研究, 2023, 43(4): 952-964. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2023.04.04

    Zhang Yurui, Zhu Guangkun, Qin Guojin, et al. Model dependence of simulated Eocene ocean circulation in the Deep Time Model Intercomparison Project (DeepMIP)[J]. Quaternary Sciences, 2023, 43(4): 952~964 http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2023.04.04

  • 加载中

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2023-07-06
修回日期:  2023-09-20
刊出日期:  2023-11-30

目录