气候和地热共同影响泥炭地表面湿度变化——以长白山赤池泥炭地为例

刘莉, 赵红艳, 李鸿凯, 卜兆君, 王升忠. 气候和地热共同影响泥炭地表面湿度变化——以长白山赤池泥炭地为例[J]. 第四纪研究, 2023, 43(1): 163-172. doi: 10.11928/j.issn.1001-7410.2023.01.14
引用本文: 刘莉, 赵红艳, 李鸿凯, 卜兆君, 王升忠. 气候和地热共同影响泥炭地表面湿度变化——以长白山赤池泥炭地为例[J]. 第四纪研究, 2023, 43(1): 163-172. doi: 10.11928/j.issn.1001-7410.2023.01.14
刘莉, 赵红艳, 李鸿凯, 卜兆君, 王升忠. 气候和地热共同影响泥炭地表面湿度变化——以长白山赤池泥炭地为例[J]. 第四纪研究, 2023, 43(1): 163-172. doi: 10.11928/j.issn.1001-7410.2023.01.14 LIU Li, ZHAO Hongyan, LI Hongkai, BU Zhaojun, WANG Shengzhong. Mire surface wetness is jointly determined by climate and geothermy: A case from Chichi peatland in the Changbai Mountains[J]. Quaternary Sciences, 2023, 43(1): 163-172. doi: 10.11928/j.issn.1001-7410.2023.01.14
Citation: LIU Li, ZHAO Hongyan, LI Hongkai, BU Zhaojun, WANG Shengzhong. Mire surface wetness is jointly determined by climate and geothermy: A case from Chichi peatland in the Changbai Mountains[J]. Quaternary Sciences, 2023, 43(1): 163-172. doi: 10.11928/j.issn.1001-7410.2023.01.14

气候和地热共同影响泥炭地表面湿度变化——以长白山赤池泥炭地为例

  • 基金项目:

    国家自然科学基金项目(批准号: 42071104)资助

详细信息

Mire surface wetness is jointly determined by climate and geothermy: A case from Chichi peatland in the Changbai Mountains

More Information
  • 来自北方泥炭地的研究表明, 沼泽表面湿度变化时常受控于气候变化。然而火山活动区泥炭地的表面湿度是否受到了火山地质的影响?这个问题值得进一步明晰。本研究以长白山赤池泥炭地38cm深的沉积物作为对象, 通过植物大化石、有壳变形虫和腐殖化度多指标分析, 重建该泥炭地过去近50年的地表湿度变化。研究表明, 3个指标揭示的地表湿度变化趋势总体一致, 即38~27cm(1957~1965A.D.)由干向湿转变; 27~18cm(1965~1976A.D.)干湿波动; 18~0cm(1976~2008A.D.)由湿向干转变。与当地的气象数据对比, 发现剖面底部湿度偏低与地热引起的强烈蒸发有关; 而剖面上部湿度偏低与降水少、温度高的气候变化模式较吻合。理解泥炭地表面湿度变化对于泥炭记录的古气候、古环境和古生态重建具有重要意义。

  • 加载中
  • 图 1 

    (a) 赤池泥炭地在长白山的位置、(b)赤池泥炭地与天池的相对位置以及(c)赤池泥炭地取样点

    Figure 1. 

    (a)Location of Chichi peatland in the Changbai Mountains; (b)Chichi peatland and Tianchi Lake; (c)Sampling site at Chichi peatland

    图 2 

    赤池泥炭剖面深度-年龄模型

    Figure 2. 

    Depth-age model of the Chichi peat profile

    图 3 

    赤池泥炭剖面植物大化石分布和聚类图

    Figure 3. 

    Plant macrofossils diagrams and dendrogram of the Chichi peat profile

    图 4 

    植物大化石除趋势对应分析(DCA)物种得分图

    Figure 4. 

    DCA ordination plot of plant macrofossils species

    图 5 

    赤池泥炭剖面有壳变形虫分布和聚类图

    Figure 5. 

    Testate amoebae diagrams and dendrogram of the Chichi peat profile

    图 6 

    植物大化石、有壳变形虫和腐殖化度重建的表面湿度与赤池泥炭地及二道气象站1)的温度和降水变化对比

    Figure 6. 

    Comparison of surface wetness in Chichi peat profile from plant macrofossils, testate amoebae and humification to temperature and precipitation at Erdao Meteorological Station and Chichi peatland

    表 1 

    赤池泥炭剖面AMS 14C测年结果*

    Table 1. 

    AMS 14C dating results of the Chichi peat profile

    实验编号 样品编号 深度(cm) 植物种类 现代碳百分比(%) 校正14C年代(cal.a B.P.) 估算14C年代(概率)(A.D.)
    NENUR11186 CC17 17 藓类 100.67±0.78 现代 1709(18%)/1865(46%)/1955(10%)/2017(26%)
    NENUR11187 CC30 30 藓类 107.88±0.57 现代 1957(12%)/2003(87%)/2005(1%)
    Beta-396276 CC38 38 藓类 106.0±0.3 现代 1957(8%)/2007(92%)
    * 现代碳误差是2 σ,用CALIBomb程序(http://calib.org/CALIBomb/)校正的14C年代误差是2 σ
    下载: 导出CSV
  • [1]

    Yu Z C. Northern peatland carbon stocks and dynamics: A review[J]. Biogeosciences, 2012, 9 (10): 4071-4085. doi: 10.5194/bg-9-4071-2012

    [2]

    Yu Z C, Joos F, Bauska T K, et al. No support for carbon storage of >1, 000 Gt C in northern peatlands[J]. Nature Geoscience, 2021, 14 (7): 465-467. doi: 10.1038/s41561-021-00769-2

    [3]

    Chambers F M, Charman D J. Holocene environmental change: Contributions from the peatland archive[J]. The Holocene, 2004, 14 (1): 1-6. doi: 10.1191/0959683604hl684ed

    [4]

    郭海春, 田怡苹, 魏士凯, 等. 我国全新世泥炭α纤维素稳定碳同位素记录的对比与分析[J]. 第四纪研究, 2020, 40 (5): 1136-1144. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.04

    Guo Haichun, Tian Yiping, Wei Shikai, et al. Comparison and analyses of the Holocene peat α-cellulose stable carbon isotopic records from China[J]. Quaternary Sciences, 2020, 40 (5): 1136-1144. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.04

    [5]

    Blytt A. Essays on the Immigration of the Norwegian Flora during Alternating Rainy and Dry Periods[M]. Ohio: Cammermeyer Christiania, 1876: 169-175.

    [6]

    Aaby B. Cyclic climate variations over the past 5500 years reflected in raised bogs[J]. Nature, 1976, 263 (5575): 281-284. doi: 10.1038/263281a0

    [7]

    Väliranta M, Korhola A, Seppä H, et al. High-resolution reconstruction of wetness dynamics in a southern boreal raised bog, Finland, during the Late Holocene: A quantitative approach[J]. The Holocene, 2007, 17 (8): 1093-1107. doi: 10.1177/0959683607082550

    [8]

    Mauquoy D, Yeloff D, Van Geel B, et al. Two decadally resolved records from North-west European peat bogs show rapid climate changes associated with solar variability during the mid-Late Holocene[J]. Journal of Quaternary Science, 2008, 23 (8): 745-763. doi: 10.1002/jqs.1158

    [9]

    Daley T J, Barber K E. Multi-proxy Holocene palaeoclimate records from Walton moss, northern England and Dosenmoor, Northern Germany, assessed using three statistical approaches[J]. Quaternary International, 2012, 268: 111-127, doi:10.1016/j.quaint.2011.10.026.

    [10]

    Hughes P D M, Blundell A, Charman D J. An 8500cal. year multi-proxy climate record from a bog in eastern Newfoundland: Contributions of meltwater discharge and solar forcing[J]. Quaternary Science Reviews, 2006, 25: 1208-1227, doi:10.1016/j.quascirev.2005.11.001.

    [11]

    Booth R K. Testate amoebae as proxies for mean annual water-table depth in Sphagnum-dominated peatlands of North America[J]. Journal of Quaternary Science, 2008, 23 (1): 43-57. doi: 10.1002/jqs.1114

    [12]

    Amesbury M J, Swindles G T, Bobrov A, et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology[J]. Quaternary Science Reviews, 2016, 152: 132-151, doi:10.1016/j.quascirev.2016.09.024.

    [13]

    Barber K E, Langdon P G. What drives the peat-based palaeoclimate record?A critical test using multi-proxy climate records from northern Britain[J]. Quaternary Science Reviews, 2007, 26 (25-28): 3318-3327. doi: 10.1016/j.quascirev.2007.09.011

    [14]

    Charman D J, Barber K E, Blaauw M, et al. Climate drivers for peatland palaeoclimate records[J]. Quaternary Science Reviews, 2009, 28 (19): 1811-1819.

    [15]

    Hong Y T, Liu D S, Jiang H B, et al. Response of climate to solar forcing recorded in a 6000-year δ18O time-series of Chinese peat cellulose[J]. The Holocene, 2000, 10 (1): 1-7. doi: 10.1191/095968300669856361

    [16]

    Xie S C, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for paleoclimate reconstruction[J]. Geochimica et Cosmochimica Acta, 2004, 68 (13): 2849-2862. doi: 10.1016/j.gca.2003.08.025

    [17]

    Zhou W J, Xie S C, Meyers P A, et al. Reconstruction of Late Glacial and Holocene climate evolution in Southern China from geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry, 2005, 36 (9): 1272-1284. doi: 10.1016/j.orggeochem.2005.04.005

    [18]

    Ma C M, Zhu C, Zheng C G, et al. High-resolution geochemistry records of climate changes since Late-glacial from Dajiuhu peat in Shennongjia Mountains, Central China[J]. Chinese Science Bulletin, 2008, 53: 28-41. doi:10.1007/s11434-008-5007-6.

    [19]

    Zhong W, Xue J B, Cao J X, et al. Bulk organic carbon isotopic record of lacustrine sediments in Dahu swamp, eastern Nanling Mountains in South China: Implication for catchment environmental and climatic changes in the last 16, 000 years[J]. Journal of Asian Earth Sciences, 2010, 38 (3-4): 162-169. doi: 10.1016/j.jseaes.2009.12.011

    [20]

    赵红艳, 李鸿凯, 韩毅, 等. 长白山西侧哈泥沼泽表面湿度的多指标记录及其可能的驱动因素[J]. 第四纪研究, 2014, 34 (2): 434-442. doi: 10.3969/j.issn.1001-7410.2014.02.18 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2014.02.18

    Zhao Hongyan, Li Hongkai, Han Yi, et al. A multi-proxy record of surface wetness in Hani mire of west Changbaishan Mountain and its possible drivers[J]. Quaternary Sciences, 2014, 34 (2): 434-442. doi: 10.3969/j.issn.1001-7410.2014.02.18 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2014.02.18

    [21]

    李艳梅, 李鸿凯, 董彦民. 长白山老里克泥炭地过去2000年以来古水位定量重建[J]. 第四纪研究, 2020, 40 (5): 1170-1179. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.07

    Li Yanmei, Li Hongkai, Dong Yanmin. Quantitative reconstruction of the water table changes during the last 2000 years from Laolike peatland, Changbai Mountains[J]. Quaternary Sciences, 2020, 40 (5): 1170-1179. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.07

    [22]

    Rao Z G, Huang C, Xie L H, et al. Long-term summer warming trend during the Holocene in Central Asia indicated by alpine peat α-cellulose δ13C record[J]. Quaternary Science Reviews, 2019, 203: 56-67. doi:10.1016/j.quascirev.2018.11.010.

    [23]

    饶志国, 郭海春. 北疆阿尔泰哈拉沙子高山泥炭岩芯孢粉记录是否指示全新世温度变化历史?[J]. 第四纪研究, 2021, 41 (2): 612-620. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.26

    Rao Zhiguo, Guo Haichun. Is the pollen-based taiga biome score record from alpine Sahara sand peatland in southern Altai Mountains of northern Xinjiang an indicator of Holocene temperature history?[J]. Quaternary Sciences, 2021, 41 (2): 612-620. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.26

    [24]

    Zhang D L, Chen L, Feng Z D, et al. Four peat humification-recorded Holocene hydroclimate changes in the southern Altai Mountains of China[J]. The Holocene, 2021, 31 (8): 1304-1314. doi: 10.1177/09596836211011674

    [25]

    乐秀琴, 吴海斌, 张文超, 等. 中国末次冰盛期以来泥炭发育与气候变化[J]. 第四纪研究, 2021, 41 (4): 1021-1030. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.12

    Le Xiuqin, Wu Haibin, Zhang Wenchao, et al Peatland initiation in China associated with climate changes since the Last Glacial Maximum[J]. Quaternary Sciences, 2021, 41 (4): 1021-1030. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.12

    [26]

    Zhang M M, Smol J P, Bu Z J, et al. The influences of volcanic eruptions on the development of peatland: A case study from the Changbai Mountains, Northeast Asia[J]. Catena, 2022, 213(Art. 106209): 1-11. doi:10.1016/j.catena.2022.106209.

    [27]

    Hong Y T, Hong B, Lin Q H, et al. Synchronous climate anomalies in the western North Pacific and North Atlantic regions during the last 14000 years[J]. Quaternary Science Reviews, 2009, 28: 840-849, doi:10.1016/j.quascirev.2008.11.011.

    [28]

    Hong B, Liu C Q, Lin Q H, et al. Temperature evolution from the δ18O record of Hani peat, Northeast China, in the last 14000 years[J]. Science in China(Series D), 2009, 52 (7): 952-964. doi: 10.1007/s11430-009-0086-z

    [29]

    Zheng Y H, Zhou W J, Liu Z, et al. Compositions of aliphatic des-A-triterpenes in the Hani peat deposit, Northeast China and its biological significance[J]. Chinese Science Bulletin, 2010, 55 (21): 2275-2281. doi: 10.1007/s11434-010-3229-x

    [30]

    Zhou W J, Zheng Y H, Meyers P A, et al. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China[J]. Earth and Planetary Science Letters, 2010, 294 (1-2): 37-46. doi: 10.1016/j.epsl.2010.02.035

    [31]

    Wang G P, Bao K S, Yu X F, et al. Forms and accumulation of soil P in a subalpine peatland of Mt. Changbai in Northeast China[J]. Catena, 2012, 92: 22-29. doi:10.1016/j.catena.2011.11.015.

    [32]

    Zhang M M, Bu Z J, Liu S S, et al. Lake-mire ecosystem transformation and its possible forcing mechanisms in volcanic landform regions: A case study in the Gushantun peatland of Northeast China[J]. Earth Surface Processes and Landforms, 2020, 45 (13): 3141-3154. doi: 10.1002/esp.4956

    [33]

    Zhang L, Galka M, Kumar A, et al. Plant succession and geochemical indices in immature peatlands in the Changbai Mountains, northeastern region of China: Implications for climate change and peatland development[J]. Science of the Total Environment, 2021, 773: 143776. doi:10.1016/j.scitotenv.2020.143776.

    [34]

    Qin Y M, Li H K, Mazei Y, et al. Developing a continental-scale testate amoeba hydrological transfer function for Asian peatlands[J]. Quaternary Science Reviews, 2021, 258: 1-17. doi:10.1016/j.quascirev.2021.106868.

    [35]

    Sun C Q, Liu J Q, You H T, et al. Tephrostratigraphy of Changbaishan volcano, Northeast China, since the mid-Holocene[J]. Quaternary Science Reviews, 2017, 177: 104-119. doi:10.1016/j.quascirev.2017.10.021.

    [36]

    Zhang M L, Guo Z F, Liu J Q, et al. The intraplate Changbaishan volcanic field(China/North Korea): A review on eruptive history, magma genesis, geodynamic significance, recent dynamics and potential hazards[J]. Earth-Science Reviews, 2018, 187: 19-52. doi:10.1016/j.earscirev.2018.07.011.

    [37]

    姜丹丹. 长白山火山区域重磁数据反演与地热成因机理[D]. 长春: 吉林大学博士学位论文, 2021: 14-24.

    Jiang Dandan. Inversion of Gravity and Magnetic Data and Geothermal Genesis in Changbai Mountain Volcanic Area[D]. Changchun: The Doctoral Dissertation of Jilin University, 2021: 14-24.

    [38]

    许清海, 王子惠, 徐全洪. 长白山岳烨林带泥炭沼泽孢粉分析及其意义[J]. 地理科学, 1994, 14 (2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199402011.htm

    Xu Qinghai, Wang Zihui, Xu Quanhong. Pollen analysis of peat marsh in birch forest, the Changbai Mountains and the significance[J]. Scientia Geographica Sinica, 1994, 14 (2): 186-192. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX199402011.htm

    [39]

    Mauquoy D, Hughes P D M, Van Geel B. A protocol for plant macrofossil analysis of peat deposits[J]. Mires and Peat, 2010, (Art. 6): 1-5. Online: http://mires-and-peat.net/pages/volumes/map07/map0706.php.

    [40]

    Barber K E, Chambers F M, Maddy D, et al. A sensitive high-resolution record of Late-Holocene climatic change from a raised bog in Northern England[J]. The Holocene, 1994, 4 (2): 198-205. doi: 10.1177/095968369400400209

    [41]

    Booth R K, Lamentowicz M, Charman D J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies[J]. Mires and Peat, 2010, (Art. 2): 1-7. Online: http://www.mires-and-peat.net/pages/volumes/map07/map0702.php.

    [42]

    Charman D J, Hendon D, Woodland W A. The Identification of Testate Amoebae(Protozoa: Rhizopoda)in Peats[M]. London: Quaternary Research Association, 2000.

    [43]

    李鸿凯, 李微微, 蒲有宝, 等. 应用rioja软件包建立有壳变形虫-环境因子转换函数[J]. 地理科学, 2013, 33 (8): 1022-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201308019.htm

    Li Hongkai, Li Weiwei, Pu Youbao, et al. Building transfer functions between Testate Amoeba and environmental variables with'rioja'Package[J]. Scientia Geographica Sinica, 2013, 33 (8): 1022-1028. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201308019.htm

    [44]

    Chambers F M, Beilman D W, Yu Z Y. Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics[J]. Mires and Peat, 2011, (Art. 7): 1-10. Online: http://www.mires-and-peat.net/pages/volumes/map07/map0707.php.

    [45]

    Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6 (6): 457-474.

    [46]

    Payne R J, Blackford J J. Peat humification and climate change: A multi-site comparison from mires in South-east Alaska[J]. Mires and Peat, 2008, (Art. 9): 1-11. Online: http://www.mires-and-peat.net/pages/volumes/map03/map0309.php.

    [47]

    Blackford J J, Chambers F M. Proxy climate record for the last 1000 years from Irish blanket peat and a possible link to solar variability[J]. Earth and Planetary Science Letters, 1995, 133 (1-2): 145-150.

    [48]

    彭守璋. 中国1km分辨率逐月平均气温数据集(1901-2020). 国家青藏高原科学数据中心, 2019. doi: 10.11888/Meteoro.tpdc.270961.CSTR:18406.11.Meteoro.tpdc.270961.

    [49]

    彭守璋. 中国1km分辨率逐月降水量数据集(1901-2020). 国家青藏高原科学数据中心, 2020, doi: 10.5281/zenodo.3185722.

    [50]

    张思鹏. 多指标记录的长白山高海拔泥炭地表面干湿变化[D]. 长春: 东北师范大学硕士学位论文, 2015: 7-26.

    Zhang Sipeng. Multi-proxy Record of Water Level Variability from Three High-altitude Peatlands in Changbai Mountains[D]. Changchun: The Master' Dissertation of Northeast Normal University, 2015: 7-26.

    [51]

    刘玉芳, 李鸿凯, 赵红艳, 等. 多指标记录的1962-2008年长白山园池泥炭地地表湿度变化[J]. 应用生态学报, 2021, 32 (2): 477-485. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202102011.htm

    Liu Yufang, Li Hongkai, Zhao Hongyan, et al. Multi-proxies recorded surface wetness in Yuanchi peatland of the Changbai Mountains from 1962 to 2008[J]. Chinese Journal of Applied Ecology, 2021, 32 (2): 477-485. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202102011.htm

  • 加载中

(6)

(1)

计量
  • 文章访问数:  751
  • PDF下载数:  52
  • 施引文献:  0
出版历程
收稿日期:  2022-05-21
修回日期:  2022-08-25
刊出日期:  2023-01-30

目录