新疆木吉盆地鲕状泉华微观结构、地球化学特征及成因探讨

陈兆杰, 宋旭东, 孙淼, 余会明, 郭晓萌, 尹雪, 宋庆伟. 新疆木吉盆地鲕状泉华微观结构、地球化学特征及成因探讨[J]. 第四纪研究, 2023, 43(1): 173-186. doi: 10.11928/j.issn.1001-7410.2023.01.15
引用本文: 陈兆杰, 宋旭东, 孙淼, 余会明, 郭晓萌, 尹雪, 宋庆伟. 新疆木吉盆地鲕状泉华微观结构、地球化学特征及成因探讨[J]. 第四纪研究, 2023, 43(1): 173-186. doi: 10.11928/j.issn.1001-7410.2023.01.15
陈兆杰, 宋旭东, 孙淼, 余会明, 郭晓萌, 尹雪, 宋庆伟. 新疆木吉盆地鲕状泉华微观结构、地球化学特征及成因探讨[J]. 第四纪研究, 2023, 43(1): 173-186. doi: 10.11928/j.issn.1001-7410.2023.01.15 CHEN Zhaojie, SONG Xudong, SUN Miao, YU Huiming, GUO Xiaomeng, YIN Xue, SONG Qingwei. Microstructure, geochemical and genesis of coated grains in the Muji Basin, Xinjiang[J]. Quaternary Sciences, 2023, 43(1): 173-186. doi: 10.11928/j.issn.1001-7410.2023.01.15
Citation: CHEN Zhaojie, SONG Xudong, SUN Miao, YU Huiming, GUO Xiaomeng, YIN Xue, SONG Qingwei. Microstructure, geochemical and genesis of coated grains in the Muji Basin, Xinjiang[J]. Quaternary Sciences, 2023, 43(1): 173-186. doi: 10.11928/j.issn.1001-7410.2023.01.15

新疆木吉盆地鲕状泉华微观结构、地球化学特征及成因探讨

  • 基金项目:

    中国地质调查局"全国地质遗迹立典调查与评价"项目(批准号: DD20221771)资助

详细信息
    作者简介:

    陈兆杰, 男, 42岁, 正高级工程师, 旅游地质、生态旅游、生态修复研究, E-mail: 406106244@qq.com

  • 中图分类号: P595

Microstructure, geochemical and genesis of coated grains in the Muji Basin, Xinjiang

  • 泉华作为地表或地下水中碳酸钙的陆上沉积, 其内部微层结构和地球化学特征具有揭示区域环境变化的重要作用。新疆阿克陶县木吉盆地的鲕状泉华包覆颗粒是内陆干旱-半干旱气候区高寒山地环境产出的冷水沉积产物, 沉积过程相较于湿润-半湿润气候区同类泉华具有控制因素上的特殊性。在野外地质调查的基础上, 对其进行了细致的微观结构观察和化学组成研究, 以期为此类泉华成因机制的完善, 以及包覆颗粒生长发育过程与区域环境变化关系的探讨提供限定。研究发现, 木吉盆地周边地层中发育的碳酸盐岩是泉华发育的物质基础, “两山夹一盆”的地貌特征和盆地内全新世活动断裂的存在为泉华的形成提供了良好的地形地貌以及构造条件。微观结构观察和化学组分分析显示, 鲕状包覆颗粒发育由泥晶和亮晶纹层构成的外壳层, 两者均由低镁方解石组成, 但微量、稀土元素组成差异显著, 泥晶纹层的Mg/Ca(0.02~0.04)和ΣLREE/ΣHREE比值(1.75~9.98)以及稀土元素(ΣREE=0.33×10-6~2.96×10-6)和Sr(188×10-6~1640×10-6)、Ba(8.95×10-6~123.00×10-6)等微量元素含量相对亮晶纹层(Mg/Ca=0.01~0.02, ΣLREE/ΣHREE=0.93~5.43, ΣREE=0.05×10-6~0.82×10-6, Sr=157×10-6~285×10-6, Ba=5.17×10-6~29.50×10-6)更高。综合包覆颗粒微观结构、化学成分以及区域气候变化和地下水补给特征认为, 木吉鲕状包覆颗粒的成因类型为核形石, 颗粒纹层构造的发育是季节交替导致气候条件周期性波动的结果: 在降水和冰雪融水少的干冷气候环境下, 地下水补给不足, 具有较高微量和稀土元素含量的泥晶方解石发生沉淀, 藻类生物捕获粘附泥晶方解石形成泥晶纹层; 亮晶纹层形成于气候温湿季节, 地下水补给充足, 水流在包覆颗粒周围绕流过程中直接在泥晶纹层或岩屑外围发生CaCO3沉淀和生长。

  • 加载中
  • 图 1 

    研究区构造简图(a,断裂位置据文献[17])与木吉盆地区域地质图(b,据1 ︰ 250000库尔干幅1)和艾提开尔丁萨依幅2)地质图)

    Figure 1. 

    Structural sketch map of the study area(a, locations of faults are after reference[17])and regional geological map of the Muji Basin(b, modified after 1 ︰ 250000 geological maps of Kuergan1)and Aitikaierdingsayi2))

    图 2 

    木吉泉华景观特征

    Figure 2. 

    Landscape characteristics of Muji tufa

    图 3 

    鲕状包覆颗粒显微结构特征

    Figure 3. 

    Microstructure of coated grains. (a)The core of the coated grain is mainly composed of organic-rich micritic calcites, the periphery of the core is developed with relatively regular layers which is locally interrupt or pinched out(plane-polarized light); (b)The core of the coated grain is sparry calcites(plane-polarized light); (c)The core of the coated grain is irregular sparry calcites, the peripheral layers tends to be gentle from inside to outside, and the outermost cement have the forms of dog-tooth or radial shaped(cross-polarized light); (d)A large number of irregular micro-oolitic tufa grains are developed inside the coated grain(plane-polarized light); (e)The scanning electron microscope(SEM) image show that the sparite layers of the coated grain are composed of sparry calcites, and the micrite layers are mainly consist of micritic calcites; (f)The SEM image exhibit that algal filaments, extracellular polymeric substances and micritic calcites are mixed in the micrite layer

    图 4 

    包覆颗粒背散射像及纹层元素组成特征

    Figure 4. 

    Back scattered electron(BSE) images of coated grains and their elemental composition characteristics. (a)The coated grain BFKL1 has a cortex composed of three sparite layers and three micrite layers, some layers were partially interrupted, and fine quartz grains were seen in the micrite layers; (b)The variation characteristics of Mg/Ca ratio in the cortex of BFKL1; (c)The variation characteristics of Sr content in the cortex of BFKL1; (d)The variation characteristics of Ba content in the cortex of BFKL1; (e)The coated grain BFKL2 has a cortex consisting of two sparite layers and three micrite layers, and fine quartz grains can be seen in the micrite layers; (f)The variation characteristics of Mg/Ca ratio in the cortex of BFKL2; (g)The variation characteristics of Sr content in the cortex of BFKL2; (h)The variation characteristics of Ba content in the cortex of BFKL2

    图 5 

    上地壳标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)

    Figure 5. 

    Upper crustal normalized trace element spider diagram (a) and chondrite normalized rare earth element distribution diagram (b). Normalized values of upper crust and chondrite are from references[22] and [23], respectively

    图 6 

    包覆颗粒ΣLREE/ΣHREE-ΣREE图

    Figure 6. 

    ΣLREE/ΣHREE-ΣREE diagram of coated grains

    表 1 

    鲕状包覆颗粒电子探针分析结果(wt %)

    Table 1. 

    Electron microprobe analysis results of oolitic coated grains(wt %)

    泥晶纹层 亮晶纹层
    纹层编号 BFKL1-A2 BFKL1-A4 BFKL1-A6 BFKL2-B1 BFKL2-B3 BFKL2-B5 平均 BFKL1-A1 BFKL1-A3 BFKL1-A5 BFKL2-B2 BFKL2-B4 平均
    CaO 54.41 55.09 55.45 55.16 55.05 54.49 54.94 54.26 54.10 54.40 53.51 55.05 54.26
    MnO 0.05 0.08 0.05 0.00 0.02 0.00 0.04 0.00 0.00 0.00 0.16 0.02 0.04
    MgO 0.22 0.17 0.18 0.18 0.33 0.29 0.23 0.35 0.28 0.22 0.38 0.33 0.31
    SrO 0.02 0.05 0.01 0.00 0.00 0.03 0.02 0.09 0.04 0.00 0.00 0.00 0.02
    PbO 0.00 0.07 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.08 0.01 0.02
    FeOT 0.01 0.01 0.03 0.00 0.07 0.04 0.03 0.03 0.01 0.00 0.00 0.07 0.02
    Total 54.71 55.47 55.71 55.18 55.48 54.85 55.23 54.74 54.43 54.88 54.13 55.48 54.73
    下载: 导出CSV

    表 2 

    鲕状包覆颗粒LA-ICP-MS微量和稀土元素(×106)分析结果

    Table 2. 

    Trace and rare earth element contents(×106)of oolitic coated grains

    元素 BFKL1
    亮晶 泥晶 亮晶 泥晶 亮晶 泥晶
    A1-1 A1-2 A2-1 A2-2 A3-1 A3-2 A4-1 A4-2 A5-1 A5-2 A6-1 A6-2
    Ca 387800 387800 392654 392654 387800 387800 392654 392654 387800 387800 392654 392654
    Mg 6545 8128 9401 7717 5353 6019 15964 12028 8415 5800 14361 13956
    Mn 122 106 245 179 753 592 250 413 369 583 295 111
    Sc 0.24 0.35 0.39 0.31 0.07 0.09 1.20 0.93 0.31 0.12 2.55 0.49
    Ti 15.5 113 67.0 14.0 1.27 4.02 261 615 21.7 0.34 123 86.9
    V 1.09 2.54 2.71 1.94 0.09 0.41 5.39 4.86 1.86 0.01 12.25 3.76
    Cr 28.8 30.5 21.3 75.4 15.6 26.6 29.6 45.9 40.5 47.3 33.2 72.3
    Co 0.25 0.34 0.70 0.45 0.14 0.18 1.34 1.02 0.84 0.08 1.47 0.48
    Ni 2.72 3.00 3.33 3.23 2.54 2.71 15.65 4.06 3.65 2.10 5.76 3.00
    Zn 2.31 2.40 4.81 3.57 1.12 1.26 9.77 6.09 2.65 2.04 16.26 4.76
    Ga 0.17 0.53 0.53 0.45 0.03 0.09 0.99 1.00 0.33 0.01 2.83 0.64
    Rb 1.60 3.39 3.48 0.93 0.24 0.45 5.26 9.69 2.61 0.01 15.82 5.44
    Sr 229 245 205 188 198 233 430 353 282 160 369 390
    Y 0.21 0.32 0.28 0.29 0.01 0.04 0.52 0.55 0.24 0.06 0.41 0.30
    Zr 0.83 2.67 1.79 21.1 0.46 0.74 4.18 3.69 2.21 1.72 3.19 2.35
    Nb 0.05 0.24 0.18 0.06 0.01 0.02 0.62 1.51 0.07 0.12 0.42 0.29
    Cs 0.10 0.26 0.22 0.08 0.04 0.04 0.35 0.38 0.24 0.01 0.76 0.31
    Ba 11.7 16.9 24.2 8.95 7.17 10.1 29.5 33.4 16.4 5.17 55.6 24.2
    La 0.09 0.14 0.28 0.10 0.01 0.05 0.48 0.33 0.17 0.01 0.27 0.35
    Ce 0.19 0.22 0.46 0.18 0.01 0.09 1.09 0.61 0.27 0.01 0.44 0.65
    Pr 0.03 0.03 0.06 0.02 0.00 0.01 0.14 0.08 0.03 0.00 0.05 0.07
    Nd 0.13 0.13 0.26 0.08 0.01 0.05 0.66 0.31 0.15 0.00 0.27 0.35
    Sm 0.01 0.03 0.05 0.03 0.00 0.01 0.15 0.07 0.03 0.00 0.04 0.06
    Eu 0.01 0.01 0.02 0.00 0.00 0.00 0.04 0.02 0.01 0.04 0.01 0.02
    Gd 0.04 0.04 0.04 0.03 0.01 0.00 0.10 0.09 0.03 0.00 0.05 0.05
    Tb 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.01
    Dy 0.03 0.05 0.04 0.03 0.00 0.00 0.14 0.11 0.04 0.00 0.06 0.06
    Ho 0.00 0.01 0.00 0.01 0.00 0.00 0.02 0.02 0.01 0.00 0.01 0.01
    Er 0.02 0.04 0.03 0.04 0.00 0.00 0.06 0.05 0.03 0.00 0.06 0.03
    Tm 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00
    Yb 0.01 0.05 0.03 0.09 0.00 0.01 0.06 0.06 0.03 0.01 0.05 0.05
    Lu 0.00 0.01 0.00 0.03 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01
    Hf 0.01 0.08 0.21 0.57 0.02 0.02 0.12 0.05 0.05 0.01 0.09 0.08
    Pb 0.42 0.34 0.69 0.39 0.04 0.13 0.89 1.02 0.49 0.15 0.81 0.63
    Th 0.08 0.19 0.14 0.09 0.01 0.06 0.32 0.28 0.11 0.01 0.16 0.21
    U 0.51 0.60 0.51 0.36 0.43 0.42 0.57 0.57 0.51 0.28 0.63 0.65
    Mg/Ca 0.02 0.02 0.02 0.02 0.01 0.02 0.04 0.03 0.02 0.01 0.04 0.04
    ΣREE 0.56 0.78 1.29 0.65 0.05 0.24 2.96 1.79 0.82 0.08 1.33 1.72
    ΣLREE 0.45 0.55 1.13 0.41 0.03 0.21 2.56 1.43 0.67 0.06 1.08 1.50
    ΣHREE 0.11 0.22 0.16 0.24 0.02 0.02 0.41 0.36 0.15 0.01 0.25 0.22
    ΣLREE/ΣHREE 3.97 2.47 6.98 1.75 1.39 8.74 6.27 3.99 4.45 4.43 4.26 6.75
    元素 BFKL2
    泥晶 亮晶 泥晶 亮晶 泥晶
    B1-1 B1-2 B2-1 B2-2 B3-1 B3-2 B4-1 B4-2 B5-1 B5-2
    Ca 392654 392654 387800 387800 392654 392654 387800 387800 392654 392654
    Mg 7576 9591 4300 4092 6848 7578 5721 6145 9546 7956
    Mn 410 579 489 260 991 387 107 108 189 193
    Sc 0.55 0.46 0.20 0.11 0.19 0.22 0.07 0.07 0.28 0.17
    Ti 117 53.8 1.24 2.05 20.6 23.3 28.1 4.44 23.4 14.3
    V 3.85 2.91 0.24 0.12 1.19 1.20 0.21 0.12 1.45 1.36
    Cr 305 181 49.3 16.9 189 137 190 170 48.4 22.8
    Co 0.61 0.40 0.09 0.12 0.90 0.35 0.16 0.08 0.39 0.27
    Ni 1.73 1.46 1.81 1.84 1.83 1.12 0.52 0.50 2.61 2.84
    Zn 6.64 3.76 2.99 2.45 2.25 2.23 1.53 1.02 2.92 4.85
    Ga 0.99 0.49 0.01 0.05 0.19 0.21 0.05 0.06 0.24 0.26
    Rb 9.31 3.51 0.12 0.16 1.76 1.54 0.93 0.85 2.02 1.09
    Sr 1640 1342 163 157 982 938 269 285 330 259
    Y 0.34 0.32 0.18 0.06 0.11 0.15 0.02 0.06 0.16 0.06
    Zr 2.04 2.22 2.22 1.93 1.61 2.12 2.07 7.00 1.05 0.88
    Nb 0.40 0.17 0.01 0.01 0.07 0.07 0.17 0.02 0.08 0.13
    Cs 0.31 0.26 0.01 0.01 0.10 0.11 0.04 0.02 0.12 0.05
    Ba 123 106 5.67 6.18 80.6 68.5 24.6 29.5 18.7 12.1
    La 0.34 0.51 0.02 0.01 0.12 0.22 0.03 0.11 0.11 0.06
    Ce 1.27 1.39 0.03 0.04 0.30 0.30 0.04 0.08 0.21 0.14
    Pr 0.08 0.13 0.00 0.00 0.03 0.03 0.00 0.01 0.03 0.01
    Nd 0.40 0.47 0.01 0.01 0.15 0.11 0.01 0.04 0.11 0.03
    Sm 0.08 0.12 0.00 0.01 0.03 0.03 0.00 0.02 0.03 0.03
    Eu 0.02 0.02 0.00 0.00 0.04 0.00 0.00 0.01 0.01 0.00
    Gd 0.09 0.08 0.00 0.00 0.04 0.02 0.01 0.00 0.02 0.02
    Tb 0.01 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
    Dy 0.07 0.07 0.02 0.00 0.05 0.03 0.00 0.01 0.04 0.01
    Ho 0.01 0.01 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.00
    Er 0.03 0.04 0.01 0.00 0.01 0.01 0.00 0.01 0.02 0.01
    Tm 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
    Yb 0.06 0.03 0.01 0.00 0.01 0.01 0.00 0.00 0.02 0.02
    Lu 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00
    Hf 0.06 0.04 0.03 0.00 0.01 0.05 0.04 0.10 0.02 0.02
    Pb 0.62 0.60 0.05 0.06 0.66 0.42 0.18 0.39 0.42 0.16
    Th 0.25 0.27 0.01 0.01 0.12 0.12 0.01 0.02 0.10 0.04
    U 1.89 1.77 0.37 0.41 1.30 1.23 0.33 0.40 0.59 0.53
    Mg/Ca 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.02 0.02
    ΣREE 2.47 2.90 0.13 0.11 0.79 0.78 0.13 0.32 0.62 0.33
    ΣLREE 2.19 2.64 0.06 0.08 0.67 0.68 0.09 0.27 0.50 0.28
    ΣHREE 0.28 0.26 0.07 0.02 0.12 0.10 0.04 0.05 0.12 0.05
    ΣLREE/ΣHREE 7.68 9.98 0.93 3.34 5.63 7.13 2.60 5.43 4.21 5.18
    下载: 导出CSV
  • [1]

    Viles H A, Goudie A S. Tufas, travertines and allied carbonate deposits[J]. Progress in Physical Geography, 1990, 14 (1): 19-41. doi: 10.1177/030913339001400102

    [2]

    刘再华, 袁道先, 何师意, 等. 四川黄龙沟景区钙华的起源和形成机理研究[J]. 地球化学, 2003, 32 (1): 1-10. doi: 10.19700/j.0379-1726.2003.01.001

    Liu Zaihua, Yuan Daoxian, He Shiyi, et al. Origin and forming mechanisms of travertine at Huanglong Ravine of Sichuan[J]. Geochimica, 2003, 32 (1): 1-10. doi: 10.19700/j.0379-1726.2003.01.001

    [3]

    范宝祥, 周忠发, 安丹, 等. 贵州绥阳麻黄洞非典型钟乳石的演化过程[J]. 第四纪研究, 2021, 41 (6): 1565-1573. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.05

    Fan Baoxiang, Zhou Zhongfa, An Dan, et al. The evolution process of atypical stalactites in Mahuang cave, Suiyang County, Guizhou Province[J]. Quaternary Sciences, 2021, 41 (6): 1565-1573. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.05

    [4]

    Ford T D, Pedley H M. A review of tufa and travertine deposits of the world[J]. Earth-Science Reviews, 1996, 41 (3-4): 117-175. doi: 10.1016/S0012-8252(96)00030-X

    [5]

    刘再华. 表生和内生钙华的气候环境指代意义研究进展[J]. 科学通报, 2014, 59 (23): 2229-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201423001.htm

    Liu Zaihua. Research progress in paleoclimatic interpretations of tufa and travertine[J]. Chinese Science Bulletin, 2014, 59 (23): 2229-2239. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201423001.htm

    [6]

    晏浩, 刘再华. 层状钙华及其地球化学指标的古气候/环境意义[J]. 第四纪研究, 2011, 31 (1): 88-95. doi: 10.3969/j.issn.1001-7410.2011.01.12 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2011.01.12

    Yan Hao, Liu Zaihua. A review of palaeoclimatic implications from laminated tufa and travertine[J]. Quaternary Sciences, 2011, 31 (1): 88-95. doi: 10.3969/j.issn.1001-7410.2011.01.12 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2011.01.12

    [7]

    Roberts M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem[J]. Earth and Planetary Science Letters, 1998, 154 (1-4): 237-246. doi: 10.1016/S0012-821X(97)00116-7

    [8]

    Tucker M E, Wright V P. Carbonate Sedimentology[M]. Oxford: Blackwell Sciences, 1990: 1-496.

    [9]

    杨玉芳, 钟建华, 曾石岐, 等. 松辽盆地早白垩世青山口组核形石的特征及其环境意义[J]. 地质学报, 2009, 83 (4): 558-569. doi: 10.3321/j.issn:0001-5717.2009.04.011

    Yang Yufang, Zhong Jianhua, Zeng Shiqi, et al. Characteristics of oncolites in the Early Cretaceous Qingshankou Formation, Songliao Basin and its environmental significance[J]. Acta Geologica Sinica, 2009, 83 (4): 558-569. doi: 10.3321/j.issn:0001-5717.2009.04.011

    [10]

    梅冥相. 鲕粒成因研究的新进展[J]. 沉积学报, 2012, 30 (1): 20-32. doi: 10.14027/j.cnki.cjxb.2012.01.012

    Mei Mingxiang. Brief introduction on new advances on the origin of ooids[J]. Acta Sedimentologica Sinica, 2012, 30 (1): 20-32. doi: 10.14027/j.cnki.cjxb.2012.01.012

    [11]

    崔杰, 代群威, 王富东, 等. 四川黄龙地区鲕状钙华包壳粒的发现及其特征[J]. 中国岩溶, 2021, 40 (1), 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202101014.htm

    Cui Jie, Dai Qunwei, Wang Fudong, et al. Discovery and feature of oolitic coated grains of travertine in the Huanglong area, Sichuan[J]. Carsologica Sinica, 2021, 40 (1): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202101014.htm

    [12]

    Hägele D, Leinfelder R, Grau J, et al. Oncoids from the River Alz(Southern Germany): Tiny ecosystems in a phosphorus-limited environment[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237 (2-4): 378-395. doi: 10.1016/j.palaeo.2005.12.016

    [13]

    Charlotte S, Denys B S, Edward S. Spring peas from New York State: Nucleation and growth of fresh water hollow ooliths and pisoliths[J]. Journal of Sedimentary Research, 1981, 51 (4): 1341-1346.

    [14]

    Wu C H, Yi H S, Hui B, et al. A new sediment type of coated grain: Oolitic sinter[J]. Science China: Earth Sciences, 2014, 57 (9): 2013-2024. doi: 10.1007/s11430-014-4921-5

    [15]

    杜圣贤, 李越, 宋香锁, 等. 山东平邑盆地卞桥组(晚白垩世马斯特里赫特晚期)泉华成因的核形石[J]. 微体古生物学报, 2016, 33 (3): 325-333. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201603010.htm

    Du Shengxian, Li Yue, Song Xiangsuo, et al. Travertine-type oncoids from the Cretaceous Bianqiao Formation(Late Maastrichtian)in the Pingyi Basin, Shandong Province, East China[J]. Acta Micropalaeontologica Sinica, 2016, 33 (3): 325-333. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201603010.htm

    [16]

    陈杰, 李涛, 李文巧, 等. 帕米尔构造结及邻区的晚新生代构造与现今变形[J]. 地震地质, 2011, 33 (2): 241-259. doi: 10.3969/j.issn.0253-4967.2011.02.001

    Chen Jie, Li Tao, Li Wenqiao, et al. Late Cenozoic and present tectonic deformation in the Pamir salient, Northwestern China[J]. Seismology and Geology, 2011, 33 (2): 241-259. doi: 10.3969/j.issn.0253-4967.2011.02.001

    [17]

    陈杰, 李涛, 孙建宝, 等. 2016年11月25日新疆阿克陶MW6.6地震发震构造与地表破裂[J]. 地震地质, 2016, 38 (4): 1160-1174. doi: 10.3969/j.issn.0253-4967.2016.04.028

    Chen Jie, Li Tao, Sun Jianbao, et al. Coseismic surface ruptures and seismogenic Muji fault of the 25 November 2016 Arketao MW6.6 earthquake in Northern Pamir[J]. Seismology and Geology, 2016, 38 (4): 1160-1174. doi: 10.3969/j.issn.0253-4967.2016.04.028

    [18]

    杨文强, 刘良, 曹玉亭, 等. 西昆仑塔什库尔干印支期(高压)变质事件的确定及其构造地质意义[J]. 中国科学: 地球科学, 2011, 41 (8): 1047-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108002.htm

    Yang Wenqiang, Liu Liang, Cao Yuting, et al. Geochronological evidence of Indosinian(high-pressure)metamorphic event and its tectonic significance in Taxkorgan area of the Western Kunlun Mountains, NW China[J]. Science China: Earth Sciences, 2011, 41 (8): 1047-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201108002.htm

    [19]

    李少娟, 冯新疆, 张红喜, 等. 新疆英吉沙南克孜勒陶组沉积特征及沉积相[J]. 新疆地质, 2004, 22 (2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200402008.htm

    Li Shaojuan, Feng Xinjiang, Zhang Hongxi, et al. The sedimentary characteristics and sedimentary facies of Middle-Devonian Keziletao Formation in Akebaximazhaer area of south Yingjisha, Xinjiang[J]. Xinjiang Geology, 2004, 22 (2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200402008.htm

    [20]

    阿克陶县地方志编纂委员会. 阿克陶县县志[M]. 乌鲁木齐: 新疆人民出版社, 1996: 62-73.

    Aktao County Chorography Compilation Committee. Aktao County Annals[M]. Vrumqi: Xinjiang People's Publishing House, 1996: 62-73.

    [21]

    Griffin W L, Powell W J, Pearson N J, et al. GLITTER: Data reduction software for laser ablation ICP-MS//Sylvester P ed. Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada, Short Course Series, 2008, 40: 308-311. http://cir.nii.ac.jp/naid/1570572699329308288.

    [22]

    Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution[M]. London: Blackwell Scientific Publications, 1985: 46.

    [23]

    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42 (1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [24]

    汪智军, 殷建军, 蒲俊兵, 等. 钙华生物沉积作用研究进展与展望[J]. 地球科学进展, 2019, 34 (6): 606-617. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201906008.htm

    Wang Zhijun, Yin Jianjun, Pu Junbing, et al. Biological processes responsible for travertine deposition: A review and future prospect[J]. Advances in Earth Science, 2019, 34 (6): 606-617. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201906008.htm

    [25]

    Ji W H, Li R S, Chen S J, et al. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of Northwest China and its geological significance[J]. Science China: Earth Sciences, 2011, 54 (1): 61-72. doi: 10.1007/s11430-010-4043-7

    [26]

    罗培, 文星跃, 吴勇, 等. 新疆乌恰托云苏约克泉华景观特征及成因. 地质论评, 2017, 63 (1): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701026.htm

    Luo Pei, Wen Xingyao, Wu Yong, et al. The landscape features and genesis of Suyueke tufa in Wuqia, Xinjiang[J]. Geological Review, 2017, 63 (1): 257-267. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201701026.htm

    [27]

    周绪论. 关于四川黄龙钙华CO2成因的讨论[J]. 四川地质学报, 2006, 26 (3): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB200603004.htm

    Zhou Xulun. A discussion on genesis of CO2 in the Huanglong travertine, Sichuan[J]. Acta Geological Sichuan, 2006, 26 (3): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDB200603004.htm

    [28]

    闫志为, 韦复才. 地下水中CO2的成因综述. 中国岩溶, 2003, 22 (2): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200302007.htm

    Yan Zhiwei, Wei Fucai. Summary on the genesis of CO2 in groundwater[J]. Carsologica Sinica, 2003, 22 (2): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200302007.htm

    [29]

    刘海生, 周训, 张彧齐, 等. 温泉钙华沉积的影响因素[J]. 中国岩溶, 2020, 39 (1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202001002.htm

    Liu Haisheng, Zhou Xun, Zhang Yuqi, et al. A brief review on the factors affecting deposition of travertines in hot springs[J]. Carsologica Sinica, 2020, 39 (1): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR202001002.htm

    [30]

    Chevalier M L, Li H B, Pan J W, et al. Fast slip-rate along the northern end of the Karakorum fault system, western Tibet[J]. Geophysical Research Letters, 2011, 38: L22309. doi:10.1029/2011GL049921

    [31]

    张英骏, 莫仲达. 黄果树瀑布成因初探[J]. 地理学报, 1982, 37 (3): 303-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198203009.htm

    Zhang Yingjun, Mo Zhongda. The origin and evolution of Orange Fall[J]. Acta Geographica Sinica, 1982, 37 (3): 303-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB198203009.htm

    [32]

    Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion[J]. Chemical Geology, 1991, 90 (1-2): 107-122.

    [33]

    Wang Z J, Yin J J, Cheng H, et al. Climatic controls on travertine deposition in southern Tibet during the Late Quaternary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 589: 110852. doi:10.1016/j.palaeo.2022.110852

    [34]

    Huang Y M, Fairchild I J, Borsato A, et al. Seasonal variations in Sr, Mg and P in modern speleothems(Grotta di Ernesto, Italy)[J]. Chemical Geology, 2001, 175 (3-4): 429-448.

    [35]

    Garnett E R, Andrews J E, Preece R C, et al. Climatic change recorded by stable isotopes and trace elements in a British Holocene tufa[J]. Journal of Quaternary Science, 2004, 19 (3): 251-262.

    [36]

    付雷, 张森琦, 贾小丰, 等. 万年尺度下钙华的古环境重建检验——以青海冰凌山为例[J]. 第四纪研究, 2019, 39 (2): 510-517. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.02.22

    Fu Lei, Zhang Senqi, Jia Xiaofeng, et al. Test of the paleoenvironment reconstruction of Bingling Hill travertine in large time scale[J]. Quaternary Sciences, 2019, 39 (2): 510-517. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.02.22

    [37]

    Huang Y M, Fairchild I J. Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions[J]. Geochimica et Cosmochimica Acta, 2001, 65 (1): 47-62.

    [38]

    Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element(Sr-Mg)compositions of carbonate cave waters: Implications for speleothem climatic records[J]. Chemical Geology, 2000, 166 (3): 255-269.

    [39]

    Romanek C S, Grossman E L, Morse J W. Carbon isotope fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 1992, 56 (1): 419-430.

    [40]

    Tesoriero A J, Pankow J F. Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite[J]. Geochimica et Cosmochimica Acta, 1996, 60 (6): 1053-1063.

    [41]

    Ihlenfeld C, Norman M D, Gagan M K, et al. Climatic significance of seasonal trace element and stable isotope variations in a modern freshwater tufa[J]. Geochimica et Cosmochimica Acta, 2003, 67 (13): 2341-2357.

    [42]

    中国科学院地质研究所岩溶研究组. 中国岩溶研究[M]. 北京: 科学出版社, 1979: 37-39.

    Karst Research Group of Institute of Geology, Chinese Academy of Sciences. Karst Research in China[M]. Beijing: Science Press, 1979: 37-39.

    [43]

    郭景平, 李宁平, 托乎提·亚克夫. 中华人民共和国政区大典·新疆维吾尔自治区卷[M]. 北京: 中国社会出版社, 2016: 1-1698.

    Guo Jingping, Li Ningping, Yakefu Tuohuti. Regional Codes of the People's Republic of China, Volume of Xinjiang Uygur Autonomous Region[M]. Beijing: China Society Press, 2016: 1-1698.

    [44]

    唐宇宏, 潘鸿. 贵州马岭河瀑布钙华藻类群落特征及生物岩溶作用[J]. 中国岩溶, 2013, 32 (3): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201303005.htm

    Tang Yuhong, Pan Hong. Characteristics of tufa algae community and bio-karstification at the Malinghe waterfall in Guizhou[J]. Carsologica Sinica, 2013, 32 (3): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201303005.htm

    [45]

    陆艺, 苏金宝, 谭红兵, 等. 西藏东南缘地热泉华的地球化学特征和成因[J]. 矿物岩石地球化学通报, 2019, 38 (6): 1207-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201906017.htm

    Lu Yi, Su Jinbao, Tan Hongbing, et al. Geochemical characteristics and origin of sinters in the southeastern margin of Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38 (6): 1207-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201906017.htm

    [46]

    韩贵琳, 刘丛强. 喀斯特河流溶解态稀土元素组成变化及其控制因素[J]. 中国岩溶, 2004, 23 (3): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200403002.htm

    Han Guilin, Liu Congqiang. Controlling factors for variation in dissolved rare-earth elements in karst drainage basin[J]. Carsologica Sinica, 2004, 23 (3): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR200403002.htm

    [47]

    关秀宇. 贵州黄果树地区钙华及其环境意义研究[D]. 北京: 中国地质大学(北京)硕士学位论文, 2010: 1-47.

    Guan Xiuyu. Study on the Tufa and the Environment Information Significance from Annual Laminations in Huangguoshu, Guizhou[D]. Beijing: The Master's Thesis of China University of Geosciences(Beijing), 2010: 1-47.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1306
  • PDF下载数:  57
  • 施引文献:  0
出版历程
收稿日期:  2022-03-22
修回日期:  2022-09-12
刊出日期:  2023-01-30

目录