海南岛双池玛珥湖揭示的历史时期人类活动影响下大气汞沉降的高分辨率记录

陈境强, 薛积彬, 李彦婷, 卢毅, 马欣璐, 钟巍. 海南岛双池玛珥湖揭示的历史时期人类活动影响下大气汞沉降的高分辨率记录[J]. 第四纪研究, 2023, 43(1): 110-121. doi: 10.11928/j.issn.1001-7410.2023.01.09
引用本文: 陈境强, 薛积彬, 李彦婷, 卢毅, 马欣璐, 钟巍. 海南岛双池玛珥湖揭示的历史时期人类活动影响下大气汞沉降的高分辨率记录[J]. 第四纪研究, 2023, 43(1): 110-121. doi: 10.11928/j.issn.1001-7410.2023.01.09
陈境强, 薛积彬, 李彦婷, 卢毅, 马欣璐, 钟巍. 海南岛双池玛珥湖揭示的历史时期人类活动影响下大气汞沉降的高分辨率记录[J]. 第四纪研究, 2023, 43(1): 110-121. doi: 10.11928/j.issn.1001-7410.2023.01.09 CHEN Jingqiang, XUE Jibin, LI Yanting, LU Yi, Ma Xinlu, ZHONG Wei. A high-resolution record of atmospheric mercury deposition under the influence of historical human activities revealed by Shuangchi Maar Lake, Hainan Island[J]. Quaternary Sciences, 2023, 43(1): 110-121. doi: 10.11928/j.issn.1001-7410.2023.01.09
Citation: CHEN Jingqiang, XUE Jibin, LI Yanting, LU Yi, Ma Xinlu, ZHONG Wei. A high-resolution record of atmospheric mercury deposition under the influence of historical human activities revealed by Shuangchi Maar Lake, Hainan Island[J]. Quaternary Sciences, 2023, 43(1): 110-121. doi: 10.11928/j.issn.1001-7410.2023.01.09

海南岛双池玛珥湖揭示的历史时期人类活动影响下大气汞沉降的高分辨率记录

  • 基金项目:

    国家自然科学基金项目(批准号: 42071108和41671194)资助

详细信息

A high-resolution record of atmospheric mercury deposition under the influence of historical human activities revealed by Shuangchi Maar Lake, Hainan Island

More Information
  • 以取自海南岛北部双池玛珥湖SCH17-04岩芯全长为420cm的沉积物为材料, 对其开展了AMS14C测年和总汞浓度、总有机碳、常量地化元素、干密度等指标的测试分析。通过对多代用指标的综合比对分析, 并结合历史文献资料, 着重探讨了815~1510A.D.时段内区域气候环境与人类活动影响下的汞沉积过程及其可能影响因素。研究结果表明: 在研究时段内, SCH17-04岩芯中汞浓度(Hg-C)为0.22~3.11μg/g, 汞沉积通量(Hg-AR)为0.01~1.92μg/(cm2·a)。进一步分析发现, 双池玛珥湖沉积物中汞浓度与各环境代用指标之间呈现出变化步调的不一致性, 揭示了有机质吸附、土壤侵蚀、气候变化、海洋释放等自然因素可能对沉积物中汞积累的贡献较为微弱。综合岩芯记录与史料记载分析发现, 主要与人类活动关系较为密切的大气汞沉降输入占据着主导地位, 其中人为汞信号始于约940A.D., 对应于五代十国时期, 并且在约940~1130A.D.(五代十国中后期和北宋)和约1320~1420A.D.(元朝中后期和明朝初期)期间, 特别是在后一时期, 出现显著的人为汞通量峰值阶段, 这与历史上海南岛人口数量变化趋势较为吻合, 揭示了人类活动(如金属冶炼和开采、战争叛乱、人口迁移等)在这些时期对自然界中的汞释放与积累具有重要影响。

  • 加载中
  • 图 1 

    研究区与钻孔位置示意图

    Figure 1. 

    Location of the study area and core site

    图 2 

    SCH17-04岩芯年代-深度模型

    Figure 2. 

    Age-depth model for SCH17-04 core

    图 3 

    SCH17-04岩芯多代用指标变化

    Figure 3. 

    Variations of multi-proxies in SCH17-04 core.

    图 4 

    汞浓度与(a)TOC、(b)Al2O3、(c)(nC27+nC29)/(nC31+nC33)1)和(d)CIA的相关性分析

    Figure 4. 

    Correlation analysis of Hg-C with (a) TOC、(b)Al2O3、(c)(nC27+nC29)/(nC31+nC33) 1)and (d) CIA

    图 5 

    SCH17-04岩芯人为汞通量与其他记录对比

    Figure 5. 

    Comparison of anthropogenic Hg accumulation rate in SCH17-04 core with other records.

    图 6 

    多个汞相关指标的对比

    Figure 6. 

    Comparison of different Hg-related indices.

    表 1 

    SCH17-04岩芯14C测年数据

    Table 1. 

    Radiocarbon dates for SCH17-04 core

    实验室编号 样品编号 深度(cm) 14C年龄(a B. P.) 误差(a) 校正年龄(A.D.)
    Medium
    Beta-496855 SCH17-04-40 91 540 30 1329~1439 1411
    Beta-496856 SCH17-04-65 128 580 30 1308~1409 1347
    Beta-496857 SCH17-04-95 177 690 30 1229~1376 1287
    Beta-496858 SCH17-04-126 230 990 30 1021~1165 1127
    Beta-496860 SCH17-04-182 331 1100 30 891~1015 960
    Beta-529985 SCH17-04-210 382 1150 30 773~970 884
    下载: 导出CSV
  • [1]

    Morel F M M, Kraepiel A M L, Amyot M. The chemical cycle and bioaccumulation of mercury[J]. Annual Review of Ecology and Systematics, 1998, 29 (1): 543-566. doi: 10.1146/annurev.ecolsys.29.1.543

    [2]

    Kim K H, Kabir E, Jahan S A. A review on the distribution of Hg in the environment and its human health impacts[J]. Journal of Hazardous Materials, 2016, 306: 376-385. doi: 10.1016/j.jhazmat.2015.11.031.

    [3]

    Pirrone N, Cinnirella S, Feng X, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources[J]. Atmospheric Chemistry and Physics, 2010, 10 (13): 5951-5964. doi: 10.5194/acp-10-5951-2010

    [4]

    Li Y, Ma C, Zhu C, et al. Historical anthropogenic contributions to mercury accumulation recorded by a peat core from Dajiuhu montane mire, Central China[J]. Environmental Pollution, 2016, 216: 332-339. doi: 10.1016/j.envpol.2016.05.083.

    [5]

    胡安徽. 朱砂对古代贵州经济社会的影响[J]. 经济社会史评论, 2017, 12 (4): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSP201704008.htm

    Hu Anhui. The influence of cinnabar on ancient Guizhou's economic and social society[J]. Economic and Social History Review, 2017, 12 (4): 99-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSP201704008.htm

    [6]

    Amos H M, Jacob D J, Streets D G, et al. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle[J]. Global Biogeochemical Cycles, 2013, 27 (2): 410-421. doi: 10.1002/gbc.20040

    [7]

    Engstrom D R, Fitzgerald W F, Cooke C A, et al. Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: A reevaluation from lake-sediment archives[J]. Environmental Science & Technology, 2014, 48 (12): 6533-6543.

    [8]

    Sun R, Hintelmann H, Wiklund J A, et al. Mercury isotope variations in lake sediment cores in response to direct mercury emissions from non-ferrous metal smelters and legacy mercury remobilization[J]. Environmental Science & Technology, 2022, 56 (12): 8266-8277.

    [9]

    Cooke C A, Balcom P H, Biester H, et al. Over three millennia of mercury pollution in the Peruvian Andes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (22): 8830-8834. doi: 10.1073/pnas.0900517106

    [10]

    徐利斌, 孙立广, 张居中, 等. 公元前2500年: 中国进入铜石并用时代的汞记录[J]. 第四纪研究, 2008, 28 (6): 1070-1080. doi: 10.3321/j.issn:1001-7410.2008.06.012 http://www.dsjyj.com.cn/article/id/dsjyj_8910

    Xu Libin, Sun Liguang, Zhang Juzhong, et al. 2500BC: The beginning of Chalcolithic Period in China recorded by Hg[J]. Quaternary Sciences, 2008, 28 (6): 1070-1080. doi: 10.3321/j.issn:1001-7410.2008.06.012 http://www.dsjyj.com.cn/article/id/dsjyj_8910

    [11]

    Drexler J Z, Alpers C N, Neymark L A, et al. A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin delta of California, USA[J]. Science of the Total Environment, 2016, 551: 738-751. doi: 10.1016/j.scitotenv.2016.01.201.

    [12]

    Pan J, Zhong W, Wei Z, et al. A 15, 400-year record of natural and anthropogenic input of mercury(Hg)in a sub-alpine lacustrine sediment succession from the western Nanling Mountains, South China[J]. Environmental Science and Pollution Research, 2020, 27 (16): 20478-20489. doi: 10.1007/s11356-020-08421-z

    [13]

    Zeng Y, Chen J, Yang Y, et al. Huguangyan Maar Lake(SE China): A solid record of atmospheric mercury pollution history in a non-remote region[J]. Journal of Asian Earth Sciences, 2017, 147: 1-8. doi: 10.1016/j.jseaes.2017.07.009.

    [14]

    Li T, Zhong W, Wei Z, et al. Response of mercury accumulation to anthropogenic pollution in the past 1000 years based on Lake Huguangyan sediments, Southern China[J]. Environmental Geochemistry and Health, 2021, 43 (10): 3921-3933. doi: 10.1007/s10653-021-00878-2

    [15]

    郑卓, 王建华, 王斌, 等. 海南岛双池玛珥湖全新世高分辨率环境纪录[J]. 科学通报, 2003, 48 (3): 282-286. doi: 10.3321/j.issn:0023-074X.2003.03.017

    Zheng Zhuo, Wang Jianhua, Wang Bin, et al. Holocene high-resolution environmental record of Shuangchi Maar Lake, Hainan Island[J]. Chinese Science Bulletin, 2003, 48 (3): 282-286. doi: 10.3321/j.issn:0023-074X.2003.03.017

    [16]

    黄镇国, 蔡福祥. 雷琼第四纪火山活动的新认识[J]. 热带地理, 1994, 14 (1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD401.000.htm

    Huang Zhenguo, Cai Fuxiang. A new approach to the Quaternary volcanicity in the Leiqiong area[J]. Tropical Geography, 1994, 14 (1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD401.000.htm

    [17]

    McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101 (2): 295-303. doi: 10.1086/648222

    [18]

    Boës X, Rydberg J, Martinez-Cortizas A, et al. Evaluation of conservative lithogenic elements(Ti, Zr, Al, and Rb)to study anthropogenic element enrichments in lake sediments[J]. Journal of Paleolimnology, 2011, 46 (1): 75-87. doi: 10.1007/s10933-011-9515-z

    [19]

    Reimer P J, Austin W E N, Bard E, et al. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve(0-55 cal kBP)[J]. Radiocarbon, 2020, 62 (4): 725-757. doi: 10.1017/RDC.2020.41

    [20]

    Teisserenc R, Lucotte M, Houel S. Terrestrial organic matter biomarkers as tracers of Hg sources in lake sediments[J]. Biogeochemistry, 2011, 103 (1): 235-244.

    [21]

    Hermanns Y M, Biester H. Anthropogenic mercury signals in lake sediments from southernmost Patagonia, Chile[J]. Science of the Total Environment, 2013, 445: 126-135. doi: 10.1016/j.scitotenv.2012.12.034.

    [22]

    Eyrikh S, Eichler A, Tobler L, et al. A 320 year ice-core record of atmospheric Hg pollution in the Altai, Central Asia[J]. Environmental Science & Technology, 2017, 51 (20): 11597-11606.

    [23]

    Wang X, Zhong W, Li T, et al. A 16.2-kyr lacustrine sediment record of mercury deposition in Dahu Swamp, eastern Nanling Mountains, Southern China: Analysis of implications for climatic changes[J]. Quaternary International, 2021, 592: 12-21. doi: 10.1016/j.quaint.2021.04.013.

    [24]

    Daga R, Guevara S R, Pavlin M, et al. Historical records of mercury in southern latitudes over 1600 years: Lake Futalaufquen, Northern Patagonia[J]. Science of the Total Environment, 2016, 553: 541-550. doi: 10.1016/j.scitotenv.2016.02.114.

    [25]

    Corella J P, Sierra M J, Garralón A, et al. Recent and historical pollution legacy in high altitude Lake Marboré(Central Pyrenees): A record of mining and smelting since pre-Roman times in the Iberian Peninsula[J]. Science of the Total Environment, 2021, 751: 1-16. doi: 10.1016/j.scitotenv.2020.141557.

    [26]

    马欣璐, 薛积彬, 宋德卓, 等. 近4万年来雷州半岛北部地区汞沉积及其影响机制[J]. 沉积学报, 2021, doi: 10.14027/j.issn.1000-0550.2021.068.

    Ma Xinlu, Xue Jibin, Song Dezhuo, et al. Deposition and possible influence mechanism of mercury on northern Leizhou Peninsula over past 40000 years[J]. Acta Sedimentologica Sinica, 2021, doi: 10.14027/j.issn.1000-0550.2021.068.

    [27]

    Pérez-Rodríguez M, Margalef O, Corella J P, et al. The role of climate: 71ka of atmospheric mercury deposition in the Southern Hemisphere recorded by Rano Aroi Mire, Easter Island(Chile)[J]. Geosciences, 2018, 8 (10): 1-19.

    [28]

    Chu G, Liu J, Sun Q, et al. The 'Mediaeval Warm Period' drought recorded in Lake Huguangyan, tropical South China[J]. The Holocene, 2002, 12 (5): 511-516. doi: 10.1191/0959683602hl566ft

    [29]

    Zhang W, Yan H, Liu C, et al. Hydrological changes in Shuangchi Lake, Hainan Island, tropical China, during the Little Ice Age[J]. Quaternary International, 2018, 487: 54-60. doi: 10.1016/j.quaint.2017.09.007.

    [30]

    Lanzillotta E, Ceccarini C, Ferrara R. Photo-induced formation of dissolved gaseous mercury in coastal and offshore seawater of the Mediterranean basin[J]. Science of the Total Environment, 2002, 300 (1-3): 179-187. doi: 10.1016/S0048-9697(02)00223-1

    [31]

    Lanzillotta E, Ceccarini C, Ferrara R, et al. Importance of the biogenic organic matter in photo-formation of dissolved gaseous mercury in a culture of the marine diatom Chaetoceros sp. [J]. Science of the Total Environment, 2004, 318 (1-3): 211-221. doi: 10.1016/S0048-9697(03)00400-5

    [32]

    Wang C, Wang Z, Hui F, et al. Speciated atmospheric mercury and sea-air exchange of gaseous mercury in the South China Sea[J]. Atmospheric Chemistry and Physics, 2019, 19 (15): 10111-10127. doi: 10.5194/acp-19-10111-2019

    [33]

    Xu L, Liu X, Sun L, et al. A 700-year record of mercury in avian eggshells of Guangjin Island, South China Sea[J]. Environmental Pollution, 2011, 159 (4): 889-896. doi: 10.1016/j.envpol.2010.12.021

    [34]

    Vandal G M, Fitzgerald W F, Boutron C F, et al. Variations in mercury deposition to Antarctica over the past 34, 000 years[J]. Nature, 1993, 362 (6421): 621-623. doi: 10.1038/362621a0

    [35]

    计超, 徐利强, 张一辉, 等. 南海琼东上升流区过去1900年海洋生产力记录[J]. 海洋地质与第四纪地质, 2020, 40 (5): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202005010.htm

    Ji Chao, Xu Liqiang, Zhang Yihui, et al. A 1900-year record of marine productivity in the upwelling area of east continental shelf of Hainan Island, South China Sea[J]. Marine Geology & Quaternary Geology, 2020, 40 (5): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202005010.htm

    [36]

    Pyle D M, Mather T A. The importance of volcanic emissions for the global atmospheric mercury cycle[J]. Atmospheric Environment, 2003, 37 (36): 5115-5124. doi: 10.1016/j.atmosenv.2003.07.011

    [37]

    Coffey M T. Observations of the impact of volcanic activity on stratospheric chemistry[J]. Journal of Geophysical Research: Atmospheres, 1996, 101(D3): 6767-6780. doi: 10.1029/95JD03763

    [38]

    Schuster P F, Krabbenhoft D P, Naftz D L, et al. Atmospheric mercury deposition during the last 270 years: A glacial ice core record of natural and anthropogenic sources[J]. Environmental Science & Technology, 2002, 36 (11): 2303-2310.

    [39]

    谢哲宇, 裘冰倩, 肖河, 等. 东北哈尼泥炭14kaB.P. 以来大气汞沉降历史记录[J]. 第四纪研究, 2019, 39 (6): 1333-1345. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.06.02

    Xie Zheyu, Qiu Bingqian, Xiao He, et al. Study on the atmospheric mercury deposition data that retrieved from Hani peat in Northeast China since 14kaB.P. [J]. Quaternary Sciences, 2019, 39 (6): 1333-1345. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.06.02

    [40]

    Yang Z, Long N, Wang Y, et al. A great volcanic eruption around AD 1300 recorded in lacustrine sediment from Dongdao Island, South China Sea[J]. Journal of Earth System Science, 2017, 126 (1): 1-6. doi: 10.1007/s12040-016-0788-5

    [41]

    Sigl M, Winstrup M, McConnell J R, et al. Timing and climate forcing of volcanic eruptions for the past 2, 500 years[J]. Nature, 2015, 523 (7562): 543-549. doi: 10.1038/nature14565

    [42]

    Yan H, Sun L, Wang Y, et al. A 2000-year record of copper pollution in South China Sea derived from seabird excrements: A potential indicator for copper production and civilization of China[J]. Journal of Paleolimnology, 2010, 44 (2): 431-442. doi: 10.1007/s10933-010-9413-9

    [43]

    杨德春. 海南岛历代人口资料初析[J]. 海南大学学报(人文社会科学版), 1986, 3 (4): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDB198604010.htm

    Yang Dechun. Preliminary analysis of the population data of Hainan Island[J]. Humanities & Social Sciences Journal of Hainan University, 1986, 3 (4): 66-72. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDB198604010.htm

    [44]

    Liu X, Xu L, Chen Q, et al. Historical change of mercury pollution in remote Yongle archipelago, South China Sea[J]. Chemosphere, 2012, 87 (5): 549-556. doi: 10.1016/j.chemosphere.2011.12.065

    [45]

    Ji C, Xu L, Zhang Y, et al. A 1900-year record of mercury(Hg)from the east continental shelf of Hainan Island, South China Sea[J]. Geological Journal, 2020, 55 (6): 4469-4478.

    [46]

    纪宗安. 古代移民和海南的早期开发[J]. 暨南学报(哲学社会科学版), 1990, 12 (4): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JNXB199004014.htm

    Ji Zongan. Ancient immigrants and the early development of Hainan[J]. Jinan Journal(Philosophy & Social Sciences), 1990, 12 (4): 109-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JNXB199004014.htm

    [47]

    杨东文. 海南历史开发过程中的人口迁移研究[J]. 海南大学学报(人文社会科学版), 1991, 8 (3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDB199103002.htm

    Yang Dongwen. A study of population migration in the historical development of Hainan[J]. Humanities & Social Sciences Journal of Hainan University, 1991, 8 (3): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDB199103002.htm

    [48]

    司徒尚纪. 海南岛历史上土地开发研究[M]. 海口: 海南人民出版社, 1987: 68-213.

    Situ Shangji. Research on Land Development in the History of Hainan Island[M]. Haikou: Hainan People's Publishing House, 1987: 68-213.

    [49]

    林日举. 海南史[M]. 长春: 吉林人民出版社, 2002: 82-263.

    Lin Riju. The History of Hainan[M]. Changchun: Jilin People's Press, 2002: 82-263.

    [50]

    Obrist D, Moosmüller H, Schürmann R, et al. Particulate-phase and gaseous elemental mercury emissions during biomass combustion: Controlling factors and correlation with particulate matter emissions[J]. Environmental Science & Technology, 2008, 42 (3): 721-727.

    [51]

    王冬梅, 熊鸣琴, 吴觉妮, 等. 从蛮域到疆域——唐宋时期的海疆观念与海南的治理与开发[J]. 黑龙江史志, 2014, 29 (16): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HLSZ201416024.htm

    Wang Dongmei, Xiong Mingqin, Wu Jueni, et al. From barbarian to territorial-The concept of coastal areas in Tang and Song Dynasties and the governance and development of Hainan[J]. Heilongjiang Chronicles, 2014, 29 (16): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HLSZ201416024.htm

    [52]

    丘刚. 海南岛史前遗址中的海洋文化特质[J]. 南海学刊, 2015, 1 (3): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXK201503016.htm

    Qiu Gang. The marine cultural characteristic of the prehistoric sites of Hainan Island[J]. The Journal of South China Sea Studies, 2015, 1 (3): 100-103. https://www.cnki.com.cn/Article/CJFDTOTAL-NHXK201503016.htm

    [53]

    王承文. 论唐代岭南地区的金银生产及其影响[J]. 中国史研究, 2008, 29 (3): 45-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSJ200803005.htm

    Wang Chengwen. On gold and silver production and its influence in Lingnan Area in Tang Dynasty[J]. Journal of Chinese Historical Studies, 2008, 29 (3): 45-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSJ200803005.htm

    [54]

    Liu H, Gu Y, Qin Y, et al. The elemental enrichments at Dajiuhu Peatland in the middle Yangtze valley in response to changes in East Asian monsoon and human activity since 20, 000calyrBP[J]. Science of the Total Environment, 2021, 757: 143990. doi: 10.1016/j.scitotenv.2020.143990.

    [55]

    毛卫民, 王开平. 铁器时代演变与工业革命[J]. 金属世界, 2019, 34 (2): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSJ201902005.htm

    Mao Weimin, Wang Kaiping. Evolution of Iron Age and industrial revolution[J]. Metal World, 2019, 34 (2): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSJ201902005.htm

    [56]

    吴松弟. 中国人口史: 第三卷, 辽宋金元时期[M]. 上海: 复旦大学出版社, 2000: 314-500.

    Wu Songdi. The Population History of China: Volume 3, Liao, Song, Jin and Yuan Dynasties[M]. Shanghai: Fudan University Press, 2000: 314-500.

    [57]

    李自立. 宋代矿冶业研究[D]. 郑州: 郑州大学硕士学位论文, 2000: 9-17.

    Li Zili. Research on Mining and Metallurgy Industry in Song Dynasty[D]. Zhengzhou: The Master's Dissertation of Zhengzhou University, 2000: 9-17.

    [58]

    Lee C S L, Qi S, Zhang G, et al. Seven thousand years of records on the mining and utilization of metals from lake sediments in Central China[J]. Environmental Science & Technology, 2008, 42 (13): 4732-4738.

    [59]

    Gao C, Zhang S, Li Y, et al. Holocene mercury accumulation calibrated by peat decomposition in a peat sequence from the Sanjiang Plain, Northeast China[J]. Quaternary International, 2019, 527: 19-28. doi: 10.1016/j.quaint.2019.01.020.

    [60]

    Rea A W, Lindberg S E, Scherbatskoy T, et al. Mercury accumulation in foliage over time in two northern mixed-hardwood forests[J]. Water, Air, and Soil Pollution, 2002, 133 (1): 49-67.

    [61]

    Gamby R L, Hammerschmidt C R, Costello D M, et al. Deforestation and cultivation mobilize mercury from topsoil[J]. Science of the Total Environment, 2015, 532: 467-473. doi: 10.1016/j.scitotenv.2015.06.025.

    [62]

    甘方明. 明朝对海南岛的开发与经营[D]. 广州: 暨南大学硕士学位论文, 2001: 8-23.

    Gan Fangming. Ming Dynasty's Development and Management of Hainan Island[D]. Guangzhou: The Master's Dissertation of Jinan University, 2001: 8-23.

    [63]

    Liao X, Zhang C, Sun G, et al. Assessment of metalloid and metal contamination in soils from Hainan, China[J]. International Journal of Environmental Research and Public Health, 2018, 15 (3): 454.

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1713
  • PDF下载数:  103
  • 施引文献:  0
出版历程
收稿日期:  2022-09-10
修回日期:  2022-11-19
刊出日期:  2023-01-30

目录