MIS 5以来长江三角洲地区沉积环境演变的光释光年代证据

高磊, 隆浩. MIS 5以来长江三角洲地区沉积环境演变的光释光年代证据[J]. 第四纪研究, 2023, 43(1): 33-45. doi: 10.11928/j.issn.1001-7410.2023.01.03
引用本文: 高磊, 隆浩. MIS 5以来长江三角洲地区沉积环境演变的光释光年代证据[J]. 第四纪研究, 2023, 43(1): 33-45. doi: 10.11928/j.issn.1001-7410.2023.01.03
高磊, 隆浩. MIS 5以来长江三角洲地区沉积环境演变的光释光年代证据[J]. 第四纪研究, 2023, 43(1): 33-45. doi: 10.11928/j.issn.1001-7410.2023.01.03 GAO Lei, LONG Hao. Luminescence chronology constraints on the sedimentary stratigraphy of the Yangtze River delta since the last interglacial[J]. Quaternary Sciences, 2023, 43(1): 33-45. doi: 10.11928/j.issn.1001-7410.2023.01.03
Citation: GAO Lei, LONG Hao. Luminescence chronology constraints on the sedimentary stratigraphy of the Yangtze River delta since the last interglacial[J]. Quaternary Sciences, 2023, 43(1): 33-45. doi: 10.11928/j.issn.1001-7410.2023.01.03

MIS 5以来长江三角洲地区沉积环境演变的光释光年代证据

  • 基金项目:

    国家自然科学基金项目(批准号: 41807417和41977381)和中国科学院(B类)战略性先导科技专项项目(批准号: XDB40010200)共同资助

详细信息
    作者简介:

    高磊, 男, 34岁, 助理研究员, 释光年代学与海岸沉积环境演变研究, E-mail: lgao@niglas.ac.cn

    通讯作者: 隆浩, E-mail: longhao@niglas.ac.cn
  • 中图分类号: P534.63;P597+.3

Luminescence chronology constraints on the sedimentary stratigraphy of the Yangtze River delta since the last interglacial

More Information
  • 长江三角洲是我国东部陆架-海岸沉积体系的重要组成部分, 是研究三角洲环境演化和人类活动的理想区域之一。前期大量的研究成果主要聚焦于冰后期和全新世长江三角洲响应海面上升的演进过程, 而冰期-间冰期尺度的长江三角洲地区沉积环境变化的研究因年代学工作薄弱而进展缓慢。本文在近年来对长江三角洲地区晚第四纪沉积物开展一系列石英OSL和钾长石(混合矿物)红外释光(pIRIR)测年研究, 且已取得一定的释光测年数据的基础上, 简要地梳理和总结长江三角洲末次间冰期以来区域沉积环境演化的研究进展, 着重分析晚更新世以来长江三角洲南北两翼沉积地层的年代框架异同、释光年代约束下末次冰期长江古下切河谷的演化历史及成因。释光测年及区域地层对比研究结果表明: 1)氧同位素(MIS)5e阶段(130~120ka)和全新世, 长江三角洲地区沉积环境受海洋作用影响比较明显。2)MIS 3阶段是否存在海侵环境, 不同测年技术得出了不同的年代学结论。且认为14C和常规的石英OSL测年得到的末次冰期早期地层(MIS 3~4)的年龄很可能都存在低估, 而钾长石或混合矿物红外释光测年可以发挥一定的测年优势。这也需要后期继续强化区域地层的年代学测试和对比研究。3)在MIS 4/2阶段, 长江三角洲南北两侧及主体平原均以陆相沉积环境为主。本研究结果可为全球或区域性大河三角洲及海岸系统响应末次间冰期以来海面变化的沉积历史对比研究提供参考。

  • 加载中
  • 图 1 

    长江三角洲区域与钻孔位置

    Figure 1. 

    Map of the Yangtze River delta and cores location

    图 2 

    长江三角洲不同时期海岸线位置[49~50]及钻孔分布(a)和古下切河谷地层框架(b)[51]

    Figure 2. 

    (a)Shorelines of the Yangtze River delta at different periods[49~50], core sites, and (b) the stratigraphic framework of the Yangtze River incised valley[51]

    图 3 

    (a) JCP01孔石英OSL释光信号生长曲线[32];(b)JCP01孔石英OSL信号饱和分析[32];(c)JCP01孔代表性样品红外释光信号恢复比和残余剂量[32];(d)JCP01孔代表性样品NL-718红外释光信号校正及对应年龄[32]

    Figure 3. 

    (a)Dose response curves of quartz OSL signals from core JCP01[32]; (b)OSL signal saturation of quartz fractions from core JCP01[32]; (c)Dose recovery and residual doses of IRSL signals for samples from core JCP01[32]; (d)Fading correction of pIRIR260 signal from representative sample NL-718 and luminescence age from core JCP01[32]

    图 4 

    JCP01孔(a)和YZ07孔(b)的石英OSL年龄与其对应样品的红外释光年龄对比[31~32]

    Figure 4. 

    Comparison of quartz OSL ages with their paired IRSL or pIRIR ages from cores JCP01(a) and YZ07(b)[31~32]

    图 5 

    JCP01孔年代地层和微体化石丰度[32]

    Figure 5. 

    Chronostratigraphy of core JCP01 and the total abundance of microfossils[32]

    图 6 

    长江三角洲北部区域地层演化与年龄模式对比(钻孔数据信息参见表 1)

    Figure 6. 

    Chronostratigraphy correlation of the northern Yangtze River delta(core data are in Table 1)

    图 7 

    长江三角洲地层对比[33]

    Figure 7. 

    A comparison of chronostratigraphy in the Yangtze River delta[33]

    图 8 

    长江三角洲南北区域晚更新世年代地层对比[32]

    Figure 8. 

    A comparison of the Late Pleistocene chronostratigraphy between the northern and southern Yangtze River delta[32]

    表 1 

    本文使用的钻孔岩芯资料来源

    Table 1. 

    Data source of cores used in this study

    钻孔名称 纬度(N) 经度(E) 高程(m) 芯长(m) 钻孔岩芯时间序列长度及测年方法 钻孔来源
    JCP01 33.2° 120.02° 约3 30.0 约130ka;OSL & pIRIR 文献[32]
    By1 33.2° 119.37° 约3 30 约39ka;14C 文献[40]
    LG 约33.3° 约119.5° 4.25 28 约23ka;14C 文献[41]
    YC01 约33.3° 约119.5° 4.25 33.11 约40ka;14C 文献[41]
    TZK9 32.6° 120.2° 2 286.86 166ka;14C/OSL 文献[42]
    CSJA3 约32.62° 约120.13° 约2 74 约70ka;14C/OSL 文献[39]
    SM 32.54° 121.31° 3.1 60.3 >35 ka;14C 文献[43]
    QC5 32.33 121.18 3.04 393.8 33ka;14C/TL 文献[44]
    SR11 32.15° 121.55° 0.00 71.0 45ka;14C 文献[43]
    YD016 31.77° 121.67° 3.00 78.0 约29ka;OSL 文献[33]
    YD014 31.83° 121.68° 2.00 75.2 约31ka;OSL 文献[33]
    YD006 32.0° 121.47° 4.00 68.78 约8.5ka;OSL 文献[33]
    EGQD14 31.82° 121.68° 2.00 60.0 约53ka;OSL 文献[30]
    YZ07 32.08° 121.60° 0.00 100.0 约50ka;OSL & pIRIR 文献[31]
    CM97 31.62° 121.38° 2.48 66.15 约14ka;14C 文献[45]
    MFC 31.24° 121.46° 112.0 约116ka;OSL 文献[46]
    ZK01 31.83° 121.55° 2.05 112.0 约13ka;14C 文献[20]
    SG7 31.00° 121.95° 2.3 约101 约148ka;OSL/铀系 文献[47]
    FX 31.20° 121.25° 3.0 102 129ka;OSL 文献[46]
    HYZ16 30.58° 121.92° -3.6 44 约36.8 ka;14C/OSL 文献[48]
    QP88 31.08° 120.98° 2.0 105 约134ka;OSL/铀系 文献[47]
    WJ 31.17° 120.63° 3.0 51.2 约100ka;14C/OSL 文献[47]
    下载: 导出CSV
  • [1]

    Syvitski J P M, Kettner A J, Overeem I, et al. Sinking deltas due to human activities[J]. Nature Geoscience, 2009, 2 (10): 681-686. doi: 10.1038/ngeo629

    [2]

    Tornqvist T E, Jankowski K L, Li Y-X, et al. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise[J]. Science Advances, 2020, 370: 1-9. doi. 10.1126/sciadv. aaz5512. doi: 10.1126/sciadv.aaz5512

    [3]

    Becker M, Papa F, Karpytchev M, et al. Water level changes, subsidence, and sea level rise in the Ganges-Brahmaputra-Meghna delta[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 (4): 1867-1876. doi: 10.1073/pnas.1912921117

    [4]

    Yu S, Chen F, Jing X, et al. Increasing terrigenous pollen input in the Late Holocene: Indications of intensive human activity and accelerated delta plain progradation[J]. Marine Geology, 2021, 439: 106547. doi. 10.1016/j. margeo. 2021.106547. doi: 10.1016/j.margeo.2021.106547

    [5]

    Xiong H, Zong Y, Qian P, et al. Holocene sea-level history of the northern coast of South China Sea[J]. Quaternary Science Reviews, 2018, 194: 12-26. doi. 10.1016/j. quascirev. 2018.06.022. doi: 10.1016/j.quascirev.2018.06.022

    [6]

    Xiong H, Zong Y, Huang G, et al. Human drivers accelerated the advance of Pearl River deltaic shoreline in the past 7500 years[J]. Quaternary Science Reviews, 2020, 246: 106545. doi. 10.1016/j. quascirev. 2020.106545. doi: 10.1016/j.quascirev.2020.106545

    [7]

    Bi N, Wang H, Wu X, et al. Phase change in evolution of the modern Huanghe(Yellow River)delta: Process, pattern, and mechanisms[J]. Marine Geology, 2021, 437: 106516. doi. 10.1016/j. margeo. 2021.106516. doi: 10.1016/j.margeo.2021.106516

    [8]

    He L, Xue C, Ye S, et al. New evidence on the spatial-temporal distribution of superlobes in the Yellow River delta complex[J]. Quaternary Science Reviews, 2019, 214: 117-138. doi: 10.1016/j.quascirev.2019.05.003.

    [9]

    Zhang X, Lu Z, Jiang S, et al. The progradation and retrogradation of two newborn Huanghe(Yellow River)delta lobes and its influencing factors[J]. Marine Geology, 2018, 400: 38-48. doi. 10.1016/j. margeo. 2018.03.006. doi: 10.1016/j.margeo.2018.03.006

    [10]

    Fan D, Wu Y, Zhang Y, et al. South flank of the Yangtze delta: Past, present, and future[J]. Marine Geology, 2017, 392: 78-93. doi. 10.1016/j. margeo. 2017.08.015. doi: 10.1016/j.margeo.2017.08.015

    [11]

    李从先, 范代读. 全新世长江三角洲的发育及其对相邻海岸沉积体系的影响[J]. 古地理学报, 2009, 11 (1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200901017.htm

    Li Congxian, Fan Daidu. Development of the Holocene changjiang delta and its influence on adjacent coastal sedimentary systems[J]. Journal of Palaeogeography, 2009, 11 (1): 115-122. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200901017.htm

    [12]

    赵希涛, 胡道功, 吴中海, 等. 长江三角洲地区晚新生代地质与环境研究进展述评[J]. 地质力学学报, 2017, 23 (1): 1-64. doi: 10.3969/j.issn.1006-6616.2017.01.001

    Zhao Xitao, Hu Daogong, Wu Zhonghai, et al. Review of the research of Late Cennozoic geology and environment of the Yangtze River delta area[J]. Journal of Geomechanics, 2017, 23 (1): 1-64. doi: 10.3969/j.issn.1006-6616.2017.01.001

    [13]

    李从先, 陈庆强, 范代读, 等. 末次盛冰期以来长江三角洲地区的沉积相和古地理[J]. 古地理学报, 1999, 1 (4): 12-25. doi: 10.3969/j.issn.1671-1505.1999.04.002

    Li Congxian, Chen Qingqiang, Fan Daidu, et al. Palaeogeography and palaeoenvironment in Changjiang delta since last glaciation[J]. Journal of Paleogeography, 1999, 1 (4): 12-25. doi: 10.3969/j.issn.1671-1505.1999.04.002

    [14]

    Li C, Chen Q, Zhang J, et al. Stratigraphy and paleoenvironmental changes in the Yangtze delta during the Late Quaternary[J]. Journal of Asian Earth Sciences, 2000, 18 (4): 453-469. doi: 10.1016/S1367-9120(99)00078-4

    [15]

    Li C, Wang P, Sun H, et al. Late Quaternary incised-valley fill of the Yangtze delta(China): Its stratigraphic framework and evolution[J]. Sedimentary Geology, 2002, 152: 133-158. doi. 10.1016/S0037-0738 (02)00066-0. doi: 10.1016/S0037-0738(02)00066-0

    [16]

    李从先, 汪品先. 长江晚第四纪河口地层学研究[M]. 北京: 科学出版社, 1998: 1-200.

    Li Congxian, Wang Pinxian. Stratigraphy of Late Quaternay in Yangtze River Mouth Area[M]. Beijing: Science Press, 1998: 1-200.

    [17]

    Hori K, Saito Y, Zhao Q H, et al. Evolution of the coastal depositional systems of the Changjiang(Yangtze)River in response to Late Pleistocene-Holocene sea-level changes[J]. Journal of Sedimentary Research, 2002, 72 (6): 884-897. doi: 10.1306/052002720884

    [18]

    Wang Z, Saito Y, Zhan Q, et al. Three-dimensional evolution of the Yangtze River mouth, China during the Holocene: Impacts of sea level, climate and human activity[J]. Earth-Science Reviews, 2018, 185: 938-955. doi: 10.1016/j.earscirev.2018.08.012.

    [19]

    Jiang F, Zhao X, Chen J, et al. Depocenter shift and en-echelon shoal development in the pre-Holocene incised valley of the Yangtze delta, China[J]. Marine Geology, 2020, 426: 106212. doi: 10.1016/j.margeo.2020.106212.

    [20]

    Zhang X, Dalrymple R W, Lin C M. Facies and stratigraphic architecture of the Late Pleistocene to Early Holocene tide-dominated paleo-Changjiang(Yangtze River)delta[J]. Geological Society of America Bulletin, 2017, 130 (3-4): 455-483.

    [21]

    范代读, 李从先, 周保春, 等. 长江三角洲晚新生代地层独居石年龄谱与长江贯通时间研究[J]. 中国科学(D辑), 2005, 34 (11): 1015-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200411003.htm

    Fan Daidu, Li Congxian, Zhou Baochun, et al. Monazite age specra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time[J]. Science in China(Series D), 2005, 34 (11): 1015-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200411003.htm

    [22]

    陈静, 王哲, 王张华, 等. 长江三角洲东西部晚新生代地层中的重矿物差异及其物源意义[J]. 第四纪研究, 2007, 27 (5): 700-708. doi: 10.3321/j.issn:1001-7410.2007.05.011 http://www.dsjyj.com.cn/article/id/dsjyj_8763

    Chen Jing, Wang Zhe, Wang Zhanghua, et al. Heavy mineral and distribution and its provenance implication in Late Cenozoic sedmennts in wetstern and eastern area of the Changjiang River delta[J]. Quaternary Sciences, 2007, 27 (5): 700-708. doi: 10.3321/j.issn:1001-7410.2007.05.011 http://www.dsjyj.com.cn/article/id/dsjyj_8763

    [23]

    吴标云, 李从先. 长江三角洲第四纪地质[M]. 北京: 海洋出版社, 1987: 1-166.

    Wu Biaoyun, Li Congxian. Quaternary Geology of the Changjiang Delta[M]. Beijing: China Ocean Press, 1987: 1-166.

    [24]

    邓兵, 李从先, 张经, 等. 长江三角洲古土壤发育与晚更新世末海平面变化的耦合关系[J]. 第四纪研究, 2004, 24 (2): 222-230. doi: 10.3321/j.issn:1001-7410.2004.02.014 http://www.dsjyj.com.cn/article/id/dsjyj_9150

    Deng Bing, Li Congxian, Zhang Jing, et al. Correlation of palaeosol development in the Changjiang delta with sea level fluctuations in the Late Pleistocene[J]. Quaternary Sciences, 2004, 24 (2): 222-230. doi: 10.3321/j.issn:1001-7410.2004.02.014 http://www.dsjyj.com.cn/article/id/dsjyj_9150

    [25]

    冯文立, 季文婷, 冯金顺, 等. 江苏启东地区发现浅层天然气气源层与晚更新末次古土壤层——据江苏1: 5万余东镇等七幅区调[J]. 中国地质调查, 2015, 2 (2): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201502009.htm

    Feng Wenli, Ji Wenting, Feng Jinshun, et al. Discovery of the shallow gas source layer and Late Pleistocene paleosol in Qidong area, southeastern of Jiangsu Province: According to 1: 50000 Yudong Town and other six regional geological maps in Jiangsu Province[J]. Geological Survey of China, 2015, 2 (2): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201502009.htm

    [26]

    王辉, 郑祥民, 钱鹏, 等. 长江三角洲晚更新世第一硬土层研究进展[J]. 第四纪研究, 2021, 41 (6): 1771-1780. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.22

    Wang Hui, Zheng Xiangmin, Qian Peng, et al. An overview on the First Hard Soil Layer(FHSL)of the Late Pleistocene in the Yangtze River delta[J]. Quaternary Sciences, 2021, 41 (6): 1771-1780. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.22

    [27]

    Gao L, Long H, Shen J, et al. High-resolution OSL dating of a coastal sediment sequence from the South Yellow Sea[J]. Geochronometria, 2016, 43 (1): 143-154. doi: 10.1515/geochr-2015-0044

    [28]

    Gao L, Long H, Shen J, et al. Optical dating of Holocene tidal deposits from the southwestern coast of the South Yellow Sea using different grain-size quartz fractions[J]. Journal of Asian Earth Sciences, 2017, 135: 155-165. doi: 10.1016/j.jseaes.2016.12.036.

    [29]

    高磊, 隆浩. 长江三角洲晚第四纪陆-海交互地层的光释光年代学[J]. 地球环境学报, 2018, 9 (6): 527-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201806002.htm

    Gao Lei, Long Hao. Optical dating of the land-sea interactive deposits of the Yangtze River delta since the Late Quaternary[J]. Journal of Earth Environment, 2018, 9 (6): 527-540. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201806002.htm

    [30]

    Gao L, Long H, Zhang P, et al. The sedimentary evolution of Yangtze River delta since MIS3: A new chronology evidence revealed by OSL dating[J]. Quaternary Geochronology, 2019, 49: 153-158. doi: 10.1016/j.quageo.2018.03.010.

    [31]

    Gao L, Long H, Tamura T, et al. Refined chronostratigraphy of a Late Quaternary sedimentary sequence from the Yangtze River delta based on K-feldspar luminescence dating[J]. Marine Geology, 2020, 427: 106271. doi: 10.1016/j.margeo.2020.106271.

    [32]

    Gao L, Long H, Tamura T, et al. A~130ka terrestrial-marine interaction sedimentary history of the northern Jiangsu coastal plain in China[J]. Marine Geology, 2021, 435: 106455. doi: 10.1016/j.margeo.2021.106455.

    [33]

    Gao L, Long H, Hou Y D, et al. Chronology constraints on the complex sedimentary stratigraphy of the paleo-Yangtze incised valley in China[J]. Quaternary Science Reviews, 2022, 287: 107573. doi: 10.1016/j.quascirev.2022.107573.

    [34]

    Xu T Y, Wang G X, Shi X F, et al. Sequence stratigraphy of the subaqueous Changjiang(Yangtze River)delta since the Last Glacial Maximum[J]. Sedimentary Geology, 2016, 331: 132-147. doi: 10.1016/j.sedgeo.2015.10.014.

    [35]

    陈中原. 长江三角洲之沉降[J]. 火山地质与矿产, 2001, 22 (2): 95-101. doi: 10.3969/j.issn.1671-4814.2001.02.004

    Cheng Zhongyuan. Yangtze delta subsidence[J]. Volcanology and Mineral Resouces, 2001, 22 (2): 95-101. doi: 10.3969/j.issn.1671-4814.2001.02.004

    [36]

    于振江, 郭盛乔, 梁晓红, 等. 长江三角洲(江南)地区第四纪海侵层的划分及时代归属[J]. 地层学杂志, 2005, 29(S1): 618-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ2005S1029.htm

    Yu Zhenjiang, Guo Shengqiao, Lian Xiaohong, et al. Division and assignment of the Quaternary transgression layers in the Yangtze delta area(Southern Yangzte)[J]. Journal of Stratigraphy, 2005, 29(S1): 618-625. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ2005S1029.htm

    [37]

    苏建锋, 范代读, 冷伟, 等. 冰后期以来长江水下三角洲层序地层特征及沉积环境演化[J]. 古地理学报, 2017, 19 (3): 541-556. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201703013.htm

    Su Jiangfeng, Fan Daidu, Leng Wei, et al. Sequence stratigraphy of the postglacial Changjiang subaqueous delta and the depositional environmental evolution[J]. Journal of Palaeogeography, 2017, 19 (3): 541-556. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201703013.htm

    [38]

    Hori K, Saito Y, Zhao Q, et al. Architecture and evolution of the tide-dominated Changjiang(Yangtze)River delta, China[J]. Sedimentary Geology, 2002, 146 (3-4): 249-264.

    [39]

    于俊杰, 劳金秀, 蒋仁, 等. 基于多重地层对比研究还原长江三角洲北翼晚第四纪古环境演变[J]. 地质通报, 2016, 35 (10): 1692-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201610017.htm

    Yu Junjie, Lao Jinxiu, Jiang Ren, et al. Reconstruction of the Late Quaternary paleoenvironment on the north wing of the Yangtze River delta, based on comparative of the multistratigraphies[J]. Geological Bulletin of China, 2016, 35 (10): 1692-1704. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201610017.htm

    [40]

    张振克, 谢丽, 张云峰, 等. 苏北平原MIS3阶段海侵事件的沉积记录[J]. 第四纪研究, 2010, 30 (50): 883-891. http://www.dsjyj.com.cn/article/id/dsjyj_8586

    Zhang Zhenke, Xie Li, Zhang Yunfeng, et al. Sedimentary records of the MIS3 transgression event in the North Jiangsu Plain, China[J]. Quaternary Sciences, 2010, 30 (50): 883-891. http://www.dsjyj.com.cn/article/id/dsjyj_8586

    [41]

    夏非, 张永战. 苏北平原龙冈LG孔晚第四纪地层与环境演化记录[J]. 地理研究, 2018, 37 (2): 433-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201802016.htm

    Xia Fei, Zhang Yongzhan. Late Quaternary strata and environmental evolution record of core LG in Longgang, North Jiangsu Plain, China[J]. Geographical Research, 2018, 37 (2): 433-446. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201802016.htm

    [42]

    Cheng Y, Li X Q, Shu J W, et al. Sedimentary evolution and transgressions of the western Subei Basin in Eastern China since the Late Pliocene[J]. Acta Geologica Sinica(English Edition), 2019, 93 (1): 155-166.

    [43]

    Sun Z Y, Li G, Yin Y. The Yangtze River deposition in southern Yellow Sea during marine oxygen isotope stage 3 and its implications for sea-level changes[J]. Quaternary Research, 2015, 83 (1): 204-215.

    [44]

    郑光膺, 孙嘉师, 林和茂, 等. 南黄海第四纪层型地层对比[M]. 北京: 科学出版社, 1989: 1-269.

    Zheng Guanying, Sun Jiashi, Lin Hemao, et al. The Correlation and Comparison of Quaternary Stratigraphy in South Yellow Sea[M]. Beijing: Science Press, 1989: 1-269.

    [45]

    Hori K, Saito Y, Zhao Q H, et al. Sedimentary facies and Holocene progradation rates of the Changjiang(Yangtze)delta, China[J]. Geomorphology, 2001, 41 (2-3): 233-248.

    [46]

    Zhao B, Wang Z, Chen J, et al. Marine sediment records and relative sea level change during Late Pleistocene in the Changjiang delta area and adjacent continental shelf[J]. Quaternary International, 2008, 186 (1): 164-172.

    [47]

    Wang Z H, Jones B G, Chen T, et al. A raised OIS 3 sea level recorded in coastal sediments, southern Changjiang delta plain, China[J]. Quaternary Research, 2013, 79 (3): 424-438.

    [48]

    赵宝成. 长江三角洲前缘晚第四纪层序特征及冰后期海平面波动沉积响[J]. 上海国土资源, 2013, 34 (42): 50-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201302013.htm

    Zhao Baocheng. Late Quaternary sequence stratigtraphy of the Yangtze River delta-front area with special reference to the response of the sedimentary environment to postglacial sea-level change[J]. Shanghai Land and Resources, 2013, 34 (42): 50-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD201302013.htm

    [49]

    Song B, Li Z, Saito Y, et al. Initiation of the Changjiang(Yangtze)delta and its response to the mid-Holocene sea level change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 81-97. doi: 10.1016/j.palaeo.2013.07.026.

    [50]

    Wellner R W, Bartek L R. The effect of sea level, climate, and shelf physiography on the development of incised-valley complexes: A modern example from the East China Sea[J]. Journal of Sedimentary Research, 2003, 73 (6): 926-940.

    [51]

    Li C X, Wang P, Fan D D, et al. Characteristics and formation of Late Quateranry incised-valley-fill sequence in sediment-rich deltas and estuaries: Cases studies from China[M]//Dalrymple R W, Leckie D A, Tillman R W eds. Incised Valleys in Time and Space. Tulsa, Oklahoma, U. S.A. : Society for Sedimentary Geology(SEPM)Special Publication 85, 2006, 141-160. doi: 10.2110/pec.06.85.0141.

    [52]

    Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41 (4): 369-391.

    [53]

    Long H, Shen J, Wang Y, et al. High-resolution OSL dating of a Late Quaternary sequence from Xingkai Lake(NE Asia): Chronological hallenge of the "MIS 3a Mega-paleolake" hypothesis in China[J]. Earth and Planetary Science Letters, 2015, 428: 281-292. doi: 10.1016/j.epsl.2015.07.003.

    [54]

    Lambeck K, Esat T M, Potter E-K. Links between climate and sea levels for the past three million years[J]. Nature, 2002, 419 (6903): 199.

    [55]

    曹光杰, 王建, 屈贵贤. 末次盛冰期以来长江河口段河道演变研究综述[J]. 地球科学进展, 2006, 21 (10): 1039-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200610006.htm

    Cao Guangjie, Wang Jian, Qu Guixian. An overview of the research on channel evolution in the Yangtze River mouth region since the Last Glacial Maximum[J]. Advances in Earth Sciences, 2006, 21 (10): 1039-1045. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200610006.htm

    [56]

    曹光杰, 王建, 屈贵贤. 末次盛冰期以来长江南通段古河谷的地层特征[J]. 地层学杂志, 2007, 31 (2): 175-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200702011.htm

    Cao Guangjie, Wang Jian, Qu Guixian. Stratigraphic framework characteristics of the Yangtze River's incised valley in Nantong since the Last Glacial Maximum[J]. Journal of Stratigraphy, 2007, 31 (2): 175-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200702011.htm

    [57]

    张家强, 张桂甲, 李从先. 长江三角洲晚第四纪地层层序特征[J]. 同济大学学报, 1998, 26 (4): 438-442. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199804036.htm

    Zhang Jiaqiang, Zhang Guijia, Li Congxian. Characteristics of the Late Quaternary stratigraphic sequence in the Changjiang River delta[J]. Journal of Tongji Unniversity, 1998, 26 (4): 438-442. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ199804036.htm

    [58]

    刘振夏, Serge Berne, L'ATALANTE科学考察组. 东海陆架的古河道和古三角洲[J]. 海洋地质与第四纪地质, 2000, 20 (1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200001001.htm

    Liu Zhengxia, Serge Berne, the L'ATALANTE Scientific Party. Paleochannels and paleodeltas in the contimental shelf of the East China Sea[J]. Marine Geology & Quaternary Geology, 2000, 20 (1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200001001.htm

    [59]

    Liu Z X, Berne S, Saito Y, et al. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea[J]. Journal of Asian Earth Sciences, 2000, 18 (4): 441-452.

    [60]

    Liu J, Qiu J D, Saito Y, et al. Formation of the Yangtze shoal in response to the post-glacial transgression of the paleo-Yangtze(Changjiang)estuary, China[J]. Marine Geology, 2020, 423: 106080. doi: 10.1016/j.margeo.2019.106080.

    [61]

    Su J F, Fan D D, Liu J P, et al. Anatomy of the transgressive depositional system in a sediment-rich tide-dominated estuary: The paleo-Yangtze estuary, China[J]. Marine and Petroleum Geology, 2020, 121: 104588. doi: 10.1016/j.marpetgeo.2020.104588.

    [62]

    Nian X M, Zhang W G, Wang Z H, et al. The chronology of a sediment core from incised valley of the Yangtze River delta: Comparative OSL and AMS14 C dating[J]. Marine Geology, 2018, 395: 320-330. doi: 10.1016/j.margeo.2017.11.008.

    [63]

    Nian X M, Zhang W G, Wang Z H, et al. Inter-comparison of optically stimulated luminescence(OSL)ages between different fractions of Holocene deposits from the Yangtze delta and its environmental implications[J]. Marine Geology, 2021, 432: 106401. doi: 10.1016/j.margeo.2020.106401.

    [64]

    Liu J, Saito Y, Kong X H, et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea[J]. Marine Geology, 2010, 278 (1-4): 54-76.

    [65]

    Zeng J W, Liu K, Jiang R, et al. Sedimentary records of paleoseismic events in the Late Pleistocene sediments of the southern Yangtze River deltaic plain, East China, and their implications for differential subsidence of the Taihu block[J]. Journal of Asian Earth Sciences, 2019, 181: 103897. doi: 10.1016/j.jseaes.2019.103897.

    [66]

    Long Z R, Wang Z B, Tu H, et al. OSL and radiocarbon dating of a core from the Bohai Sea in China and implication for Late Quaternary transgression pattern[J]. Quaternary Geochronology, 2022, 70: 101308. doi: 10.1016/j.quageo.2022.101308.

    [67]

    Xu X L, Zhong J M, Huang X M, et al. Age comparison by luminescence using quartz and feldspar on core HPQK01 from the Pearl River delta in China[J]. Quaternary Geochronology, 2022, 71: 101320. doi: 10.1016/j.quageo.2022.101320.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  2484
  • PDF下载数:  197
  • 施引文献:  0
出版历程
收稿日期:  2022-06-02
修回日期:  2022-10-30
刊出日期:  2023-01-30

目录