Interdecadal variation of intermediate water in the South China Sea reconstructed by cold-water gorgonian skeleton fossils during the Early Holocene
-
摘要:
冷水珊瑚可以提供其生长期内周围环境变化的信息, 有望填补中-深层海洋高分辨率重建材料的空缺。本文利用“深海勇士”号载人深潜器在甘泉海台西南角海山上(16.55°W, 110.89°E; 水深1119.3m)采集的柳珊瑚样品(SY185-9)开展探索性研究, 检验冷水珊瑚高分辨率古环境重建的应用价值。X射线衍射(XRD)分析结果表明SY185-9的矿物成分主要为镁方解石(Mg0.06Ca0.94CO3); 骨骼横切面的14C测年结果显示SY185-9生长于早全新世, 时间跨度为9621±135~8922±114a B.P.; 利用环境扫描电子显微镜结合能谱仪和电子探针, 分析SY185-9骨骼横切面的元素组成和变化, 其中Mg/Ca比值指示了SY185-9生长时期平均海水温度为4.7±0.9℃, 较现代相同位置处的平均海水温度高约0.9℃, 可能反映早全新世南海中层水温度较现代略高的特征, 但也需注意冷水珊瑚Mg/Ca温度计算公式的区域适用性和珊瑚生命效应问题; Mg/Ca记录的频谱分析结果揭示显著的十年-百年际尺度波动, 可能反映中层水温度的自然变率, 或因局地海山地形而造成的中层海水与海表气候之间的密切联系。
-
关键词:
- 冷水柳珊瑚(Gorgonacea) /
- 早全新世 /
- Mg/Ca /
- 古温度 /
- 南海
Abstract:Cold-water corals can provide information of variations in the ambient environment during their lifespans and have been expected to fill the gap in high temporal-resolution paleoceanographic reconstruction of the intermediate and deep waters. Here, we performed explorative studies on a gorgonian sample(SY185-9)collected by the human operating vehicle "ShenhaiYongshi" to examine the application value of cold-water corals in reconstructing paleoenvironment. Located in the Xisha Area of the South China Sea, the Ganquan Plateau is under the influence of the West boundary current of the South China Sea(SCSWBC)and its related warm eddies. The sample was collected on a small seamount at the southwest Ganquan Plateau(16.55°W, 110.89°E; water depth 1119.3m). Through the analysis of the experimental data of SY185-9, we draw the conclusions as follows: (1)X-ray diffraction(XRD)analyses show that SY185-9 is mainly composed of magnesium calcite(Mg0.06Ca0.94CO3); (2) 14C dating demonstrates that it was grown during 9621±135~8922±114a B. P, in the Early Holocene; (3)Variations of elemental compositions on the cross section of SY185-9 were analyzed by electron microscope scanning combined with energy spectrometer and electron probe. The inferred temperature derived from Mg/Ca ratio was 4.7±0.9℃ during the growth period of SY185-9, about 0.9℃ higher than the modern sea water temperature nearby, likely indicating that the intermediate water temperature of the South China Sea in the Early Holocene was slightly higher than that in the modern. However, the uncertainty caused by the regional applicability and vital effects on the Mg/Ca-temperature calibration equation cannot be excluded. (4)The spectral analysis of Mg/Ca records reveals significant decadal-centennial scale fluctuations. The Mg/Ca records of SY185-9 shows significant 44-a and 127-a cycles during its lifespan, which correspond well with the changes of solar activity during the same period. They display an inverse phase correlation over the 127-a cycle and in-phase correlation over the 44-a cycle. This possibly reflects the natural variability of intermediate water temperature or the connection between cold-water coral and surface climate induced by the seamount topography. Our exploratory experimental studies on the skeleton of gorgonian collected from the South China Sea provide a centennial history of intermediate water temperature at annual resolution during the Early Holocene, by which the potential of cold-water coral for high-resolution paleoceanographic reconstruction is tested.
-
Key words:
- cold-water gorgonian(Gorgonacea) /
- Early Holocene /
- Mg/Ca /
- paleotemperature /
- South China Sea
-
-
-
[1] Roberts J M, Wheeler A J, Freiwald A, et al. Reefs of the deep: The biology and geology of cold-water coral ecosystems[J]. Science, 2006, 312 (5773): 543-547. doi: 10.1126/science.1119861
[2] Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64 (14): 2401-2416. doi: 10.1016/S0016-7037(99)00422-6
[3] 赵美霞, 余克服. 冷水珊瑚礁研究进展与评述[J]. 热带地理, 2016, 36 (1): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201601014.htm
Zhao Meixia, Yu Kefu. A review of recent research on cold-water coral reefs[J]. Tropical Geography, 2016, 36 (1): 94-100. https://www.cnki.com.cn/Article/CJFDTOTAL-RDDD201601014.htm
[4] Bond Z A, Cohen A L, Smith S R, et al. Growth and composition of high-Mg calcite in the skeleton of a Bermudian gorgonian(Plexaurella dichotoma): Potential for paleothermometry[J]. Geochemistry, Geophysics, Geosystems, 2005, 6 (8). doi: 10.1029/2005GC000911.
[5] Thresher R E, Fallon S J, Townsend A T. A "core-top" screen for trace element proxies of environmental conditions and growth rates in the calcite skeletons of bamboo corals(Isididae)[J]. Geochimica et Cosmochimica Acta, 2016, 193: 75-99. doi: 10.1016/j.gca.2016.07.033.
[6] Chaabane S, López C M, Ziveri P, et al. Elemental systematics of the calcitic skeleton of Corallium rubrum and implications for the Mg/Ca temperature proxy[J]. Chemical Geology, 2019, 524: 237-258. doi: 10.1016/j.chemgeo.2019.06.008.
[7] Beck J W, Edwards R L, Ito E, et al. Sea-surface temperature from coral skeletal strontium/calcium ratios[J]. Science, 1992, 257 (5070): 644-647. doi: 10.1126/science.257.5070.644
[8] La Vigne M, Hill T M, Spero H J, et al. Bamboo coral Ba/Ca: Calibration of a new deep ocean refractory nutrient proxy[J]. Earth and Planetary Science Letters, 2011, 312: 506-515. doi: 10.1016/j.epsl.2011.10.013.
[9] Marks G S, Lavigne M, Hill T M, et al. Reproducibility of Ba/Ca variations recorded by Northeast Pacific bamboo corals[J]. Paleoceanography, 2017, 32: 966-979. doi: 10.1002/2017PA003178.
[10] Smith J E, Schwarcz H P, Risk M J, et al. Paleotemperatures from deep-sea corals: Overcoming 'Vital Effects'[J]. Palaios, 2000, 15 (1): 25-32. doi: 10.1669/0883-1351(2000)015<0025:PFDSCO>2.0.CO;2.
[11] Lutringer A, Blamart D, Frank N, et al. Paleotemperatures from deep-sea corals: Scale effects[M]//Freiwald A, Roberts J M eds. Cold-Water Corals and Ecosystems. Berlin: Springer-Verlag, 2005: 1081-1096.
[12] Kimball J B, Dunbar R B, Guilderson T P. Oxygen and carbon isotope fractionation in calcitic deep-sea corals: Implications for paleotemperature reconstruction[J]. Chemical Geology, 2014, 381: 223-233. doi: 10.1016/j.chemgeo.2014.05.008.
[13] Zeng Zhiwei, Dang Haowen, Huang Enqing, et al. Potential paleoceanographic application of cold-water bamboo coral in the South China Sea[J]. Science Bulletin, 2022, 67 (5): 452-455. doi: 10.1016/j.scib.2021.11.006
[14] Wang Dongxiao, Wang Qing, Cai Shuqun, et al. Advances in research of the mid-deep South China Sea circulation[J]. Earth Science, 2019, 62 (12): 1992-2004.
[15] 万国江. 现代沉积的210Pb计年[J]. 第四纪研究, 1997, (3): 230-239. doi: 10.3321/j.issn:1001-7410.1997.03.005 http://www.dsjyj.com.cn/article/id/dsjyj_9659
Wan Guojiang. 210Pb dating for recent sedimentation[J]. Quaternary Sciences, 1997, (3): 230-239. doi: 10.3321/j.issn:1001-7410.1997.03.005 http://www.dsjyj.com.cn/article/id/dsjyj_9659
[16] Andrews A H, Stone R P, Lundstrom C C, et al. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating[J]. Marine Ecology Progress, 2009, 397: 173-185. doi: 10.3354/meps08193.
[17] Falini G, Fermani S, Gazzano M, et al. Structure and morphology of synthetic magnesium calcite[J]. Journal of Materials Chemistry, 1998, 8 (4): 1061-1065. doi: 10.1039/a707893e
[18] Ding Ling, Qi Yuanzhi, Shan Sen, et al. Radiocarbon in dissolved organic and inorganic carbon of the South China Sea[J]. Journal of Geophysical Research: Oceans, 2020, 124(4). doi: 10.1029/2020JC016073.
[19] Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6 (3): 457-474. doi: 10.1214/ba/1339616472
[20] 韦刚健, 余克服, 李献华, 等. 南海北部珊瑚Sr/Ca和Mg/Ca温度计及高分辨率SST记录重建尝试[J]. 第四纪研究, 2004, 24 (3): 325-331. doi: 10.3321/j.issn:1001-7410.2004.03.012 http://www.dsjyj.com.cn/article/id/dsjyj_9134
Wei Gangjian, Yu Kefu, Li Xianhua, et al. Coralline Sr/Ca and Mg/Ca thermometer for the northern South China Sea: Calibration and primary application on the high-resolution reconstructing[J]. Quaternary Sciences, 2004, 24 (3): 325-331. doi: 10.3321/j.issn:1001-7410.2004.03.012 http://www.dsjyj.com.cn/article/id/dsjyj_9134
[21] Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). doi: 10.1029/2004GL021919.
[22] Hill T M, LaVigne M, Spero H J, et al. Variations in seawater Sr/Ca recorded in deep-sea bamboo corals[J]. Paleoceanography, 2012, 27: PA3202. doi: 10.1029/2011PA002260.
[23] 陈越, 王跃, 党皓文, 等. 南海东北部末次冰盛期以来的水文气候变化[J]. 第四纪研究, 2021, 41 (4): 1031-1043. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.13
Chen Yue, Wang Yue, Dang Haowen, et al. Hydroclimatic changes in the northeastern South China Sea since the Last Glacial Maximum[J]. Quaternary Sciences, 2021, 41 (4): 1031-1043. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.13
[24] 崔亦鹍, 常凤鸣, 李铁刚, 等. 620ka以来帝汶海西南部表层海水盐度对印尼穿越流演变的响应[J]. 第四纪研究, 2020, 40 (3): 633-645. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.03.04
Cui Yikun, Chang Fengming, Li Tiegang, et al. Responses of surface seawater salinity in the southwest of the Timor Sea to the evolution of the Indonesia Throughflow over the past 620ka[J]. Quaternary Sciences, 2020, 40 (3): 633-645. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.03.04
[25] Wei Gangjian, Sun Min, Li Xianhua, et al. Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162 (1): 59-74.
[26] Delaney M L, Bé A W H, Boyle E A. Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores[J]. Geochimica et Cosmochimica Acta, 1985, 49 (6): 1327-1341. doi: 10.1016/0016-7037(85)90284-4
[27] Schlitzer Reiner. Ocean Data View[DB]. odv. awi. de, 2021.
[28] Yang Yiping, Xiang Rong, Zhang Lanlan, et al. Is the upward release of intermediate ocean heat content a possible engine for low-latitude processes?[J]. Geology, 2020, 48 (6): 579-583.
[29] Rosenthal Y, Linsley B K, Oppo D W. Pacific Ocean heat content during the past 10, 000 years[J]. Science, 2013, 342 (6158): 617-621.
[30] Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534 (7609): 640-646.
[31] Trenberth K E, Fasullo J T. Earth's energy imbalance[J]. Journal of Climate, 2014, 27 (9): 3129-3144.
[32] Solanki S K, Usoskin I G, Kromer B, et al. Unusual activity of the Sun during recent decades compared to the previous 11, 000 years[J]. Nature, 2004, 431 (7012): 1084-1087.
[33] Zhang X H, Boyer D L. Current deflections in the vicinity of multiple seamounts[J]. Journal of Physical Oceanography, 1991, 21(8): 1122-1138.
[34] Zhang X Z, Boyer D L. Laboratory study of rotating, stratifiied, oscillatory flow over a seamount[J]. Journal of Physical Oceanography, 1993, 23(6): 1122-1141.
[35] Chen Gengxin, Wang Dongxiao, Dong Changming, et al. Observed deep energetic eddies by seamount wake[J]. Scientific Reports, 2015, 30 (5): 17416. doi: 10.1038/srep17416.
[36] Yang Shenmu, Xing Jiuxing, Chen Daoyi, et al. A modelling study of eddy-splitting by an island/seamount[J]. Ocean Science, 2017, 13(5): 837-849.
[37] Yi Liang, Wang Haifeng, Deng Xiguang, et al. Geochronology and geochemical properties of mid-Pleistocene sediments on the Caiwei Guyot in the Northwest Pacific imply a surface-to-deep linkage[J]. Journal of Marine Science and Engineering, 2021, 9(3). doi: 10.3390/jmse9030253.
-