1928年至1929年中国东部的严重干旱

黎永杰, 张仲石, 徐天澳. 1928年至1929年中国东部的严重干旱[J]. 第四纪研究, 2023, 43(1): 131-143. doi: 10.11928/j.issn.1001-7410.2023.01.11
引用本文: 黎永杰, 张仲石, 徐天澳. 1928年至1929年中国东部的严重干旱[J]. 第四纪研究, 2023, 43(1): 131-143. doi: 10.11928/j.issn.1001-7410.2023.01.11
黎永杰, 张仲石, 徐天澳. 1928年至1929年中国东部的严重干旱[J]. 第四纪研究, 2023, 43(1): 131-143. doi: 10.11928/j.issn.1001-7410.2023.01.11 LI Yongjie, ZHANG Zhongshir, XU Tiglanao. Severe drought in Eastern China from 1928 to 1929[J]. Quaternary Sciences, 2023, 43(1): 131-143. doi: 10.11928/j.issn.1001-7410.2023.01.11
Citation: LI Yongjie, ZHANG Zhongshir, XU Tiglanao. Severe drought in Eastern China from 1928 to 1929[J]. Quaternary Sciences, 2023, 43(1): 131-143. doi: 10.11928/j.issn.1001-7410.2023.01.11

1928年至1929年中国东部的严重干旱

  • 基金项目:

    国家重点研发计划"全球变化与应对"专项项目(批准号: 2018YFA0605602)资助

详细信息

Severe drought in Eastern China from 1928 to 1929

More Information
  • 1928~1929年夏季, 中国北方(34°~45°N, 106°~122°E)和华南(20°~30°N, 106°~122°E)地区遭受了严重的干旱, 此次旱灾是中国近代十大灾荒之一。由于早期观测资料缺乏, 数值模拟成为研究此次旱灾形成机制的重要手段。本研究诊断分析了挪威地球系统模式(NorESM1-F)过去千年试验中1928年和1929年的模拟。结果表明: 模拟的1928年与1929年夏季中国东部季风区旱涝空间分布与历史记录重建非常相似; 即1928年夏季, 降雨集中在长江与黄河之间, 而1929年夏季, 降雨集中在长江中下游; 其他地区降雨偏少。重建和观测资料证实NorESM1-F能够较好地模拟中高纬海表面温度异常; 同时, 模拟结果显示, 这两年夏季北大西洋高纬地区以及北美西海岸的海表面温度偏高是造成这两年干旱的控制因素之一。它激发出影响东亚夏季降水的遥相关波列。1928年夏季, 明显的正位相欧亚遥相关, 导致东亚大槽加深、西太平洋副热带高压南撤、东亚夏季风减弱, 并最终导致1928年夏季降水异常减少; 而1929年夏季, 中纬度的丝绸之路遥相关波列(SRP)使200hPa南亚高压加强东伸、中国东部沿海地区出现正位势高度异常、西太平洋副热带高压西伸, 导致长江流域降雨增多, 中国北方和华南地区降雨减少。

  • 加载中
  • 图 1 

    1901~2000年5~9月中国东部(21°~45°N,106°~124°E)sc_PDSI的经验正交分解

    Figure 1. 

    Empirical orthogonal decomposition of sc_PDSI in Eastern China(21°~45°N, 106°~124°E)from May to September, 1901~2000: (a)First mode of CRU; (b)Second mode of CRU; (c)First mode of NorESM1-F; (d)Second mode of NorESM1-F

    图 2 

    NorESM1-F模拟的过去600年5~9月的sc_PDSI标准化时间序列(实线)

    Figure 2. 

    Standardized sc_PDSI time series simulated by NorESM1-F from May to September of the past 600 years(solid curve): (a)The Eastern China(21°~45°N, 106°~124°E); (b)The Yellow River Basin; (c)The Yangtze River Basin. Horizontal axis is year, and vertical axes are sc_PDSI. Dashed lines indicate one standard deviation, and red and blue fonts represent the year that the simulation matches the extreme drought and flood events recorded in history documents, respectively

    图 3 

    模拟的1850~1950年中国东部季风区(21°~45°N,106°~124°E)5~9月的sc_PDSI时间序列

    Figure 3. 

    NorESM1-F simulated sc_PDSI time series from May to September in the monsoon region of Eastern China(21°~45°N, 106°~124°E)from 1850 to 1950. Horizontal axis is year; and vertical axes are sc_PDSI.

    图 4 

    1928~1929年夏季中国东部季风区sc_PDSI,(a)和(b)CRU结果,(c)和(d)NorESM1-F模拟

    Figure 4. 

    Sc_PDSI in monsoon region of Eastern China in the summer of 1928 and 1929. (a)and (b) CRU results; (c)and (d) NorESM1-F simulations.

    图 5 

    1928年(a)和1929年(b)模拟的夏季海表面温度异常(单位:℃)(图中黑色星号表示为温度记录的地理位置),以及北美西海岸反映夏季温度的树轮宽度指数[45~50] (c)和格陵兰岛夏季(MJJAS)温度[37](d),其中Tasiilaq站点缺失1910年和1923年数据

    Figure 5. 

    Simulated sea surface temperature anomolies(units: ℃)in (a)1928 and (b)1929 summer. The black asterisks in the (a) and (b) indicate the geographic location of the sites used in (c) and (d). (c)Tree ring data reflecting summer temperature in the west coast of North America[45~50]; (d)MJJAS temperature recorded in Greenland, and among them, Tasiilaq site was missing in 1910 and 1923[37]

    图 6 

    1928年夏季降水异常(单位:mm/month),(c)1928年夏季整层(地表到300 hPa)水汽通量输送异常(矢量;单位:kg/(m·s))和相应量级异常(阴影),(e)1928年夏季沿(106°~124°E)平均的垂直风(矢量;单位:m/s)和垂直速度(阴影;单位:×10-3 Pa/s)异常;(b、d、f)同(a、c、e),但为1929年夏季

    Figure 6. 

    Composite anomalies in 1928 summer of (a) precipitation(units: mm/month, (c)vertically(from the surface to 300 hPa)integrated water vapor transport(vectors; units: kg/(m·s))and corresponding magnitude anomalies(shading), (e)vertical-horizontal cross section averaged along 106°~124°E for the summer vertical wind(vectors; units: m/s)and omega(shading; units: ×10-3 Pa/s); (b, d, f)as in(a, c, e)but for 1929.

    图 7 

    1928年夏季位势高度(H,阴影;单位:gpm)与风场(uv,矢量;单位:m/s)异常(a)850 hPa、(c)500 hPa和(e)200 hPa;(b、d、f)同(a、c、e),但为1929年夏季

    Figure 7. 

    Anomalies geopotential height(H, shading; units: gpm)and wind fields(uv, vectors; units: m/s)at (a)850 hPa, (c)500 hPa and(e)200 hPa in the summer of 1928;(b, d, f)as in(a, c, e)but for the summer of 1929

    图 8 

    1928年夏季西太副高(橙实线,单位:gpm)与气候态(黑实线,单位:gpm)以及(b)1929年西太副高(橙实线,单位:gpm)与气候态(黑实线,单位:gpm),南亚高压(紫实线,单位:gpm)与气候态(绿实线,单位:gpm)

    Figure 8. 

    The West Pacific subtropical high(orange solid line, units: gpm)and the climatology(black solid line, units: gpm)in the summer of 1928; (b)The West Pacific subtropical high(orange solid line, units: gpm)and climatology(black solid line, units: gpm), the South Asian High(purple solid line, units: gpm)and climatology(green solid line, units: gpm)in the summer of 1929

    图 9 

    1928年夏季(a)500 hPa流函数(阴影,单位: 106 m2/s)与T-N WAF(矢量,单位:m2/s2)异常,(c)700 hPa垂直速度(W,阴影,单位:10-3 m/s)异常,(e)经向风速(vwnd, 阴影,单位:m/s)与T-N WAF(矢量,单位:m2/s2)沿(50°~70°N)的垂直截面;1929年夏季(b)200 hPa经向风速(vwnd, 阴影,单位:m/s)与T-N WAF(矢量,单位:m2/s2)异常,(d)700 hPa垂直速度(W,阴影,单位:10-3 m/s)异常,(f)经向风速(vwnd, 阴影,单位:m/s)与T-N WAF(矢量,单位:m2/s2)沿(55°~70°N)的垂直截面

    Figure 9. 

    Anomalies of (a)500 hPa stream function(shading; units: 106 m2/s)and T-N WAF(vectors; units: m2/s2), (c)700 hPa vertical velocity(W, shading; units: 10-3 m/s), (e)vertical-horizontal cross section averaged along(50°~70°N)for meridional wind(vwnd, shading; units: m/s)and T-N WAF(vectors; units: m2/s2)in the summer of 1928. Anomalies of (b)200 hPa meridional wind(vwnd, shading; units: m/s)and T-N WAF(vectors; units: m2/s2), (d)700 hPa vertical velocity(W, shading; units: 10-3 m/s), (f)vertical-horizontal cross section averaged along(55°~70°N)for meridional wind(vwnd, shading; units: m/s)and T-N WAF (vectors; units: m2/s2)in the summer of 1929

    表 1 

    1928年与1929年夏季(5月到9月)EU、SRP、EASM、WPSH-Ⅰ和WPSH-Ⅱ指数

    Table 1. 

    EU, SRP, EASM, WPSH-Ⅰ and WPSH-Ⅱ indices of MJJAS in 1928 and 1929

    Year EU SR EASM WPSH-Ⅰ WPSH-Ⅱ
    1928年 1.85 -0.29 -0.71 -0.8 0.07
    1929年 -0.29 1.07 0.20 -0.07 -0.73
    下载: 导出CSV
  • [1]

    邓拓. 中国救荒史[M]. 北京: 北京出版社, 1998: 47.

    Deng Tuo. History of Famine Relief in China[M]. Beijing: Beijing Publishing House, 1998: 47

    [2]

    张丹桦. 一九二八年大旱: 历史不该忘记[J]. 中国减灾, 2016, (8): 16-19. https://xuewen.cnki.net/CCND-RMRB202103260164.html

    Zhang Danhua. The great drought of 1928: History should not forget[J]. Disaster Reduction in China, 2016, (8): 16-19. https://xuewen.cnki.net/CCND-RMRB202103260164.html

    [3]

    杨文祥. 1928年(民国十七年)大旱记事[J]. 灾害学, 1987, (4): 93+99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU198704022.htm

    Yang Wenxiang. Records of the great drought in 1928(the 17th year of the Republic of China)[J]. Journal of Catastrophology, 1987, (4): 93+99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU198704022.htm

    [4]

    赵楠, 侯秀秀. 1928-1930年陕西大旱灾及其影响探析[J]. 邢台学院学报, 2012, 27 (3): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XTSF201203027.htm

    Zhao Nan, Hou Xiuxiu. Analysis of the great drought in Shaanxi from 1928 to 1930 and its influence[J]. Journal of Xingtai University, 2012, 27 (3): 67-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XTSF201203027.htm

    [5]

    苏筠, 陈旭东, 田芳毓. 1928-1929年河南旱灾时空范围与社会影响过程重建[J]. 第四纪研究, 2021, 41 (2): 600-611. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.25

    Su Yun, Chen Xudong, Tian Fangyu. Reconstruction of spatial and temporal scope and social influence process of Henan drought from 1928 to 1929[J]. Quaternary Sciences, 2021, 41 (2): 600-611. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.25

    [6]

    Gong D Y, Ho C H. Shift in the summer rainfall over the Yangtze River valley in the late 1970s[J]. Geophysical Research Letters, 2002, 29 (10): 78-1-78-4. doi: 10.1029/2001GL014523

    [7]

    Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and megadrought during the last millennium[J]. Science, 2010, 328 (5977): 486-489. doi: 10.1126/science.1185188

    [8]

    Zhang Z Q, Sun X G, Yang X Q. Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals[J]. Journal of Climate, 2018, 31 (14): 5485-5506. doi: 10.1175/JCLI-D-17-0657.1

    [9]

    Yang Q Q, Ma Z G, Wu P L, et al. Interdecadal seesaw of precipitation variability between North China and the Southwest US[J]. Journal of Climate, 2019, 32 (10): 2951-2968. doi: 10.1175/JCLI-D-18-0082.1

    [10]

    Li H X, He S P, Gao Y Q, et al. North Atlantic modulation of interdecadal variations in hot drought events over Northeastern China[J]. Journal of Climate, 2020, 33 (10), 4315-4332. doi: 10.1175/JCLI-D-19-0440.1

    [11]

    Yasui S. Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM[J]. Journal of Climate, 2009, 23 (8): 2093-2114.

    [12]

    Lin Z D. Intercomparison of the impacts of four summer teleconnections over Eurasia on East Asian rainfall[J]. Advances in Atmospheric Sciences, 2014, 31 (6): 1366-1376. doi: 10.1007/s00376-014-3171-y

    [13]

    Wang H J, He S P. The North China/Northeastern Asia severe summer drought in 2014[J]. Journal of Climate, 2015, 28 (17): 6667-6681. doi: 10.1175/JCLI-D-15-0202.1

    [14]

    Gambo K, Lu L, Li W J. Numerical simulation of Eurasian teleconnection pattern in atmospheric circulation during the Northern Hemisphere winter[J]. Advances in Atmospheric Sciences, 1987, 4 (4): 385-394. doi: 10.1007/BF02656739

    [15]

    Liu Y Y, Wang L, Zhou W, et al. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies[J]. Climate Dynamics, 2014, 42 (11-12): 2817-2839. doi: 10.1007/s00382-014-2163-z

    [16]

    Zhou L T, Wu R G. Interdecadal variability of winter precipitation in Northwest China and its association with the North Atlantic SST change[J]. International Journal of Climatology, 2015, 35: 1172-1179. doi: 10.1002/joc.4047.

    [17]

    卫捷, 张庆云, 陶诗言. 1999及2000年夏季华北严重干旱的物理成因分析[J]. 大气科学, 2004, 28 (1): 125-137. doi: 10.3878/j.issn.1006-9895.2004.01.12

    Wei Jie, Zhang Qingyun, Tao Shiyan. Physical causes of the 1999 and 2000 summer severe drought in North China[J]. Chinese Journal of Atmospheric Sciences, 2004, 28 (1): 125-137. doi: 10.3878/j.issn.1006-9895.2004.01.12

    [18]

    Ding Q, Wang B. Circumglobal teleconnection in the Northern Hemisphere summer[J]. Journal of Climate, 2005, 18 (17): 3483-3505. doi: 10.1175/JCLI3473.1

    [19]

    Zuo J Q, Li W J, Sun C H, et al. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon[J]. Advances in Atmospheric Sciences, 2013, 30 (4): 1173-1186. doi: 10.1007/s00376-012-2125-5

    [20]

    Saeed S, Van Lipzig N, Müller W, et al. Influence of the circumglobal wave-train on European summer precipitation[J]. Climate Dynamics, 2014, 43 (1-2): 503-515. doi: 10.1007/s00382-013-1871-0

    [21]

    Hong X W, Lu R Y, Li S L. Differences in the Silk Road pattern and its relationship to the North Atlantic Oscillation between early and late summers[J]. Journal of Climate, 2018, 31 (22): 9283-9292. doi: 10.1175/JCLI-D-18-0283.1

    [22]

    Bollasina M A, Messori G. On the link between the subseasonal evolution of the North Atlantic Oscillation and East Asian climate[J]. Climate Dynamics, 2018, 51 (9-10): 3537-3557. doi: 10.1007/s00382-018-4095-5

    [23]

    Lu R Y. Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool[J]. Journal of the Meteorological Society of Japan, 2002, 79 (3): 771-783.

    [24]

    Kosaka Y, Chowdary J S, Xie S, et al. Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific[J]. Journal of Climate, 2012, 25 (21): 7574-7589. doi: 10.1175/JCLI-D-12-00009.1

    [25]

    Shang W, Li S, Ren X, et al. Event-based extreme precipitation in Central-Eastern China: Large-scale anomalies and teleconnections[J]. Climate Dynamics, 2020, 54 (3): 2347-2360.

    [26]

    Hsu H H, Lin, S M. Asymmetry of the tripole rainfall pattern during the East Asian summer[J]. Journal of Climate, 2007, 20 (17): 4443-4458. doi: 10.1175/JCLI4246.1

    [27]

    Wu R G. Relationship between Indian and East Asian summer rainfall variations[J]. Advances in Atmospheric Sciences, 2017, 34 (1): 4-15. doi: 10.1007/s00376-016-6216-6

    [28]

    Guan W N, Hu H B, Ren X J, et al. Subseasonal zonal variability of the western Pacific subtropical high in summer: Climate impacts and underlying mechanisms[J]. Climate Dynamics: Observational, Theoretical and Computational Research on the Climate System, 2019, 53 (5/6): 3325-3344. http://www.xueshufan.com/publication/2921593343

    [29]

    Hong X W, Lu R Y, Li S L. Interannual relationship between the West Asian and East Asian jet meridional displacements in summer[J]. Journal of Climate, 2021, 34 (2): 621-633. doi: 10.1175/JCLI-D-20-0030.1

    [30]

    Bentsen M, Bethke I, Debernard J B, et al. The Norwegian Earth System Model, NorESM1-M-Part 1: Description and basic evaluation of the physical climate[J]. Geoscientific Model Development, 2013, 6 (3): 687-720. doi: 10.5194/gmd-6-687-2013

    [31]

    Zhang Z, Yan Q. Pre-industrial and mid-Pliocene simulations with NorESM-L-AGCM simulations[J]. Geoscientific Model Development Discussions, 2012, 5 (2): 1203-1227.

    [32]

    Guo C, Bentsen M, Bethke I, et al. Description and evaluation of NorESM1-F: A fast version of the Norwegian Earth System Model(NorESM)[J]. Geoscientific Model Development, 2019, 12: 343-362. https://doi.org/10.5194/gmd-12-343-2019. doi: 10.5194/gmd-12-343-2019

    [33]

    Vieira L, Solanki S K, Krivova N A, et al. Evolution of the solar irradiance during the Holocene[J]. Astronomy & Astrophysics, 2011, 531 (2): 576-587.

    [34]

    Gao C C, Robock A, Ammann C. Correction to volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models[J]. Journal of Geophysical Research: Atmospheres, 2009, 114 (9). https://doi.org/10.1029/2008JD010239. doi: 10.1029/2008JD010239

    [35]

    Ammann C M, Joos F, Schimel D S, et al. Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (10): 3713-3718. doi: 10.1073/pnas.0605064103

    [36]

    张德二. 中国历史气候记录揭示的千年干湿变化和重大干旱事件[J]. 科技导报, 2004, 22 (8): 47-49. doi: 10.3321/j.issn:1000-7857.2004.08.015

    Zhang De'er. Variation of dry-wet climate and severe drought events as revealed in the climate records of China over the past 1000 years[J]. Science and Technology Review, 2004, 22 (8): 47-49. doi: 10.3321/j.issn:1000-7857.2004.08.015

    [37]

    Cappelen J. Dmi monthly climate data collection 1768-2010, Denmark, the Faroe Islands and Greenland[?]. Danish Meteorlogical Institute, Tech. Rep. 11-05, 2011. https://www.dmi.dk/fileadmin/Rapporter/TR/tr11-05.pdf.

    [38]

    Wells N, Goddard S, Hayes M J. A self-calibrating Palmer drought severity index[J]. Journal of Climate, 2004, 17 (12): 2335-2351. doi: 10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2

    [39]

    Wang H J. The instability of the East Asian summer monsoon-ENSO relations[J]. Advances in Atmospheric Sciences, 2002, 19 (1): 1-11. doi: 10.1007/s00376-002-0029-5

    [40]

    Wallace J M, Gutzler D S. Teleconnections in the geopotential height field during the Northern Hemisphere Winter[J]. Monthly Weather Review, 1981, 109 (4): 784-812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

    [41]

    Huang Y Y, Wang H J, Fan K, et al. The western Pacific subtropical high after the 1970s: Westward or eastward shift[J]. Climate Dynamics, 2015, 44 (7-8): 2035-2047. doi: 10.1007/s00382-014-2194-5

    [42]

    Yang H, Sun S Q. Longitudinal displacement of the subtropical high in the Western Pacific in summer and its influence[J]. Advances in Atmospheric Sciences, 2003, 20 (6): 921-933. doi: 10.1007/BF02915515

    [43]

    Takaya K, Nakamura H. A Formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow[J]. Journal of the Atmospheric Sciences, 2001, 58 (6): 608-627. doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2

    [44]

    中央气象局气象科学研究院. 中国近五百年旱涝分布图集[M]. 北京: 地图出版社, 1981.

    Academy of Meteorological Sciences, China Central Meteorological Administration. Yearly Charts of Dryness/Wetness in China for the Last 500-Year Period[M]. Beijing: China Cartographic Publishing House, 1981.

    [45]

    Kaiser K. NOAA/WDS Paleoclimatology-Kaiser-Isthmus Kodiak Island-PCSI-ITRDB AK14[DB/OL]. NOAA National Centers for Environmental Information, 1997. https://www.ncei.noaa.gov/access/paleo-search/study/3658.

    [46]

    Kaiser K. NOAA/WDS Paleoclimatology-Kaiser-Craig Prince of Wales Island-PCSI-ITRDB AK19[DB/OL]. NOAA National Centers for Environmental Information, 2002. https://www.ncei.noaa.gov/access/paleo-search/study/3652.

    [47]

    Briffa K R, Schweingruber F H. NOAA/WDS Paleoclimatology-Briffa-Fryday Ridge oberhalb-PSME-ITRDB CA558[DB/OL]. NOAA National Centers for Environmental Information, 2002. https://www.ncei.noaa.gov/access/paleo-search/study/2818.

    [48]

    Wiles G, Wilson, R J S, D'Arrigo R D. NOAA/WDS Paleoclimatology-Wiles-Upper Nanatuk-TSME-ITRDB AK093[DB/OL]. NOAA National Centers for Environmental Information, 2010. https://www.ncei.noaa.gov/access/paleo-search/study/8603.

    [49]

    Jarvis S K, Wiles G C, Appleton S N, et al. A warming-induced biome shift detected in tree growth of Mountain Hemlock[Tsuga mertensiana(Bong. )Carrière]along the gulf of Alaska[J]. Arctic, Antarctic & Alpine Research, 2013, 45 (2): 211-218.

    [50]

    Smith D J, Coulthard B L, Laroque C. NOAA/WDS Paleoclimatology-Smith-Mount Becher-TSME-ITRDB CANA 470[DB/OL]. NOAA National Centers for Environmental Information, 2015. https://www.ncei.noaa.gov/access/paleo-search/study/19609.

    [51]

    Barlow M, Nigam S, Berbery E H. ENSO, Pacific decadal variability, and U. S. summertime precipitation, drought, and stream flow[J]. Journal of Climate, 2001, 14 (9): 2105-2128. doi: 10.1175/1520-0442(2001)014<2105:EPDVAU>2.0.CO;2

    [52]

    Huang R H. The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia[J]. Acta Meteorologica Sinica, 1992, (1): 25-37.

    [53]

    Huang G, Yan Z W. The East Asian summer monsoon circulation anomaly index and its interannual variations[J]. Chinese Science Bulletin, 1999, 44: 1325-1329. https://doi.org/10.1007/BF02885855. doi: 10.1007/BF02885855

    [54]

    任荣彩, 刘屹岷, 吴国雄. 1998年7月南亚高压影响西太平洋副热带高压短期变异的过程和机制[J]. 气象学报, 2007, 65 (2): 183-197. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702004.htm

    Ren Rongcai, Liu Yimin, Wu Guoxiong. Impact of South Asia high on the short-term variation of the subtropical anticyclone over Western Pacific in July 1998[J]. Acta Meteorologica Sinica, 2007, 65 (2): 183-197. https://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200702004.htm

    [55]

    Chen Y, Zhai P M. Mechanisms for concurrent low-latitude circulation anomalies responsible for persistent extreme precipitation in the Yangtze River valley[J]. Climate Dynamics, 2015, 47 (3-4): 1-18.

    [56]

    陶诗言, 卫捷. 再论夏季西太平洋副热带高压的西伸北跳[J]. 应用气象学报, 2006, 17 (5): 513-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200605000.htm

    Tao Shiyan, Wei Jie. The westward, northward advance of the subtropical high over the West Pacific in summer[J]. Journal of Applied Meteorological Science, 2006, 17 (5): 513-525. https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200605000.htm

    [57]

    张玲, 智协飞. 南亚高压和西太副高位置与中国盛夏降水异常[J]. 气象科学, 2010, 30 (4): 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201004003.htm

    Zhang Ling, Zhi Xiefei. South Asian high and the subtropical Western Pacific high and its relation to the mid-summer precipitation anomalies over China[J]. Journal of the Meteorological Sciences, 2010, 30 (4): 438-444. https://www.cnki.com.cn/Article/CJFDTOTAL-QXKX201004003.htm

    [58]

    Chang C P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part Ⅰ: Roles of the subtropical ridge[J]. Journal of Climate, 2000, 13 (24): 4310-4325.

    [59]

    He X Z, Gong D Y. Interdecadal change in Western Pacific subtropical high and climatic effects[J]. Journal of Geographical Sciences, 2002, 12 (2): 202-209.

    [60]

    Li R K K, Tam C Y, Lau N C, et al. Forcing mechanism of the Silk Road pattern and the sensitivity of Rossby-wave source hotspots to mean-state winds[J]. Quarterly Journal of the Royal Meteorological Society, 2021, 147 (737): 2533-2546.

    [61]

    Ghosh R, Mueller W A, Baehr J, et al. Impact of observed North Atlantic multidecadal variations to European summer climate: A linear baroclinic response to surface heating[J]. Climate Dynamics, 2017, 48 (11-12): 3547-3563.

    [62]

    沈社荣. 浅析1928-1930年西北大旱灾的特点及影响[J]. 宁夏师范学院学报, 2002, 23 (1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSB200201008.htm

    Shen Sherong. An elementary study about the characteristics and the effect of the great drought in Northwest China during the year from 1928 to 1930[J]. Journal of Ningxia Normal University, 2002, 23 (1): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GYSB200201008.htm

    [63]

    叶宗宝, 薛彦. 1928-1930年河南旱荒探因[J]. 黄河水利职业技术学院学报, 2009, 21 (3): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HHSZ200903041.htm

    Ye Zongbao, Xue Yan. Exploration of drought and famine of Henan Province from the year of 1928 to 1930[J]. Journal of Yellow River Conservancy Technical Institute, 2009, 21 (3): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-HHSZ200903041.htm

    [64]

    李卓仑, 王乃昂, 董春雨, 等. 1928年甘肃旱灾的时空差异及气候背景[J]. 灾害学, 2010, 25 (4): 11-15+32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201004004.htm

    Li Zhuolun, Wang Nai'ang, Dong Chunyu, et al. Climatic background of the drought in Gansu in 1928[J]. Journal of Catastrophology, 2010, 25 (4): 11-15+32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201004004.htm

    [65]

    董安祥, 王劲松, 李忆平. 1928年黄河流域特大旱灾的灾情和成因研究[J]. 干旱区资源与环境, 2014, 28 (5): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201405026.htm

    Dong Anxiang, Wang Jinsong, Li Yiping. The disaster situation and reasons for the severe drought event of 1928 in Yellow River valley[J]. Journal of Arid Land Resources and Environment, 2014, 28 (5): 151-157. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201405026.htm

    [66]

    Luo M, Feng J, Xu Z, et al. Evaluating the performance of five twentieth-century reanalysis datasets in reproducing the severe drought in Northern China during the 1920s-1930s[J]. Theoretical and Applied Climatology, 2019, 137 (1-2): 187-199.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  2227
  • PDF下载数:  147
  • 施引文献:  0
出版历程
收稿日期:  2022-03-20
修回日期:  2022-10-30
刊出日期:  2023-01-30

目录