重庆缙云山不同年龄马尾松径向生长对气候变化的响应

徐晓晓, 王云琦, 郑永林, 王玉杰, 滕润平. 重庆缙云山不同年龄马尾松径向生长对气候变化的响应[J]. 第四纪研究, 2023, 43(1): 144-153. doi: 10.11928/j.issn.1001-7410.2023.01.12
引用本文: 徐晓晓, 王云琦, 郑永林, 王玉杰, 滕润平. 重庆缙云山不同年龄马尾松径向生长对气候变化的响应[J]. 第四纪研究, 2023, 43(1): 144-153. doi: 10.11928/j.issn.1001-7410.2023.01.12
徐晓晓, 王云琦, 郑永林, 王玉杰, 滕润平. 重庆缙云山不同年龄马尾松径向生长对气候变化的响应[J]. 第四纪研究, 2023, 43(1): 144-153. doi: 10.11928/j.issn.1001-7410.2023.01.12 XU Xiaoxiao, WANG Yunqi, ZHENG Yonglin, WANG Yujie, TENG Runping. Response of radial growth of Pinus massoniana at different ages to climate change in Jinyun Mountain, Chongqing[J]. Quaternary Sciences, 2023, 43(1): 144-153. doi: 10.11928/j.issn.1001-7410.2023.01.12
Citation: XU Xiaoxiao, WANG Yunqi, ZHENG Yonglin, WANG Yujie, TENG Runping. Response of radial growth of Pinus massoniana at different ages to climate change in Jinyun Mountain, Chongqing[J]. Quaternary Sciences, 2023, 43(1): 144-153. doi: 10.11928/j.issn.1001-7410.2023.01.12

重庆缙云山不同年龄马尾松径向生长对气候变化的响应

  • 基金项目:

    国家自然科学基金项目(批准号: 31971726)资助

详细信息

Response of radial growth of Pinus massoniana at different ages to climate change in Jinyun Mountain, Chongqing

More Information
  • 为探究气候变化背景下不同年龄马尾松(Pinus massoniana)生长规律及其对气候变化的响应, 本研究以缙云山不同年龄马尾松为分析对象, 运用树木年代学原理及方法, 建立小龄树(1971~2020年)和大龄树(1940~2020年)马尾松树轮宽度年表, 并计算胸径处断面积生长量(BAI); 分析近40年来不同年龄马尾松生长变化状况及树轮宽度年表与气象因子之间的关系。结果表明: 气候变暖背景下, 不同年龄马尾松生长均受到一定阻碍, 1983~2013年间, 大、小龄树BAI显著下降。与1980~2020年间气候因子的相关分析表明, 两龄级马尾松生长均受到第二次高生长期温度的影响, 具体表现为与当年9月平均最高温, 上年及当年9月平均温呈显著负相关; 小龄树马尾松生长还受限于生长季降水条件, 对降水更敏感; 表现为与当年第二次高生长期(9~10月)、上年5月、10月及当年10月降水呈显著正相关。研究结果为未来气候变暖背景下马尾松林的合理经营与管理提供了一定的理论依据。

  • 加载中
  • 图 1 

    研究区域位置

    Figure 1. 

    Location of study area in the Jinyun Mountain of Chongqing

    图 2 

    采样点1980~2020年气象资料

    Figure 2. 

    Meteorological data of sampling point(1980~2020)

    图 3 

    采样点马尾松断面积生长量(BAI)序列

    Figure 3. 

    The sequence of Pinus massoniana basal area increment(BAI)at sampling points

    图 4 

    小龄树和大龄树年轮宽度标准年表(年龄宽度指数)和样本量

    Figure 4. 

    Standard tree-ring chronology and sample size of young and old trees

    图 5 

    年轮宽度标准年表与逐月气候因子的相关分析结果

    Figure 5. 

    Correlation analyses of response function between the standard chronologies and the monthly climate factors. Month P in the figure represents the previous year, and *represents the significant correlation reaching the level of 0.05; (a), (b), (c) and (d) represent mean temperature, mean minimum temperature, mean maximum temperature and precipitation, respectively

    图 6 

    树轮宽度标准年表与生长季气候因子的相关分析结果

    Figure 6. 

    Correlation analyses between the standard chronologies and the growing season climate factors. In the figure, p11~p12, c3~c5, c7~c8, c9~c10 and c11~c12 respectively represent the last growth stage(November-December of the previous year), the first high growth period(March-May of the current year), slow growth(July-August of the current year), the second high growth period(September-October of the current year)and the end of current growth(November December of the current year), respectively.

    表 1 

    采样点概况

    Table 1. 

    Description of sampling sites

    年龄组 海拔
    (m)
    纬度 经度 胸径DBH
    (cm)
    样芯数量
    (棵)
    小龄树 821 29°49′N 106°22′E 24.7~44.2 62
    大龄树 821 29°49′N 106°22′E 45.5~66.0 58
    下载: 导出CSV

    表 2 

    马尾松年轮宽度年表统计特征*

    Table 2. 

    Statistics of tree ring-width chronologies for Pinus massoniana

    统计量 小龄树 大龄树
    年表类型 STD RES STD RES
    样本量(棵) 35 35 42 42
    起止时间(年) 1971~
    2020
    1972~
    2020
    1940~
    2020
    1941~
    2020
    平均敏感度 0.141 0.147 0.161 0.167
    标准差 0.212 0.156 0.230 0.166
    信噪比 13.279 13.267 14.704 16.411
    样本总体代表性 0.930 0.930 0.936 0.943
    一阶自相关系数 0.574 0.148 0.632 0.079
    第一特征向量解释量(%) 38.20 33.88 31.96 32.74
    *STD和RES分别表示马尾松标准年表和差值年表
    下载: 导出CSV
  • [1]

    Wang J, Xu C, Hu M, et al. Global land surface air temperature dynamics since 1880[J]. International Journal of Climatology, 2018, 38: e466-e474. doi.org/10.1002/joc.5384. doi: 10.1002/joc.5384

    [2]

    程雪寒, 王树芝, 朱岩石. 丝绸之路青海道吐蕃时期墓葬出土木材记载的森林干扰史[J]. 第四纪研究, 2022, 42 (1): 192-205. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.16

    Cheng Xuehan, Wang Shuzhi, Zhu Yanshi. History of forest disturbances recorded by timbers unearthed from Tubo tombs alongside the Silk Road's Qinghai routes[J]. Quaternary Sciences, 2022, 42 (1): 192-205. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.16

    [3]

    吴祥定, 邵雪梅. 中国树木年轮气候学研究动态与展望[J]. 地球科学进展, 1993, 8 (6): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199306003.htm

    Wu Xiangding, Shao Xuemei. Status of dendroclimatological study and its prospects in China[J]. Advances in Earth Science, 1993, 8 (6): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199306003.htm

    [4]

    Maseyk K, Hemming D, Angert A, et al. Increase in water-use efficiency and underlying processes in pine forests across a precipitation gradient in the dry Mediterranean region over the past 30 years[J]. Oecologia, 2011, 167 (2): 573-585. doi: 10.1007/s00442-011-2010-4

    [5]

    张赟, 尹定财, 张卫国. 滇西北哈巴雪山不同海拔长苞冷杉径向生长对气候变化的响应[J]. 科学技术与工程, 2020, 20 (17): 6778-6783. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202017012.htm

    Zhang Bin, Yin Dingcai, Zhang Weiguo. Response of radical growth of Abies georgei to climate change at different altitudes in Haba Snow Mountion, northwestern Yunnan Plateau[J]. Science Technology and Engineering, 2020, 20 (17): 6778-6783. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202017012.htm

    [6]

    彭钟通, 郭明明, 张远东, 等. 升温突变对川西道孚林线川西云杉和鳞皮冷杉生长的影响[J]. 生态学报, 2021, 41 (20): 8202-8211. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202120027.htm

    Peng Zhongtong, Guo Mingming, Zhang Yuandong, et al. Effects of abrupt waring on Picea likiangensis var. balfouriana and Abies squamata growth at tree line in Dafu, Sichuan, China[J]. Acta Ecological Sinica, 2021, 41 (20): 8202-8211. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202120027.htm

    [7]

    郑泽煜, 靳立亚, 李金建, 等. 树轮记录的1808年以来神农架地区平均气温的变化[J]. 第四纪研究, 2021, 41 (2): 334-345. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.03

    Zheng Zeyu, Jin Liya, Li Jinjian, et al. Variability of mean temperature since 1808 A.D. in Shennongjia Mountain area inferred from tree ring[J]. Quaternary Sciences, 2021, 41 (2): 334-345. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.03

    [8]

    谢成晟, 李景吉, 高苑苑, 等. 基于树轮宽度重建川西南137年秋冬季平均气温变化[J]. 第四纪研究, 2020, 40 (1): 252-263. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.23

    Xie Chengsheng, Li Jingji, Gao Yuanyuan, et al. Tree-ring width based autumn and winter mean temperature reconstruction and its variation over the past 137 years in southwestern Sichuan Province[J]. Quaternary Sciences, 2020, 40 (1): 252-263. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.23

    [9]

    Hinko-Najera N, Umaña J C N, Smith M G, et al. Relationships of intra-annual stem growth with climate indicate distinct growth niches for two co-occurring temperate eucalypts[J]. Science of the Total Environment, 2019, 690: 991-1004. doi.org/j.scitotenv.2019.07.024.

    [10]

    刘敏, 毛子军, 厉悦, 等. 不同纬度阔叶红松林红松径向生长对气候因子的响应[J]. 应用生态学报, 2016, 27 (5): 1341-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201605001.htm

    Liu Min, Mao Zijun, Li Yue, et al. Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors[J]. Chinese Journal of Applied Ecology, 2016, 27 (5): 1341-1352. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201605001.htm

    [11]

    Wang B, Yu P, Zhang L, et al. Differential trends of Qinghai spruce growth with elevation in Northwestern China during the recent warming hiatus[J]. Forests, 2019, 10 (9): 712. doi: 10.3390/f10090712

    [12]

    陈友平, 陈峰, 张合理, 等. 树轮记录的自公元1200年以来强火山喷发事件与高亚洲南部河流源区气候水文变化的关联[J]. 第四纪研究, 2021, 41 (2): 323-333. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.02

    Chen Youping, Chen Feng, Zhang Heli, et al. Strong link of large volcanic eruptions and climatic and hydrological changes recorded by tree rings in the river source area of Southern High Asia since 1200 A.D. [J]. Quaternary Sciences, 2021, 41 (2): 323-333. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.02

    [13]

    Rozas V, DeSoto L, Olano J M. Sex-specific, age-dependent sensitivity of tree-ring growth to climate in the dioecious tree Juniperus thurifera[J]. New Phytologist, 2009, 182 (3): 687-697. doi: 10.1111/j.1469-8137.2009.02770.x

    [14]

    Jiao L, Jiang Y, Wang M, et al. Age-effect radial growth responses of Picea schrenkiana to climate change in the eastern Tianshan Mountains, Northwest China[J]. Forests, 2017, 8 (9): 294. doi: 10.3390/f8090294

    [15]

    赵志江, 康东伟, 李俊清. 川西亚高山不同年龄紫果云杉径向生长对气候因子的响应[J]. 生态学报, 2016, 36 (1): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201601019.htm

    Zhao Zhijang, Kang Dongwei, Li Junqing. Age-dependent radial growth responses of Picea purpurea to climatic factors in the subalpine region of Western Sichuan Province, China[J]. Acta Ecologica Sinica, 2016, 36 (1): 173-179. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201601019.htm

    [16]

    王彬, 于澎涛, 于艺鹏, 等. 祁连山不同年龄青海云杉径向生长对气候变化的响应[J]. 林业科学, 2021, 57 (3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE202103001.htm

    Wang Bin, Yu Pengtao, Yu Yipeng, et al. Response of radial growth of Qinghai spruce at different ages to climate change in Qilian Mountains, Northwestern China[J]. Scientia Silvae Sinicae, 2021, 57 (3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKE202103001.htm

    [17]

    Colenutt M E, Luckman B H. Dendrochronological investigation of Larix lyallii at Larch Valley, Alberta[J]. Canadian Journal of Forest Research, 1991, 21 (8): 1222-1233.

    [18]

    石钦云, 徐鹏, 陶贞, 等. 天山中段地区树轮气候重建与冰川波动响应分析[J]. 第四纪研究, 2021, 41 (2): 356-367. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.05

    Shi Qinyun, Xu Peng, Tao Zhen, et al. Tree-ring climate reconstruction and its impacts on glacier fluctuations in middle Tianshan Mountains[J]. Quaternary Sciences, 2021, 41 (2): 356-367. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.05

    [19]

    张辉, 张芸, 胡亚楠, 等. 气候变暖背景下杉木年轮密度对气候因子的响应[J]. 生态学报, 2021, 41 (4): 1551-1563. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202104027.htm

    Zhang Hui, Zhang Yun, Hu Yanan, et al. Response of tree ring density to climatic factors of Cunninghamia lanceolata under climate warming[J]. Acta Ecologica Sinica, 2021, 41 (4): 1551-1563. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202104027.htm

    [20]

    陈诗音, 赵思媛, 和金福, 等. 福州鼓山不同树龄马尾松记录的环境变化信息[J]. 亚热带资源与环境学报, 2019, 14 (2): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDL201902003.htm

    Chen Shiyin, Zhao Siyuan, He Jinfu, et al. Age-dependent growth responses of Pinus massoniana to environmental change information in the Gu Mountain of Fuzhou Area[J]. Journal of Subtropical Resources and Environment, 2019, 14 (2): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-FJDL201902003.htm

    [21]

    李颖俊, 方克艳, 白毛伟, 等. 闽东南地区马尾松古树对气候变化和虫灾的生态弹性[J]. 应用生态学报, 2021, 32 (10): 3539-3547. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202110017.htm

    Li Yinjun, Fang Keyan, Bai Maowei, et al. Ecological resilience of ancient Pinus massoniana trees to climate change and insect infestation in southeastern Fujian, China[J]. Chinese Journal of Applied Ecology, 2021, 32 (10): 3539-3547. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202110017.htm

    [22]

    陈仕奇, 吕盛, 高明, 等. 缙云山不同林分下土壤有机碳及矿化特征[J]. 环境科学, 2019, 40 (2): 953-960. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902056.htm

    Chen Shiqi, Lü Sheng, Gao Ming, et al. Characteristics of soil organic carbon and mineralization with different stands in Jinyun Mountain[J]. Environmental Science, 2019, 40 (2): 953-960. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201902056.htm

    [23]

    王蓥燕, 王子芳, 黄容, 等. 缙云山不同森林植被下土壤微生物群落结构特征研究[J]. 土壤学报, 2019, 56 (5): 1210-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201905018.htm

    Wang Yingyan, Wang Zifang, Huang Rong, et al. Characterization of soil microbial community structure as affected by vegetation in Jinyun Mountain[J]. Acta Pedologica Sinica, 2019, 56 (5): 1210-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201905018.htm

    [24]

    郭平, 王云琦, 王玉杰, 等. 重庆缙云山典型林分土壤抗冲性的最佳土壤结构指标研究[J]. 土壤, 2014, 46 (1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201401019.htm

    Guo Ping, Wang Yunqi, Wang Yujie, et al. Study on best soil structure indicators based on soil anti-scourability under different forests[J]. Soils, 2014, 46 (1): 111-118. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201401019.htm

    [25]

    Peñuelas J, Hunt J M, Ogaya R, et al. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: Increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes[J]. Global Change Biology, 2008, 14 (5): 1076-1088.

    [26]

    Norton D A, Palmer J G, Ogden J. Dendroecological studies in New Zealand 1. An evaluation of tree age estimates based on increment cores[J]. New Zealand Journal of Botany, 1987, 25 (3): 373-383.

    [27]

    勾晓华, 杨梅学, 彭剑峰, 等. 树轮记录的阿尼玛卿山区过去830年夏半年最高温变化[J]. 第四纪研究, 2006, 26 (6): 991-998. http://www.dsjyj.com.cn/article/id/dsjyj_8682

    Gou Xiaohua, Yang Meixue, Peng Jianfeng, et al. Maximum temperature reconstruction for Animaqing Mountain over past 830 years based on tree-ring records[J]. Quaternary Sciences, 2006, 26 (6): 991-998. http://www.dsjyj.com.cn/article/id/dsjyj_8682

    [28]

    张芬, 勾晓华, 苏军德, 等. 祁连山东部不同树龄油松径向生长对气候的响应[J]. 冰川冻土, 2011, 33 (3): 634-639. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103025.htm

    Zhang Fen, Gou Xiaohua, Su Junde, et al. Age-dependent responses of tree radial growth of Pinus tabulaeformis to climate in eastern section of the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2011, 33 (3): 634-639. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201103025.htm

    [29]

    Vieira J, Campelo F, Nabais C. Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate[J]. Trees, 2009, 23 (2): 257-265.

    [30]

    Zhang S, Huang J G, Rossi S, et al. Intra-annual dynamics of xylem growth in Pinus massoniana submitted to an experimental nitrogen addition in Central China[J]. Tree Physiology, 2017, 37 (11): 1546-1553.

    [31]

    李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41 (1): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202101003.htm

    Li Zongshan, Chen Weiliang, Wei Jingshu, et al. Tree-ring growth responses of Liaodong oak(Quercus wutaishanica)to climate in the Beijing Dongling Mountain of China[J]. Acta Ecologica Sinica, 2021, 41 (1): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202101003.htm

    [32]

    曹受金. 南岭山地松科树种径向生长与气候因子关系及气候重建研究[D]. 长沙: 中南林业科技大学博士学位论文, 2015: 25.

    Cao Shoujin. Study on the Relationship between Radial Growth of Pine Trees and Climate Factors and Climate Reconstruction in Nanling Mountain[D]. Changsha: The Doctor's Thesis of Central South University of Forestry and Technology, 2015: 25.

    [33]

    Wigley T M L, Briffa K R, Jones P D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology[J]. Journal of Applied Meteorology and Climatology, 1984, 23 (2): 201-213.

    [34]

    Dittmar C, Zech W, Elling W. Growth variations of common beech(Fagus sylvatica L.)under different climatic and environmental conditions in Europe-A dendroecological study[J]. Forest Ecology and Management, 2003, 173 (1-3): 63-78.

    [35]

    Wang X, Pederson N, Chen Z, et al. Recent rising temperatures drive younger and southern Korean pine growth decline[J]. Science of the Total Environment, 2019, 649: 1105-1116. doi.org/10.1016/j.scitotenv.2018.08.393. doi: 10.1016/j.scitotenv.2018.08.393

    [36]

    Li Y, Zhou G, Huang W, et al. Potential effects of warming on soil respiration and carbon sequestration in a subtropical forest[J]. Plant and Soil, 2016, 409 (1): 247-257.

    [37]

    Zhou G, Peng C, Li Y, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China[J]. Global Change Biology, 2013, 19 (4): 1197-1210.

    [38]

    Peri P L, Gargaglione V, Pastur G M. Dynamics of above- and below-ground biomass and nutrient accumulation in an age sequence of Nothofagus antarctica forest of Southern Patagonia[J]. Forest Ecology and Management, 2006, 233 (1): 85-99.

    [39]

    Li X, Liang E, Gričar J, et al. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau[J]. Tree Physiology, 2013, 33 (1): 48-56.

    [40]

    Xu G, Wu G, Liu X, et al. Age-related climate response of tree-ring δ13C and δ18O from spruce in Northwestern China, with implications for relative humidity reconstructions[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125 (7): e2019JG005513. doi:org/10.1029/2019JG005531.

    [41]

    张丽云, 邓湘雯, 雷相东, 等. 不同生长阶段马尾松生产力与气候因子的关系[J]. 生态学杂志, 2013, 32 (5): 1104-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305004.htm

    Zhang Liyun, Deng Xiangwen, Lei Xiangdong, et al. Pinus massoniana productivity at different age stages in relation to climatic factors[J]. Chinese Journal of Ecology, 2013, 32 (5): 1104-1110. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305004.htm

    [42]

    张卫国, 肖德荣, 田昆, 等. 玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应[J]. 生态学报, 2017, 37 (11): 3796-3804 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201711021.htm

    Zhang Weiguo, Xiao Derong, Tian Kun, et al. Response of radial growth of three conifer species to climate at their respective upper distributional limits on Yulong Snow Mountain[J]Acta Ecological Sinica, 2017, 37 (11): 3796-3804. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201711021.htm

    [43]

    Fauset S, Freitas H C, Galbraith D R, et al. Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species[J]. Plant, Cell & Environment, 2018, 41 (7): 1618-1631.

    [44]

    杨书运, 张庆国, 蒋跃林, 等. 高浓度CO2对马尾松光合速率的影响[J]. 安徽农业大学学报, 2006, (1): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU200601023.htm

    Yang Shuyun, Zhang Qingguo, Jiang Yuelin, et al. Effect of high CO2 density on photosynthesis speed of Pinus massoniana[J]. Journal of Anhui Agricultural University, 2006, (1): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU200601023.htm

    [45]

    Deslauriers A, Beaulieu M, Balducci L, et al. Impact of warming and drought on carbon balance related to wood formation in black spruce[J]. Annals of Botany, 2014, 114 (2): 335-345.

    [46]

    Carmo F H D J, Latorraca J V de F, Volpato M, et al. Climate variations affect the growth period of young Tectona grandis Linn F. in the Amazon[J]. Acta Botanica Brasilica, 2022, 36: e2020abb0525. doi.org/10.1590/0102-33062020abb0525. doi: 10.1590/0102-33062020abb0525

    [47]

    Luo Y, Chen H Y H. Observations from old forests underestimate climate change effects on tree mortality[J]. Nature Communications, 2013, 4 (1): 1-6.

    [48]

    Madrigal-González J, Zavala M A. Competition and tree age modulated last century pine growth responses to high frequency of dry years in a water limited forest ecosystem[J]. Agricultural and Forest Meteorology, 2014, 192: 18-26. doi.org/10.1016/j.agrformet.2014.02.011. doi: 10.1016/j.agrformet.2014.02.011

    [49]

    Børja I, De Wit H A, Steffenrem A, et al. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in Southeast Norway[J]. Tree Physiology, 2008, 28 (5): 773-784.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  2058
  • PDF下载数:  91
  • 施引文献:  0
出版历程
收稿日期:  2022-03-23
修回日期:  2022-06-29
刊出日期:  2023-01-30

目录