西藏色林错沉积物介壳同位素重建的2000年以来气候变化研究

郭姝雯, 余芳艳, 王哲, 何志兴, 尚发美, 谢曼平. 西藏色林错沉积物介壳同位素重建的2000年以来气候变化研究[J]. 第四纪研究, 2023, 43(1): 83-94. doi: 10.11928/j.issn.1001-7410.2023.01.07
引用本文: 郭姝雯, 余芳艳, 王哲, 何志兴, 尚发美, 谢曼平. 西藏色林错沉积物介壳同位素重建的2000年以来气候变化研究[J]. 第四纪研究, 2023, 43(1): 83-94. doi: 10.11928/j.issn.1001-7410.2023.01.07
郭姝雯, 余芳艳, 王哲, 何志兴, 尚发美, 谢曼平. 西藏色林错沉积物介壳同位素重建的2000年以来气候变化研究[J]. 第四纪研究, 2023, 43(1): 83-94. doi: 10.11928/j.issn.1001-7410.2023.01.07 GUO Shuwen, YU Fangyan, WANG Zhe, HE Zhixing, SHANG Famei, XIE Manping. The research of climate change of past 2000 years based on isotopes of sediment ostracods shells in Serlin Co, Tibet[J]. Quaternary Sciences, 2023, 43(1): 83-94. doi: 10.11928/j.issn.1001-7410.2023.01.07
Citation: GUO Shuwen, YU Fangyan, WANG Zhe, HE Zhixing, SHANG Famei, XIE Manping. The research of climate change of past 2000 years based on isotopes of sediment ostracods shells in Serlin Co, Tibet[J]. Quaternary Sciences, 2023, 43(1): 83-94. doi: 10.11928/j.issn.1001-7410.2023.01.07

西藏色林错沉积物介壳同位素重建的2000年以来气候变化研究

  • 基金项目:

    国家自然科学基金项目(批准号: 41961015)和第二次青藏高原综合科学考察研究项目(批准号: 2019QZKK0202)共同资助

详细信息
    作者简介:

    郭姝雯, 女, 24岁, 硕士研究生, 湖泊沉积与环境演变研究, E-mail: 724828678@qq.com

    通讯作者: 谢曼平, E-mail: formelody@126.com
  • 中图分类号: P534.63+2;P532

The research of climate change of past 2000 years based on isotopes of sediment ostracods shells in Serlin Co, Tibet

More Information
  • 青藏高原作为印度季风与西风交汇的特殊区域, 对全球气候变化响应敏感, 成为了古气候研究的热点地区。青藏高原湖泊众多, 存在巨厚连续的湖泊沉积物, 为古气候重建提供了优良载体。而介形类壳体在湖泊中沉积连续, 生长过程记录了气候变化, 同时有效屏蔽了湖泊水体中同位素的累积效应, 能够反映介壳生长阶段短时间尺度的同位素水平, 理论上是高精度气候重建的理想载体。基于此, 本研究选取青藏高原中部地区湖泊色林错湖芯(SL16-1-1)顶部0~107cm部分为对象, 对其中的介形类壳体进行种属鉴定及碳氧同位素分析, 以期建立高分辨率的古环境变化记录, 结合沉积物Rb/Sr、Ti/Si环境代用指标, 重建色林错湖区近2000年来的气候变化记录, 结果揭示了: 1)介形类壳体碳氧稳定同位素变化对气候变化(尤其冷气候)尤为敏感, 是重建高分辨率环境变化过程的优良载体; 2)色林错地区对小冰期冷事件的响应较早于其他地区; 3)色林错介形类壳体2000年来的气候重建结果与青藏高原研究成果大体一致, 特别是与内地文献记录和物候史料记载高度一致, 说明色林错湖泊记录具有广泛代表性, 同时证实利用湖泊沉积物介形类壳体进行古气候高分辨率重建具有可靠性。

  • 加载中
  • 图 1 

    色林错湖盆地形及位置(a)和色林错水系与钻孔采样点(b)

    Figure 1. 

    Lake basin and topography (a), and river system and SL16-1-1 core position (b) of Serlin Co

    图 2 

    色林错SL16-1-1岩芯年代确定

    Figure 2. 

    The chronology of SL16-1-1 core in Serlin Co.

    图 3 

    色林错SL16-1-1孔介形类壳体碳氧同位素和全样元素Rb/Sr与Ti/Si变化

    Figure 3. 

    Variations of δ18O and δ13C of ostracods shells and Rb/Sr and Ti/Si of total examples in SL16-1-1 core of Serlin Co

    表 1 

    色林错湖芯SL16-1-1的AMS 14C测年结果

    Table 1. 

    AMS 14C dating results of SL16-1-1 core from Serlin Co in Tibet

    Beta编号 样品 深度
    (cm)
    材料 14C年代±误差
    (cal.aB. P.)
    δ13C
    (‰)
    碳库校正14C年代±误差
    (cal.a B. P.)
    日历年年代(2σ)
    (cal.a B. P.)
    575632 SL16-1-1(0-2)-6 6 全有机质 3902±30 -21.3 0±30 0
    575633 SL16-1-1(0-2)-28 28 全有机质 3634±30 -23.2 434±30 434
    575634 SL16-1-1(0-2)-68 68 全有机质 4572±30 -21.3 1372±30 1372
    575635 SL16-1-1(0-2)-95 95 全有机质 4861±30 -22 1661±30 1660.5
    575636 SL16-1-1(0-2)-120 120 全有机质 5517±30 -24 2317±30 2316.5
    575637 SL16-1-1(0-2)-146 146 全有机质 5894±30 -23.7 2694±30 2694
    575638 SL16-1-1(0-2)-166 166 全有机质 6479±30 -22.5 3279±30 3279
    下载: 导出CSV
  • [1]

    IPCC. Climate Change 2013: The physical science basis[M]//Stocker T F, Qin D, Plattner G-K, et al. eds. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 1535.

    [2]

    郑景云, 刘洋, 郝志新, 等. 过去2000年气候变化的全球集成研究进展与展望[J]. 第四纪研究, 2021, 41 (2): 309-322. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.01

    Zheng Jingyun, Liu Yang, Hao Zhixin, et al. State-of-art and perspective on global synthesis studies of climate change for the past 2000 years[J]. Quaternary Sciences, 2021, 41 (2): 309-322. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.01

    [3]

    戴张奇, 刘健, 孙炜毅, 等. 过去2000年3个典型暖期北半球季风降水的模拟研究[J]. 第四纪研究, 2021, 41 (2): 510-521. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.18

    Dai Zhangqi, Liu Jian, Sun Weiyi, et al. A climate simulation study on the monsoon precipitation over Northern Hemisphere in three typical warm periods during the past 2000 years[J]. Quaternary Sciences, 2021, 41 (2): 510-521. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.18

    [4]

    Viau A E, Ladd M, Gajewski K. The climate of North America during the past 2000 years reconstructed from pollen data[J]. Global and Planetary Change, 2012, 84-85 (4): 75-83

    [5]

    Shi S Y, Shi J F, Xu C X, et al. Tree-ring δ18O from Southeast China reveals monsoon precipitation and ENSO variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 558: 109954. doi: 10.1016/j.palaeo.2020.109954.

    [6]

    Olson E J, Dodd J P, Rivera M A. Prosopis sp. tree-ring oxygen and carbon isotope record of regional-scale hydroclimate variability during the last 9500 years in the Atacama Desert[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 538: 109408. doi: 10.1016/j.palaeo.2019.109408

    [7]

    姚檀栋, 秦大河, 徐柏青, 等. 冰芯记录的过去1000a青藏高原温度变化[J]. 气候变化研究进展, 2006, 2 (3): 99-103. doi: 10.3969/j.issn.1673-1719.2006.03.001

    Yao Tandong, Qin Dahe, Xu Baiqing, et al. Temperature chang over the past millennium recorded in ice cores from the Tibetan Plateau[J]. Climate Change Research, 2006, 2 (3): 99-103. doi: 10.3969/j.issn.1673-1719.2006.03.001

    [8]

    Zhang G Q, Wei L, Chen W F, et al. A robust but variable lake expansion on the Tibetan Plateau[J]. Science Bulletin, 2019, 64 (18): 1306-1309. doi: 10.1016/j.scib.2019.07.018

    [9]

    朱立平, 郭允. 青藏高原湖泊沉积记录与环境变化研究[J]. 科技导报, 2017, 35 (6): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201706014.htm

    Zhu Liping, Guo Yun. Lake sediments and environmental changes on the Tibetan Plateau[J]. Science and Technology Review, 2017, 35 (6): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201706014.htm

    [10]

    丛禄, 王懿萱, 孙爱军, 等. 青藏高原中部当穹错末次冰消期以来湖面变化研究[J]. 第四纪研究, 2021, 41 (6): 1619-1631. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.10

    Cong Lu, Wang Yixuan, Sun Aijun, et al. Lake level variations of Tanqung Co since last deglaciation, central Tibetan Plateau[J]. Quaternary Sciences, 2021, 41 (6): 1619-1631. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.10

    [11]

    Guo C, Ma Y Z, Meng H W, et al. Changes in vegetation and environment in Yamzhog Yumco Lake on the southern Tibetan Plateau over past 2000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 501: 30-44. doi: 10.1016/j.palaeo.2018.04.005.

    [12]

    Xie M P, Zhu L P, Peng P, et al. Ostracod assemblages and their environmental significance from the lake core of the Nam Co on the Tibetan Plateau 8.4ka BP[J]. Journal of Geographical Sciences, 2009, 19 (4): 387-402. doi: 10.1007/s11442-009-0387-3

    [13]

    董楠, 朱立平, 陈浩, 等. 青藏高原赤布张错介形类反映的近13000年气候变化[J]. 第四纪研究, 2021, 41 (2): 434-445. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.12

    Dong Nan, Zhu Liping, Cheng Hao, et al. Climate changes of past 13000 years based on Ostracod in Chibuzhang Co, Tibetan Plateau[J]. Quaternary Sciences, 2021, 41 (2): 434-445. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.12

    [14]

    沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010: 327-328.

    Sheng ji, Xue Bin, Wu Jinglu, et al eds. Lake Sedimentation and Environmental Evolution[M]. Beijing: Science Press, 2010: 327-328.

    [15]

    姜高磊, 刘林敬, 毛欣. 湖相介形类壳体微量元素在古环境重建中的应用[J]. 海洋地质与第四纪地质, 2020, 40 (2): 192-199. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002020.htm

    Jiang Gaolei, Liu Linjing, Mao Xin. Trace elements in non-marine Ostracods and their application to paleoenvironment reconstruction[J]. Marine Geology & Quaternary Geology, 2020, 40 (2): 192-199. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002020.htm

    [16]

    Shi X H, Kirby E, Furlong K P, et al. Rapid and punctuated Late Holocene recession of Siling Co, central Tibet[J]. Quaternary Science Reviews, 2017, 172: 15-31. doi: 10.1016/j.quascirev.2017.07.017

    [17]

    顾兆炎, 刘嘉麒, 袁宝印, 等. 12000年来青藏高原季风变化——色林错沉积物地球化学的证据[J]. 科学通报, 1993, 38 (1): 61-64. doi: 10.3321/j.issn:0023-074X.1993.01.018

    Gu Zhaoyan, Liu Jiaqi, Yuan Baoyin, et al. The evolution of the Qinghai-Xizang Plateau monsoon: Evidence from the geochemistry of the sediments in Seling Co Lake[J]. Chinese Science Bulletin, 1993, 38 (1): 61-64. doi: 10.3321/j.issn:0023-074X.1993.01.018

    [18]

    Gyawali A R, Wang J B, Ma Q F, et al. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516: 101-112. doi: 10.1016/j.palaeo.2018.11.033.

    [19]

    第二次青藏高原综合科学考察研究队. 西藏色林错地区环境变化综合科学考察报告[M]. 北京: 科学出版社, 2020: 6-8, 295-296.

    The Second Tibetan Plateau Expedition Survey Team ed. Integrated Scientific Survey Report for Environmental Changes in the Serling Co Area of the Tibetan Plateau[M]. Beijing: Science Press, 2020: 6-8, 295-296.

    [20]

    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine 13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55 (4): 1869-1887. doi: 10.2458/azu_js_rc.55.16947

    [21]

    Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6 (3): 457-474. doi: 10.1214/ba/1339616472

    [22]

    Zhou J, Wang L, Zhang Y S, et al. Exploring the water storage changes in the largest lake(Selin Co)over the Tibetan Plateau during 2003-2012 from a basin-wide hydrological modeling[J]. Water Resource Research, 2015, 51 (10): 8060-8086. doi: 10.1002/2014WR015846

    [23]

    Wünnemann B, Yan D D, Andersen N, et al. A 14ka high-resolutionδ18O lake record reveals a paradigm shift for the process-based reconstruction of hydroclimate on the northern Tibetan Plateau[J]. Quaternary Science Reviews, 2018, 200: 65-84. doi: 10.1016/j.quascirev.2018.09.040.

    [24]

    Roberts L R, Holmes J A, Sloane H J, et al. δ18O and δ13C of Cyprideis torosa from coastal lakes: Modern systematics and down-core interpretation[J]. Marine Micropaleontology, 2020, 160: 101907. doi: 10.1016/j.marmicro.2020.101907.

    [25]

    Aichner B, Herzschuh U, Wilkes H. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau[J]. Organic Geochemistry, 2010, 41 (7): 706-718. doi: 10.1016/j.orggeochem.2010.02.002

    [26]

    曹军骥, 王亚强, 张小曳, 等. 大气中碳酸盐的碳同位素分析及其来源指示意义[J]. 科学通报, 2004, 49 (17): 1785-1788. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200417018.htm

    Cao Junji, Wang Yaqiang, Zhang Xiaoye, et al. Carbon isotope analysis of carbonate in the atmosphere and its implication for source[J]. Chinese Science Bulletin, 2004, 49 (17): 1785-1788. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200417018.htm

    [27]

    蓝江湖, 徐海, 刘斌, 等. 湖泊沉积中碳酸盐有机质及其同位素的古气候意义[J]. 生态学杂志, 2013, 32 (5): 1326-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305036.htm

    Lan Jianghu, Xu Hai, Liu Bin, et al. Paleoclimate implications of carbonate, organic matter, and their stable isotopes in lacustrine sediments: A review[J]. Chinese Journal of Ecology, 2013, 32 (5): 1326-1334. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201305036.htm

    [28]

    Rothwell R G, Croudace I W. Micro-XRF studies of sediment cores: A perspective on capability and application in the environmental sciences[J]. Springer Netherlands, 2015, (Chapter 1): 1-21. doi: 10.1007/978-94-017-9849-5_1.

    [29]

    曾艳, 陈敬安, 朱正杰, 等. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26 (8): 805-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108002.htm

    Zeng Yan, Chen Jing'an, Zhu Zhengjie, et al. Prospective of Rb/Sr ratios in lake sediments as an index of paleoclimate/paleoenvironment[J]. Advances in Earth Science, 2011, 26 (8): 805-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108002.htm

    [30]

    Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293 (5533): 1304-1308. doi: 10.1126/science.1059725

    [31]

    成艾颖, 余俊清, 张丽莎, 等. XRF岩芯扫描分析方法及其在湖泊沉积研究中的应用[J]. 盐湖研究, 2010, 18 (2): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201002004.htm

    Cheng Aiying, Yu Junqing, Zhang Lisha, et al. XRF core scanning and applications on lake sediments[J]. Journal of Salt Lake Research, 2010, 18 (2): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YHYJ201002004.htm

    [32]

    申洪源, 贾玉连, 李徐生, 等. 内蒙古黄旗海不同粒级湖泊沉积物Rb、Sr组成与环境变化[J]. 地理学报, 2006, 61 (11): 1208-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE200803011.htm

    Shen Hongyuan, Jia Yulian, Li Xusheng, et al. Environmental change inferred from distribution of Rb and Sr in different grain size fractions from lacustrine sediments in Huangqihai Lake, Inner Mongolia[J]. Acta Geographica Sinica, 2006, 61 (11): 1208-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE200803011.htm

    [33]

    陈敬安, 曾艳, 王敬富, 等. 湖泊沉积物不同赋存状态Rb、Sr地球化学记录研究[J]. 矿物岩石地球化学通报, 2013, 32 (4): 408-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201304005.htm

    Chen Jing'an, Zeng Yan, Wang Jingfu, et al. The geochemical records of Rb and Sr of different forms in lake sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32 (4): 408-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201304005.htm

    [34]

    王海雷, 郑绵平. 青藏高原中部色林错SL-1孔粒度参数指示的5.33ka BP以来的水位变化[J]. 科技导报, 2014, 32 (35): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201435015.htm

    Wang Hailei, Zheng Mianping. Lake level changes indicated by grain-size of core SL-1 sediments since 5.33ka BP in Selin Co, central Qinghai-Tibetan Plateau[J]. Science and Technology Review, 2014, 32 (35): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201435015.htm

    [35]

    林勇杰, 郑绵平, 王海雷. 青藏高原中部色林错矿物组合特征对晚全新世气候的响应[J]. 科技导报, 2014, 32 (35): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201435017.htm

    Lin Yongjie, Zheng Mianping, Wang Hailei. Late Holocene climatical and environmental evolutions inferred from mineralogical records in Selin Co, central Qinghai-Tibetan Plateau[J]. Science and Technology Review, 2014, 32 (35): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB201435017.htm

    [36]

    Sun X Q, Du N Q, Cheng Y S, et al. Pollen analysis of lake sediments in Serlin Co, Tibet[J]. Journal of Integrative Plant Biology, 1993, 35 (12): 943-950.

    [37]

    吴艳宏, Lücke Andreas, Wünnemann Bernd, 等. 青藏高原中部全新世气候变化的湖泊沉积地球化学记录[J]. 中国科学(D辑), 2007, 37 (9): 1185-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709006.htm

    Wu Yanhong, Lücke Andreas, Wünnemann Bemd, et al. Lake sedimentary geochemical records of Holocene climate change in the central Qinghai-Xizang Plateau[J]. Science in China(Series D), 2007, 37 (9): 1185-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200709006.htm

    [38]

    姚檀栋. 古里雅冰芯近2000年来气候环境变化记录[J]. 第四纪研究, 1997, (1): 52-61. http://www.dsjyj.com.cn/article/id/dsjyj_9478

    Yao Tandong. Climatic and environmental record in the past about 2000 years from the Guliya ice core[J]. Quaternary Sciences, 1997, (1): 52-61. http://www.dsjyj.com.cn/article/id/dsjyj_9478

    [39]

    朱立平, 王君波, 林晓, 等. 西藏纳木错深水湖芯反映的8·4ka以来气候环境变化[J]. 第四纪研究, 2007, 27 (4): 588-597. http://www.dsjyj.com.cn/article/id/dsjyj_8804

    Zhu Liping, Wang Junbo, Lin Xiao, et al. Environmental changes reflected by core sediments since 8.4ka in Nam Co, central Tibet of China[J]. Quaternary Sciences, 2007, 27 (4): 588-597. http://www.dsjyj.com.cn/article/id/dsjyj_8804

    [40]

    徐海, 盛恩国, 蓝江湖, 等. 青藏高原东缘近2000年湖泊气候记录及全球联系[J]. 矿物岩石地球化学通报, 2015, 34 (2): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201502008.htm

    Xu Hai, Sheng En'guo, Lan Jianghu, et al. Limnological records of the climatic changes along the eastern margin of the Tibetan Plateau during the past 2000 years and their global linkages[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2015, 34 (2): 257-268. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201502008.htm

    [41]

    郭超, 马玉贞, 刘杰瑞, 等. 过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化[J]. 第四纪研究, 2016, 36 (2): 405-419. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.02.16

    Guo Chao, Ma Yuzhen, Liu Jierui, et al. Climatic change recorded by grain-size in the past about 2000 years from Yamzhog Yumco Lake, Tibet[J]. Quaternary Sciences, 2016, 36 (2): 405-419. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.02.16

    [42]

    王子今. 秦汉时期气候变迁的历史学考察[J]. 历史研究, 1995, 35 (2): 3-19. https://www.cnki.com.cn/Article/CJFDTOTAL-LSYJ199502000.htm

    Wang Zijin. A historical study of climate change in the Qin and Han dynasties[J]. Historical Research, 1995, 35 (2): 3-19. https://www.cnki.com.cn/Article/CJFDTOTAL-LSYJ199502000.htm

    [43]

    卜凤贤. 周秦两汉时期农业灾害致灾原因初探[J]. 农业考古, 2002, 22 (1): 290-294. https://www.cnki.com.cn/Article/CJFDTOTAL-NOSE200201048.htm

    Bu Fengxian. On the causes of agricultural disasters in Zhou, Qin and Han dynasties[J]. Agricultural Archaeology, 2002, 22 (1): 290-294. https://www.cnki.com.cn/Article/CJFDTOTAL-NOSE200201048.htm

    [44]

    魏柱灯, 方修琦, 苏筠. 过去2000年中国的气候变化、财政周期与朝代更迭[J]. 第四纪研究, 2020, 40 (5): 1180-1192. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.08

    Wei Zhudeng, Fang Xiuqi, Su Yun. Climate change, fiscal balance and dynastical cycles in China over the past 2000 years[J]. Quaternary Sciences, 2020, 40 (5): 1180-1192. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.08

    [45]

    郑景云, 满志敏, 方修琦, 等. 魏晋南北朝时期的中国东部温度变化[J]. 第四纪研究, 2005, 25 (2): 129-140. http://www.dsjyj.com.cn/article/id/dsjyj_8980

    Zheng Jingyun, Man Zhimin, Fang Xiuqi, et al. Temperature variation in the Eastern China during Wei, Jin and South-North dynasties(220-580A.D. )[J]. Quaternary Sciences, 2005, 25 (2): 129-140. http://www.dsjyj.com.cn/article/id/dsjyj_8980

    [46]

    任振球. 中国近五千年来气候的异常期及其天文成因[J]. 农业考古, 1986, 6 (1): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-NOSE198601048.htm

    Ren Zhenqiu. Climate anomalies and astronomy nearly five thousand years of China[J]. Agricultural Archaeology, 1986, 6 (1): 298-303. https://www.cnki.com.cn/Article/CJFDTOTAL-NOSE198601048.htm

    [47]

    贾卓, 王玉洁, 曹辉辉, 等. 丝绸之路沿线的兰州城市空间演变及其影响因素[J]. 第四纪研究, 2022, 42 (1): 311-324. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.25

    Jia Zhuo, Wang Yujie, Cao Huihui, et al. Urban spatial evolution of Lanzhou along the Silk Road and its influencing factors[J]. Quaternary Sciences, 2022, 42 (1): 311-324. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.25

    [48]

    程雪寒, 王树芝, 朱岩石. 丝绸之路青海道吐蕃时期墓葬出土木材记载的森林干扰史[J]. 第四纪研究, 2022, 42 (1): 192-205. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.16

    Cheng Xuehan, Wang Shuzhi, Zhu Yanshi. History of forest disturbances recorded by timbers unearthed from Tubo tombs alongside the Silk Road's Qinghai routes[J]. Quaternary Sciences, 2022, 42 (1): 192-205. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.01.16

    [49]

    葛全胜. 中国历朝气候变化[M]. 北京: 科学出版社, 2011: 256-258.

    Ge Quansheng. The Climate Change in China during the Past Dynasties[M]. Beijing: Science Press, 2011: 256-258.

    [50]

    郭超, 马玉贞, 李金凤. 中国及周边地区中晚全新世湿度演化及其可能机制[J]. 第四纪研究, 2022, 42 (4): 1058-1077. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.04.11

    Guo Chao, Ma Yuzhen, Li Jinfeng. Mid- to Late Holocene moisture evolution in China and surroundings: Spatial patterns and possible mechanisms[J]. Quaternary Sciences, 2022, 42 (4): 1058-1077. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.04.11

    [51]

    宋高, 郑绵平. 青藏高原中部色林错中晚全新世以来古气候变化特征[J]. 地质学报, 2022, 96 (7): 2272-2280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207002.htm

    Song Gao, Zheng Mianping. Paleoclimate changes since Middle-Late Holocene in Selin Co, central Qinghai-Tibetan Plateau[J]. Acta Geologica Sinica, 2022, 96 (7): 2272-2280. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202207002.htm

    [52]

    Drager N, Theuerkauf M, Szeroczynska K, et al. Varve microfacies and varve preservation record of climate change and human impact for the last 6000 years at Lake Tiefer See(NE Germany)[J]. The Holocene, 2017, 27 (3): 450-464.

    [53]

    吴艳宏, 王苏民, 侯新花. 青藏高原中部错鄂全新世湖泊沉积物年代学研究[J]. 中国科学(D辑), 2006, 36 (8): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200608003.htm

    Wu Yanhong, Wang Sumin, Hou Xinhua. Chronology of Holocene lake sediments in Co Ngoin Lake, central Qinghai Xizang Plateau[J]. Science in China(Series D), 2006, 36 (8): 713-722. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200608003.htm

    [54]

    姚檀栋, 杨志红, 皇翠兰, 等. 近2ka来高分辨的连续气候环境变化记录——古里雅冰芯近2ka记录初步研究[J]. 科学通报, 1996, 41 (12): 1103-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199612012.htm

    Yao Tandong, Yang Zhihong, Huang Cuilan, et al. High resolution continuous climatic and environmental change records in recent 2000 years-Preliminary study on the nearly 2000 records of the Guliya ice core[J]. Chinese Science Bulletin, 1996, 41 (12): 1103-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199612012.htm

    [55]

    张全明. 论北宋开封地区的气候变迁及其特点[J]. 史学月刊, 2007, (1): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYK200701016.htm

    Zhang Quanming. On the vicissitudes and features of climate in Kaifeng District in Northern Song Dynasty[J]. Journal of Historical Science, 2007, (1): 98-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYK200701016.htm

    [56]

    竺可桢. 中国近五千年来气候变迁的初步研究[J]. 考古学报, 1972, 22 (1): 15-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KGXB197201001.htm

    Zhu Kezheng. Preliminary study to the climatic variation during the recent 5000 years in China[J]. Acta Archaeological Sinica, 1972, 22 (1): 15-38. https://www.cnki.com.cn/Article/CJFDTOTAL-KGXB197201001.htm

    [57]

    满志敏. 关于唐代气候冷暖问题的讨论[J]. 第四纪研究, 1998, (1): 20-30. http://www.dsjyj.com.cn/article/id/dsjyj_9637

    Man Zhimin. Climate in Tang Dynasty of China: Discussion for its evidence[J]. Quaternary Sciences, 1998, (1): 20-30. http://www.dsjyj.com.cn/article/id/dsjyj_9637

    [58]

    蓝勇. 唐代气候变化与唐代历史兴衰[J]. 中国历史地理论丛, 2001, 16 (1): 4-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLD200101000.htm

    Lan Yong. Climatic Variations and the rise and fall of the Tang Dynasty[J]. Journal of Chinese Historical Geography, 2001, 16 (1): 4-15 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLD200101000.htm

    [59]

    Nan Q Y, Li T G, Chen J X, et al. Late Holocene(~2ka)East Asian monsoon variations inferred from river discharge and climate interrelationships in the Pearl River Estuary[J]. Quaternary Research, 2014, 81 (2): 240-250.

    [60]

    Li X M, Wang M D, Hou J Z. Centennial-scale climate variability during the past 2000 years derived from lacustrine sediment on the western Tibetan Plateau[J]. Quaternary International, 2019, 510: 65-75. doi: https://doi.org/10.1016/j.quaint.2018.12.018.

    [61]

    Kremenetski K V, Boettger T, MacDonald G M, et al. Medieval climate warming and aridity as indicated by multiproxy evidence from the Kola Peninsula, Russia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209: 113-125. doi: https://doi.org/10.1016/j.palaeo.2004.02.018.

    [62]

    Lüning S, Gałka M, Bamonte F P, et al. The Medieval Climate Anomaly in South America[J]. Quaternary International, 2019, 508: 70-87. doi: https://doi.org/10.1016/j.quaint.2018.10.041.

    [63]

    Zhang Z Q, Liang Y J, Wang Y J, et al. Evidence of ENSO signals in a stalagmite-Based Asian monsoon record during the Medieval Warm Period[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 584: 110714. doi: https://doi.org/10.1016/j.palaeo.2021.110714.

    [64]

    Balascio N L, Zhang Z H, Bradley R S, et al. A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway[J]. Quaternary Research, 2011, 75 (1): 288-300.

    [65]

    Majoran S, Agrenius S, Kucera M. The effect of temperature on shell size and growth rate in Krithe praetexta praetexta(Sars)[J]. Hydrobiologia, 2000, (419): 141-148. doi: https://doi.org/10.1023/A:1003943617431.

    [66]

    Gemery L, Cooper L W, Magen C, et al. Stable oxygen isotopes in shallow marine Ostracodes from the northern Bering and Chukchi Seas[J]. Marine Micropaleontology, 2022, 174: 102001. doi: https://doi.org/10.1016/j.marmicro.2021.102001.

    [67]

    刘洋, 郑景云, 郝志新, 等. 欧亚大陆中世纪暖期与小冰期温度变化的区域差异分析[J]. 第四纪研究, 2021, 41 (2): 462-473. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.14

    Liu Yang, Zheng Jingyun, Hao Zhixin, et al. Regional differences for temperature changes in Medieval Warm Period and Little Ice Age over Europe and Asia[J]. Quaternary Sciences, 2021, 41 (2): 462-473. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.14

    [68]

    胡洁, 汪勇, 金院, 等. 长江下游升金湖沉积物记录的过去千年高分辨率气候环境变化[J]. 第四纪研究, 2022, 42 (2): 421-434. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.08

    Hu Jie, Wang Yong, Jin Yuan, et al. High-resolution paleoclimatic changes recorded in Lake Shengjin, lower reaches of the Yangtze River over the last millennium[J]. Quaternary Sciences, 2022, 42 (2): 421-434. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.08

    [69]

    张兰生, 方修琦, 任国玉. 全球变化(第二版)[M]. 北京: 高等教育出版社, 2017: 215-219.

    Zhang Lansheng, Fang Xiuqi, Ren Guoyu. Global Change(Second Edition)[M]. Beijing: Higher Education Press, 2017: 215-219.

    [70]

    王绍武. 小冰期气候的研究[J]. 第四纪研究, 1995, (3): 202-212. http://www.dsjyj.com.cn/article/id/dsjyj_9742

    Wang Shaowu. Studies on climate of the little ice age[J]. Quaternary Sciences, 1995, (3): 202-212. http://www.dsjyj.com.cn/article/id/dsjyj_9742

    [71]

    王绍武. 全新世气候变化[M]. 北京: 气象出版社, 2011: 122-125.

    Wang Shaowu. The Holocene Climate Change[M]. Beijing: China Meteorological Press, 2011: 122-125.

    [72]

    张恩楼, 沈吉, 王苏民, 等. 近0.9ka来青海湖湖水盐度的定量恢复[J]. 科学通报, 2004, 49 (7): 697-701. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200407016.htm

    Zhang Enlou, Sheng Ji, Wang Sumin, et al. Quantitative restoration of water salinity in Qinghai Lake in recent 0.9ka[J]. Chinese Science Bulletin, 2004, 49 (7): 697-701. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200407016.htm

    [73]

    Zhu L P, Wang J B, Ju J T, et al. Climatic and lake environmental changes in the Serling Co region of Tibet over a variety of timescales[J]. Science Bulletin, 2019, 64 (7): 422-424.

    [74]

    薛莲花, 赵侃, 崔英方, 等. 近2000年来东亚夏季风突变的落水洞高分辨率石笋记录[J]. 第四纪研究, 2020, 40 (4): 973-984. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.04.12

    Xue Lianhua, Zhao Kan, Cui Yingfang, et al. Abrupt changes of East Asian summer monsoon over the past two millennia from stalagmite record in Luoshui Cave, Hubei Province[J]. Quaternary Sciences, 2020, 40 (4): 973-984. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.04.12

    [75]

    陶士臣, 张会领, 余克服, 等. 近500年西沙群岛海面温度年际变化的珊瑚记录及其环境意义[J]. 第四纪研究, 2021, 41 (2): 411-423. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.10

    Tao Shichen, Zhang Huiling, Yu Kefu, et al. Annual resolution sea surface temperature reconstructed quantitatively by Porites coral growth rate in the Xishaqundao Islands during the past five centuries and their environmental significance[J]. Quaternary Sciences, 2021, 41 (2): 411-423. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.10

    [76]

    施雅风, 姚檀栋, 杨保. 近2000a古里雅冰芯10a尺度的气候变化及其与中国东部文献记录的比较[J]. 中国科学(D辑), 1999, 29(S1): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1999S1011.htm

    Shi Yafeng, Yao Tandong, Yang Bao. Climate change at the 10 years scale of nearly 2000 years and comparison with literature records in Eastern China[J]. Science in China(Series D), 1999, 29(S1): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK1999S1011.htm

    [77]

    肖杰, 郑国璋, 郭政昇, 等. 明清小冰期鼎盛期气候变化及其社会响应[J]. 干旱区资源与环境, 2018, 32 (6): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201806012.htm

    Xiao Jie, Zheng Guozhang, Guo Zhengsheng, et al. Climate change and social response during the heyday of the Little Ice Age in the Ming and Qing Dynasties[J]. Journal of Arid Land Resources and Environment, 2018, 32 (6): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201806012.htm

    [78]

    万红莲, 宋海龙, 朱婵婵, 等. 明清时期宝鸡地区旱涝灾害链及其对气候变化的响应[J]. 地理学报, 2017, 72 (1): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701004.htm

    Wan Honglian, Song Hailong, Zhu Chanchan, et al. Drought and flood disaster chain and its response to climate change in Baoji region during the Ming and Qing Dynasties[J]. Acta Geographica Sinica, 2017, 72 (1): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201701004.htm

    [79]

    姚檀栋, Thompson L G. 敦德冰芯记录与过去5ka温度变化[J]. 中国科学(B辑), 1992, 22 (10): 1089-1093. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199210011.htm

    Yao Tandong, Thompson L G. Trends and features of climatic changes in the past 5000 years recorded by the Dunde ice core[J]. Science in China(Series B), 1992, 22 (10): 1089-1093. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199210011.htm

  • 加载中

(3)

(1)

计量
  • 文章访问数:  1496
  • PDF下载数:  112
  • 施引文献:  0
出版历程
收稿日期:  2022-04-02
修回日期:  2022-09-27
刊出日期:  2023-01-30

目录