太原盆地晚新生代沉积物元素地球化学特征及古环境意义——以清徐ZK01钻孔为例

冯志强, 沈梦娟, 刘永江, 魏荣珠, 王权, 白洋, 郝书清, 杜艳伟. 太原盆地晚新生代沉积物元素地球化学特征及古环境意义——以清徐ZK01钻孔为例[J]. 第四纪研究, 2023, 43(1): 1-19. doi: 10.11928/j.issn.1001-7410.2023.01.01
引用本文: 冯志强, 沈梦娟, 刘永江, 魏荣珠, 王权, 白洋, 郝书清, 杜艳伟. 太原盆地晚新生代沉积物元素地球化学特征及古环境意义——以清徐ZK01钻孔为例[J]. 第四纪研究, 2023, 43(1): 1-19. doi: 10.11928/j.issn.1001-7410.2023.01.01
冯志强, 沈梦娟, 刘永江, 魏荣珠, 王权, 白洋, 郝书清, 杜艳伟. 太原盆地晚新生代沉积物元素地球化学特征及古环境意义——以清徐ZK01钻孔为例[J]. 第四纪研究, 2023, 43(1): 1-19. doi: 10.11928/j.issn.1001-7410.2023.01.01 FENG Zhiqiang, SHEN Mengjuan, LIU Yongjiang, WEI Rongzhu, WANG Quan, BAI Yang, HAO Shuqing, DU Yanwei. Major and trace elements geochemical characteristics and paleoenvironmental implications of borehole ZK01 in Taiyuan Basin of the North China[J]. Quaternary Sciences, 2023, 43(1): 1-19. doi: 10.11928/j.issn.1001-7410.2023.01.01
Citation: FENG Zhiqiang, SHEN Mengjuan, LIU Yongjiang, WEI Rongzhu, WANG Quan, BAI Yang, HAO Shuqing, DU Yanwei. Major and trace elements geochemical characteristics and paleoenvironmental implications of borehole ZK01 in Taiyuan Basin of the North China[J]. Quaternary Sciences, 2023, 43(1): 1-19. doi: 10.11928/j.issn.1001-7410.2023.01.01

太原盆地晚新生代沉积物元素地球化学特征及古环境意义——以清徐ZK01钻孔为例

  • 基金项目:

    山西省自然资源厅地勘基金项目(批准号: HXCT01-2018F005)、山西省自然科学基金项目(批准号: 2019L0126和2019L0054)和山西省优秀博士来晋工作奖励基金项目(批准号: SXYBKY2019032)共同资助

详细信息
    作者简介:

    冯志强, 男, 37岁, 副教授, 构造地质学专业, E-mail: fengzhiqiang@tyut.edu.cn

  • 中图分类号: P534.62;P595

Major and trace elements geochemical characteristics and paleoenvironmental implications of borehole ZK01 in Taiyuan Basin of the North China

  • 沉积岩的主、微量元素蕴含了大量的地质信息, 在古环境、古气候变化的研究中, 占据着极其重要的地位。本研究以太原盆地ZK01钻孔为对象, 通过对长度为853.5m岩芯的主、微量元素和元素比值(如化学风化指数CIA、Al2O3/Na2O、MgO/CaO、Rb/Sr、Cu/Zn、V/(V+Ni)、V/Cr)变化特征进行分析, 旨在探讨太原盆地古环境、古气候变化。研究发现, 主、微量元素变化特征指示了太原盆地具有Al2O3、Na2O、Ni、Cr、Cl、S亏损, CaO、Pb、N、Rb明显富集的特征; 通过对CIA指数研究表明, 太原盆地地层和大陆上地壳(UCC)及陆源页岩的风化强度序列为: 下土河组一段>红崖组>下土河组二段>陆源页岩>小白组>木瓜组>汾河组>大沟组>UCC; 从Cu/Zn、V/Cr、V/(V+Ni)元素比值变化可以判断研究区环境自下而上表现为弱还原性-弱氧化性的旋回, 且以贫氧为主; 又根据CIA、Al2O3/Na2O、MgO/CaO、Rb/Sr变化特征可将盆地气候划分为3个阶段: 中新世晚期(8.1~5.3Ma), 气候变化由寒冷干燥转向温暖湿润; 上新世-早更新世(5.30~0.78Ma), 气候以温暖湿润为主, 5.30~2.58Ma气候温暖湿润, 2.58~1.64Ma气候相对稳定, 1.64~0.78Ma寒冷干燥与温暖湿润气候交替出现; 中更新世-全新世(0.78~0Ma), 基本为温暖湿润气候。研究表明, 研究区气候变化不仅反映了东亚季风由上新世前不显著至上新世中逐步建立, 直至第四纪早期稳定建立的动态过程, 还反映出青藏高原隆升等构造活动对其造成的影响。

  • 加载中
  • 图 1 

    山西断陷盆地带的构造图(a)和ZK01钻孔位置图(b)

    Figure 1. 

    Tectonic map of Shanxi faulted basin depression zone (a) and location diagram (b) of borehole ZK01

    图 2 

    太原盆地地层野外照片与各地层分界处岩性变化

    Figure 2. 

    Stratigraphic field photographs and lithologic changes at stratigraphic boundaries in Taiyuan Basin.

    图 3 

    ZK01钻孔年龄-深度线性关系图

    Figure 3. 

    The linear relationship between the drilling age and depth of borehole ZK01, and data comes from Wei et al. [19]

    图 4 

    太原盆地主量元素浓度(%)随深度变化趋势图

    Figure 4. 

    Variation trend of major elemental concentration(%)with depth in Taiyuan Basin, and data comes from Wei et al. [19], Cande and Kent[30], and Xiao et al. [31]

    图 5 

    各地层主量元素含量对比图

    Figure 5. 

    Comparison chart of major element content in each layer

    图 6 

    太原盆地主量元素变化趋势

    Figure 6. 

    Variation trend of major elements in Taiyuan Basin

    图 7 

    太原盆地微量元素浓度(10-6)随深度变化趋势图

    Figure 7. 

    Trend of trace element concentration(10-6)with depth in Taiyuan Basin, and data comes from Wei et al. [19], Cande and Kent[30], and Xiao et al. [31]

    图 8 

    太原盆地微量元素上地壳标准化

    Figure 8. 

    Standardization of trace elements in upper crust of Taiyuan Basin

    图 9 

    元素比值浓度随深度变化图

    Figure 9. 

    Element ratio concentration variation with depth and data comes from Wei et al. [19], Cande and Kent[30], and Xiao et al. [31]

    表 1 

    晋中盆地晚新生代岩石地层划分沿革

    Table 1. 

    Division and evolution of Late Cenozoic rock strata in Jinzhong Basin

    张士亚[27] 曹家欣等[28] 王乃樑等[29] 山西省地质矿产局[26] 魏荣珠等(2022)[19]
    时代 晋中断陷 太谷地区 时代 太谷地区 时代 太谷地区 时代 晋中盆地 时代 晋中盆地
    Q
    (第四纪)
    汾河组 马兰组 Q Qh-Qp2 汾河组 Qh-Qp2 汾河组
    离石组
    柳沟组 木瓜组 Qp1 木瓜组 Qp1 木瓜组 Qp1 木瓜组
    N2
    (新近纪)
    义安组 大沟组 大沟组 大沟组 大沟组 大沟组
    红崖组 红崖组 红崖组 静乐组 N22 红崖组
    史家社组 小白组 Q-N 南畔组 N2 小白组 N2 小白组 N21 小白组
    西谷组
    胡村组 下土河组 N 深凹组 下土河组 下土河组 N15 下土河组 二段
    城子组 N14 一段
    王吴组
    下载: 导出CSV

    表 2 

    ZK01孔综合地层划分及沉积环境变化[19]

    Table 2. 

    Comprehensive stratigraphic division and sedimentary environment changes of borehole ZK01[19]

    年代(Ma) 年代地层 岩石地层 埋深(m) 主要沉积相
    代号 地层符号
    0~0.78 第四系 全新统-中更新统 Qh-Qp2 汾河组 Qf1 0~110.21 浅湖-河漫沼泽-河流
    0.78~2.58 下更新统 Qp1 木瓜组 Qp1m 110.21~182.00 半深湖
    大沟组 Qp1d 182.0~263.8 滨浅湖
    2.58~3.60 新近系 上新统 N22 红崖组 N2h 263.8~399.3 三角洲
    3.6~5.3 N21 小白组 N2xb 399.3~584.0 半深湖-深湖
    5.30~7.25 中新统 N15 下土河组二段 N1x2 584.0~704.0 河流-滨浅湖
    7.25~8.10 N14 下土河组一段 N1x1 704.0~853.5 冲积扇
    下载: 导出CSV

    表 3 

    太原盆地主量元素含量(%)均值与最值

    Table 3. 

    Mean and maximum values of some major elements in Taiyuan Basin

    采样位置 SiO2 Al2O3 Fe2O3 CaO K2O Na2O MgO Al2O3/Na2O Mgo/CaO CIA*
    0~110.21 m
    汾河组
    (n=21)
    均值 59.28 12.84 4.7 6.4 2.58 1.66 2.69 8.57 0.44 68.71
    最小值 53.14 10.87 2.63 2.26 2.23 1.03 1.18 3.35 0.25 58.19
    最大值 69.47 14.92 6.83 9.73 3.18 3.24 3.74 14.49 0.62 74.09
    110.21~182.00 m
    木瓜组
    (n=14)
    均值 56.15 11.62 4.09 10.1 2.33 1.42 2.61 9.84 0.37 69.48
    最小值 29.28 7.83 2.92 3.65 1.43 0.56 1.94 4.39 0.08 60.35
    最大值 71.66 14.37 6.12 29.51 2.71 2.59 4.22 16.71 0.62 76.44
    182.0~263.8 m
    大沟组
    (n=16)
    均值 61.07 12.77 4.52 4.78 2.64 1.95 2.81 8.61 0.64 66.59
    最小值 48.82 11.1 2.12 2.3 2.23 0.64 1.22 3.42 0.45 57.04
    最大值 68.54 16.53 7.31 8.3 3.28 3.26 5.48 25.83 1.08 78.45
    263.8~399.3 m
    红崖组
    (n=37)
    均值 55.5 13.83 5.75 6.7 2.85 1.04 3.86 15.77 0.73 73.37
    最小值 39.36 7.87 2.85 2.29 1.84 0.51 2.15 4.88 0.21 61.45
    最大值 63.84 16.92 8.02 20.17 3.45 2.35 7.16 32.94 2.04 80.34
    399.3~584.0 m
    小白组
    (n=40)
    均值 49.35 11.55 4.67 11.83 2.51 1.22 4.29 10.40 0.46 69.61
    最小值 16.36 4.4 1.61 3.94 0.85 0.39 1.52 3.74 0.11 54.15
    最大值 66.74 16.37 7.46 31.84 3.65 2.6 10.28 25.64 0.94 77.77
    584~704 m
    下土河组二段
    (n=26)
    均值 62.46 13.57 5.21 4.04 2.88 1.23 2.44 13.54 1.19 72.06
    最小值 51.5 9.39 3.11 0.55 2 0.54 1.3 4.12 0.11 63.97
    最大值 72.24 17.34 7.75 13.89 3.77 3.17 4.12 24.37 3.09 77.53
    704.0~853.5 m
    下土河组一段
    (n=28)
    均值 67.2 13.06 4.35 3.01 2.68 0.67 1.51 22.32 1.24 76.1
    最小值 55.92 6.54 2.08 0.37 1.38 0.24 0.54 6.52 0.08 65.09
    最大值 84.08 18.31 7.41 13.18 3.6 1.54 3.25 35.37 3.03 81.02
    全钻孔
    (n=182)
    均值 57.92 12.8 4.86 6.94 2.66 1.23 3.07 11.52 0.73 71.46
    最小值 16.36 4.4 1.61 0.37 0.85 0.24 0.54 3.35 0.08 54.15
    最大值 84.08 18.31 8.02 31.84 3.77 3.26 10.28 33.29 3.09 81.02
    UCC 均值 66.6 15.4 5.04 3.59 2.80 3.27 2.48 47.24 0.69 47.92
    陆源页岩 均值 62.8 18.9 7.22 1.3 3.7 1.2 2.2 15.75 1.69 70.36
    * CIA=100×Al2O3/(Al2O3+CaO*+Na2O+K2O),计算中主量元素含量均需换算成摩尔分数;CaO*为硅酸盐中的CaO,即全岩中CaO扣掉化学沉积的CaO的摩尔分数[41],而对于CaO*的校正,采用CaO*=CaO-(10/3×P2O5);校正后CaO*摩尔数为Na2O和CaO的最小值
    下载: 导出CSV

    表 4 

    几大区域部分主量元素平均含量(%)

    Table 4. 

    Average content of major oxides in several regions(%)

    研究区 SiO2 Al2O3 CaO Fe2O3 MgO K2O Na2O TiO2 P2O5 MnO
    UCC[32] 66.60 15.40 3.59 5.04 2.48 2.80 3.27 0.64 0.15 0.10
    鄂尔多斯[33] 45.45 13.00 1.43 8.93 1.24 2.30 1.20 0.41 0.35 0.13
    NASC[34] 64.80 16.90 3.56 5.70 2.85 3.99 1.15 0.78 0.13 0.06
    CEC[35] 65.46 13.65 3.31 5.37 2.52 2.58 2.75 0.65 0.15 0.10
    洛川[36] 66.15 14.13 6.74 5.46 2.29 2.72 1.50 0.77 0.16 0.10
    太原盆地 57.92 12.8 6.94 4.86 3.07 2.66 1.23 0.59 0.12 0.11
    下载: 导出CSV

    表 5 

    太原盆地部分元素富集系数

    Table 5. 

    Standardization of some elements in Taiyuan Basin

    地层元素含量 SiO2 Al2O3 Fe2O3 CaO K2O Na2O MgO
    汾河组 0.89 0.83 0.93 1.78 0.92 0.51 1.08
    木瓜组 0.84 0.75 0.81 2.81 0.83 0.43 1.05
    大沟组 0.92 0.83 0.90 1.33 0.94 0.60 1.14
    红崖组 0.83 0.90 1.14 1.87 1.02 0.32 1.56
    小白组 0.74 0.75 0.93 3.30 0.90 0.37 1.73
    下土河组二段 0.94 0.88 1.03 1.13 1.03 0.38 0.98
    下土河组一段 1.01 0.85 0.86 0.84 0.96 0.20 0.61
    下载: 导出CSV

    表 6 

    太原盆地各地层微量元素含量最值与均值

    Table 6. 

    Mean and maximum values of trace elements contents in different layers in Taiyuan Basin

    采样位置 Pb Br Ga Zn Nb Ni Mn Cr N Cl S P Cu Sr Rb Rb/Sr V/Cr V/(V+Ni) Cu/Zn
    0~110.21 m
    汾河组
    (n=21)
    最小值 14.1 0.5 13.1 24.0 9.7 8.8 271 28.1 134 77.8 154 393 9.0 168 61.1 0.18 1.24 0.7 0.29
    最大值 25.8 2.9 21.8 106.4 14.3 46.6 1350 89 424 577 631 677 37.3 342 129 0.63 1.39 0.72 0.39
    均值 20.37 1.68 16.64 69.37 12.94 31.47 685.38 64.88 245.01 231.22 263.57 581.22 24.17 257.89 97.2 0.38 1.3 0.71 0.35
    110.21~182.00 m
    木瓜组
    (n=14)
    最小值 15.9 0.9 9.6 47.1 10.2 18.4 382 42.9 144 106 126 545 11.6 184 65.3 0.19 1.09 0.68 0.19
    最大值 24.9 2.1 17.7 86.3 14.7 36.5 1177 75.6 459 231 1835 869 28.1 479 106 0.45 1.3 0.75 0.5
    均值 19.16 1.37 14.9 63.77 13 27.05 647.50 59.02 288.28 154.86 484.59 642.85 20.89 292.45 90.1 0.32 1.19 0.72 0.34
    182.0~263.8 m
    大沟组
    (n=16)
    最小值 15.5 1.1 12.9 22.8 9.4 8.5 221 23.7 99 98 108 424 7.9 246 65.4 0.18 1.04 0.69 0.27
    最大值 28.3 2.4 22.0 141 15.2 46.1 785 90.3 373 238 259 852 152 468 125 0.35 1.29 0.77 1.08
    均值 19.17 1.6 16.25 66 12.37 24.74 485.25 58.63 200.04 149.93 179.41 605.79 28.86 354.34 88.8 0.26 1.15 0.72 0.38
    263.8~399.3 m
    红崖组
    (n=37)
    最小值 16.7 1.0 10.8 39.4 8.6 18.0 393 37.4 79 64.60 91.40 394 14.0 258 61.1 0.10 1.03 0.68 0.3
    最大值 31.8 2.5 26.5 125 17.2 52.3 2398 111 488 228 226 995 43.2 786 153 0.57 1.42 0.76 0.62
    均值 23.18 1.66 18.98 81.94 13.33 33.84 778.62 71.99 258.08 111.80 149.30 544.50 28.34 405.92 110.3 0.30 1.2 0.72 0.35
    399.3~584.0 m
    小白组
    (n=40)
    最小值 10.6 0.7 7.5 20.3 3.0 7.4 263 8.7 134 72.10 118 317 7.2 212 50.6 0.03 1.05 0.67 0.27
    最大值 33.7 3.0 24.9 124 17.5 45.8 1048 98 679 747 2127 726 56.0 1641 136 0.56 1.35 0.73 0.63
    均值 22.28 1.82 17.71 79.61 12.68 31.99 685.94 65.87 380.26 195.18 505.41 507.40 30.58 440.80 106.6 0.33 1.17 0.7 0.39
    584~704 m
    下土河组二段
    (n=26)
    最小值 14.5 0.3 11.4 43.1 7.8 15.7 434 38.9 127 48.40 86.30 270 13.7 161 68.4 0.18 1.1 0.69 0.3
    最大值 32.6 2.0 25.7 116.7 15.8 46.0 1486 103 651 330 632 991 42.9 536 148 0.70 1.23 0.73 0.66
    均值 23.5 1.16 17.99 78.16 12.26 32.43 697.75 67.96 306.09 128.31 236.63 556.33 28.16 316.25 103.4 0.36 1.17 0.7 0.37
    704.0~853.5 m
    下土河组一段
    (n=28)
    最小值 12 0.4 7.6 26 6.7 12.7 349 22.6 141 54 81 207 7.4 68.6 43.4 0.24 1 0.7 0.28
    最大值 31.9 1.86 24.1 107.8 15.7 41 927 88.5 538 682 822 794 81.7 382 142 0.63 1.37 0.73 0.86
    均值 20 1.05 14.67 59.7 11.32 25.35 601.02 53.6 231.94 152.93 185.3 472.18 22.08 200.4 90.16 0.47 1.21 0.72 0.36
    全钻孔
    (n=182)
    最小值 10.6 0.3 7.5 20.3 3.0 7.4 220.7 8.7 79.0 48.4 80.5 207 7.2 68.6 43.4 0.03 1 0.67 0.19
    最大值 33.7 3.0 26.5 140.5 17.5 52.3 2398 110.8 679.1 747.3 2127 995 152 1641 153 0.70 1.42 0.77 1.08
    均值 21.48 1.5 17.02 72.87 12.56 30.22 668.57 64.07 281.64 160.89 286.07 546.65 26.75 334.57 99.98 0.35 1.2 0.71 0.36
    下载: 导出CSV

    表 7 

    各微量元素平均含量与上地壳对应元素含量(10-6)

    Table 7. 

    Average contents of trace elements and corresponding elements in the upper crust

    地层 微量元素含量
    Pb Br Ga Zn Nb Th Ni Cr N Cl S Cu Sr Rb Zr Y
    汾河组 20.37 1.68 16.64 69.37 12.94 9.83 31.47 64.88 245.01 231.22 263.57 23.77 257.89 97.22 199.44 22.64
    木瓜组 19.16 1.11 17.57 74.85 12.79 10.28 31.39 65.16 210.23 163.26 202.06 31.04 259.38 102.33 206.71 20.34
    大沟组 19.17 1.60 16.25 66.00 12.37 9.08 24.74 58.63 200.04 149.93 179.41 28.86 354.34 88.76 226.34 19.31
    红崖组 23.40 1.65 19.32 83.29 13.53 12.67 34.31 73.19 262.55 112.20 148.58 28.79 393.06 111.91 179.70 23.58
    小白组 22.16 1.82 17.53 78.72 12.57 12.07 31.75 65.33 368.91 189.49 482.99 30.09 448.51 105.59 161.18 24.68
    下土河组二段 23.50 1.16 17.99 78.16 12.26 11.28 32.43 67.96 306.09 128.31 236.63 28.16 316.25 103.40 173.20 20.64
    下土河组一段 20.00 1.05 14.67 59.70 11.32 9.07 25.35 53.60 231.94 152.93 185.30 22.08 200.40 90.16 180.39 17.77
    上陆壳均值 17.00 1.60 17.50 67.00 12.00 10.50 47.00 92.00 83.00 370.00 621.00 28.00 320.00 84.00 193.00 21.00
    下载: 导出CSV

    表 8 

    微量元素富集系数值

    Table 8. 

    Enrichment coefficient values of trace elements

    微量
    元素
    地层
    汾河组 木瓜组 大沟组 红崖组 小白组 下土河组二段 下土河组一段
    Pb 1.2 1.13 1.13 1.36 1.31 1.38 1.18
    Br 1.05 0.86 1 1.04 1.14 0.72 0.66
    Ga 0.95 0.85 0.93 1.08 1.01 1.03 0.84
    Zn 1.04 0.95 0.99 1.22 1.19 1.17 0.89
    Nb 1.08 1.08 1.03 1.11 1.06 1.02 0.94
    Th 0.94 0.91 0.86 1.19 1.16 1.07 0.86
    Ni 0.67 0.58 0.53 0.72 0.68 0.69 0.54
    Cr 0.71 0.64 0.64 0.78 0.72 0.74 0.58
    N 2.95 3.47 2.41 3.11 4.58 3.69 2.79
    Cl 0.62 0.42 0.41 0.3 0.53 0.35 0.41
    S 0.42 0.78 0.29 0.24 0.81 0.38 0.3
    Cu 0.86 0.75 1.03 1.01 1.09 1.01 0.79
    Sr 0.81 0.91 1.11 1.27 1.3 0.99 0.63
    Rb 1.16 1.07 1.06 1.31 1.27 1.23 1.07
    Zr 1.03 1.07 1.17 0.92 0.84 0.9 0.93
    Y 1.08 1.1 0.92 1.12 1.18 0.98 0.85
    下载: 导出CSV

    表 9 

    氧化与还原环境的判别指标

    Table 9. 

    Discriminant index of oxidation and reduction environment

    环境性质 Cu/Zn V/Cr V/(V+Ni)
    还原环境 <0.21 >4.25 >0.84
    亚还原环境 0.21~0.35 2.00~4.25 0.54~0.82
    氧化环境 0.35~0.50 < 2 < 0.60
    下载: 导出CSV
  • [1]

    Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales[J]. Chemical Geology, 1993, 104 (1-4): 1-37. doi: 10.1016/0009-2541(93)90140-E

    [2]

    韩吟文, 陈北岳, 柳建华, 等. 扬子陆块西缘晚古生代玄武岩浆的性质和演化——玄武岩、辉绿玢岩稀土元素、微量元素地球化学研究[J]. 地球科学, 1999, 24 (3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX903.003.htm

    Han Yinwen, Chen Beiyue, Liu Jianhua, et al. Characteristics and evolution of Late Paleozoic basaltic magmas in the western margin of the Yangtze Block: REE and trace elements geochemistry of basalts and diabase porphyrites[J]. Earth Science, 1999, 24 (3): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX903.003.htm

    [3]

    罗立强, 马光祖, 詹秀春. 地球化学分析[J]. 分析试验室, 2002, 21 (2): 97-108. doi: 10.3969/j.issn.1000-0720.2002.02.032

    Luo Liqiang, Ma Guangzu, Zhan Xiuchun. Geochemical analysis[J]. Analysis Laboratory, 2002, 21 (2): 97-108. doi: 10.3969/j.issn.1000-0720.2002.02.032

    [4]

    Huntsman-Mapila H P, Ringrose S, Mackay A W, et al. Use of the geochemical and biological sedimentary record in establishing palaeoenvironments and climate change in the Lake Ngami Basin, NW Botswana[J]. Quaternary International, 2006, 148 (1): 51-64. doi: 10.1016/j.quaint.2005.11.029

    [5]

    Parker A G, Goudie A S, Stokes S, et al. A record of Holocene climate change from lake geochemical analyses in southeastern Arabia[J]. Quaternary Research, 2006, 66 (3): 465-476. doi: 10.1016/j.yqres.2006.07.001

    [6]

    邱海鸥, 孙文, 汤志勇, 等. 西藏吉隆盆地沃马剖面元素地球化学特征及环境指示意义[J]. 地球科学, 2010, 35 (5): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005007.htm

    Qiu Hai'ou, Sun Wen, Tang Zhiyong, et al. Geochemical characteristics of the Oma section in the Tibetan Gyirong Basin and its implications on environment change[J]. Earth Science, 2010, 35 (5): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201005007.htm

    [7]

    彭治超, 李亚男, 张孙玄琦, 等. 主微量元素地球化学特征在沉积环境中的应用[J]. 西安文理学院学报(自然科学版), 2018, 21 (3): 108-111. doi: 10.3969/j.issn.1008-5564.2018.03.023

    Peng Zhichao, Li Yanan, Zhang Sun Xuanqi, et al. Application of geochemical characteristics of major and trace elements in sedimentary environment[J]. Journal of Xi'an University of Arts and Sciences(Natural Science Edition), 2018, 21 (3): 108-111. doi: 10.3969/j.issn.1008-5564.2018.03.023

    [8]

    Tribovillard N, Averbuch O, Devleeschouwer X, et al. Deep-water anoxia over the Frasnian-Famennian boundary(La Serre, France): A tectonically induced oceanic anoxic event?[J]. Terra Nova, 2004, 16 (5): 288-295. doi: 10.1111/j.1365-3121.2004.00562.x

    [9]

    Tribovillard N, lgeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232 (1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012

    [10]

    张青松, 范育新, 杨光亮, 等. 岩芯沉积物化学元素及重矿物含量变化对腾格里地区碎屑物源的指示[J]. 第四纪研究, 2020, 40 (1): 69-78. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.07

    Zhang Qingsong, Fan Yuxin, Yang Guangliang, et al. Provenance shift during Quaternary period evidenced by changes in geochemical elements and heavy mineral contents in core sediments in Tengger area[J]. Quaternary Sciences, 2020, 40 (1): 69-78. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.07

    [11]

    魏荣珠, 李好斌, 徐朝雷, 等. 对山西隆起区中新生代构造演化的认识[J]. 中国地质调查, 2017, 4 (1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701004.htm

    Wei Rongzhu, Li Haobin, Xu Chaolei, et al. Understanding of Mesozoic and Cenozoic tectonic evolution in the Shanxi uplift area[J]. Geological Survey of China, 2017, 4 (1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201701004.htm

    [12]

    尹锦涛, 俞雨溪, 姜呈馥, 等. 鄂尔多斯盆地张家滩页岩元素地球化学特征及与有机质富集的关系[J]. 煤炭学报, 2017, 42 (6): 1544-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706023.htm

    Yin Jintao, Yu Yuxi, Jiang Chengfu, et al. Geochemical characteristics of elements and their relationship with organic matter enrichment in Zhangjiatan Shale, Ordos Basin[J]. Journal of China Coal Society, 2017, 42 (6): 1544-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201706023.htm

    [13]

    王莉. 忻定盆地第四纪中晚期湖盆演化研究[D]. 上海: 上海师范大学硕士论文, 2015: 1-53.

    Wang Li. Study on the Evolution of Xinding Basin during the Middle and Late Quaternary[D]. Shanghai: The Master's Thesis of Shanghai Normal University, 2015: 1-53.

    [14]

    郭清海, 王焰新. 典型新生代断陷盆地内孔隙地下水地球化学过程及其模拟: 以山西太原盆地为例[J]. 地学前缘, 2014, 21 (4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404012.htm

    Guo Qinghai, Wang Yanxin. Geochemical process and simulation of pore groundwater in typical Cenozoic rifted basins: A case study of Taiyuan Basin in Shanxi[J]. Earth Science Frontiers, 2014, 21 (4): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404012.htm

    [15]

    黄宝玉, 郭书元. 山西中南部晚新生代地层和古生物群[M]. 北京: 科学出版社, 1991: 1-218.

    Huang Baoyu, Guo Shuyuan. Late Cenozoic Stratigraphy and Paleontological Groups in Central and Southern Shanxi[M]. Beijing: Science Press, 1991: 1-218.

    [16]

    胡小猛, 傅建利, 马志正, 等. 太原盆地洪山第四纪剖面的发现[J]. 地层学杂志, 2002, 26 (3): 226-229. doi: 10.3969/j.issn.0253-4959.2002.03.013

    Hu Xiaomeng, Fu Jianli, Ma Zhizheng, et al. Discovery of Quaternary section in Hongshan, Taiyuan Basin[J]. Journal of Stratigraphy, 2002, 26 (3): 226-229. doi: 10.3969/j.issn.0253-4959.2002.03.013

    [17]

    姜佳奇, 莫多闻, 吕建晴, 等. 山西太原盆地全新世地貌演化及其对古人类聚落分布的影响[J]. 古地理学报, 2016, 18 (5): 895-904. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201605018.htm

    Jiang Jiaqi, Mo Duowen, Lü Jianqing, et al. Holocene geomorphic evolution and its influence on the distribution of paleohuman settlements in Taiyuan Basin, Shanxi[J]. Journal of Palaeogeography, 2016, 18 (5): 895-904. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201605018.htm

    [18]

    王利康, 杨振京, 毕志伟, 等. 太原盆地第四纪地质研究进展[J]. 中国锰业, 2017, 35 (3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201703017.htm

    Wang Likang, Yang Zhenjing, Bi Zhiwei, et al. Advances in Quaternary geological research in Taiyuan Basin[J]. China Manganese Industry, 2017, 35 (3): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201703017.htm

    [19]

    魏荣珠, 庄其天, 闫纪元, 等. 山西晋中盆地晚新生代地层划分、沉积环境及其先秦以来气候和湖泊演化[J]. 中国地质, 2022, 49 (3): 912-928. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202203016.htm

    Wei Rongzhu, Zhuang Qitian, Yan Jiyuan, et al. Late Cenozoic stratigraphic division and sedimentary environment of Jinzhong Basin in Shanxi Province, with the climate and lake evolution since the pre-Qin period(2500 years ago)[J]. Geology in China, 2022, 49 (3): 912-928. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202203016.htm

    [20]

    孟令超, 吴芳, 马述江. 山西断陷盆地成因机制分析[J]. 华北水利水电学院学报, 2013, 34 (5): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201305020.htm

    Meng Lingchao, Wu Fang, Ma Shujiang. Analysis of the genetic mechanism of Shanxi faulted basins[J]. Journal of North China Institute of Water Conservancy and Hydropower, 2013, 34 (5): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL201305020.htm

    [21]

    邓起东, 尤惠川. 断层崖研究与地震危险性估计——以贺兰山东麓断层崖为例[J]. 西北地震学报, 1985, 7 (1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198501004.htm

    Deng Qidong, You Huichuan. Research on fault cliffs and estimation of earthquake hazards-Taking the fault cliffs at the foot of Helan Mountain as an example[J]. Northwestern Seismological Journal, 1985, 7 (1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ198501004.htm

    [22]

    罗全星, 李有利, 胡秀, 等. 山西地堑系北部六棱山北麓断裂西段晚第四纪右旋走滑速率的约束[J]. 第四纪研究, 2022, 42 (3): 717-731. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.03.08

    Luo Quanxing, Li Youli, Hu Xiu, et al. Constraints on the Late Quaternary dextral strike-slip rate of the western segment of the North Liulengshan Fault in the northern Shanxi Graben System[J]. Quaternary Sciences, 2022, 42 (3): 717-731. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.03.08

    [23]

    倪倩. 太原盆地地质结构及其演化[J]. 科技情报开发与经济, 2008, 18 (29): 116-117. https://www.cnki.com.cn/Article/CJFDTOTAL-KJQB200829067.htm

    Ni Qian. Geological structure and evolution of Taiyuan Basin[J]. Sci-Tech Information Development & Economy, 2008, 18 (29): 116-117. https://www.cnki.com.cn/Article/CJFDTOTAL-KJQB200829067.htm

    [24]

    孙平昌. 松辽盆地东南部上白垩统含油页岩系有机质富集环境动力学[D]. 长春: 吉林大学博士学位论文, 2013: 1-203.

    Sun Pingchang. Environmental Dynamics of Organic Matter Enrichment in Upper Cretaceous Oil-bearing Shale Series in the Southeastern Songliao Basin[D]. Changchun: The Doctoral Thesis of Jilin University, 2013: 1-203.

    [25]

    山西省地质矿产局. 山西省区域地质志[M]. 北京: 地质出版社, 1989: 315-340.

    Shanxi Provincial Bureau of Geology and Mineral Resources. Regional Geology of Shanxi Province[M]. Beijing: Geology Pulishing House, 1989: 315-340.

    [26]

    山西省地质矿产局. 山西省岩石地层[M]. 武汉: 中国地质大学出版社, 1997: 275-318.

    Shanxi Provincial Bureau of Geology and Mineral Resources. Rock and Stratigraphy of Shanxi Province[M]. Wuhan: China University of Geosciences Press, 1997: 275-318.

    [27]

    张士亚. 晋中断陷石油普查评价报告[R]. 山西省地质局石油普查勘探队, 1979.

    Zhang Shiya. Oil survey and evaluation report of Jinzhong fault depression[R]. Petroleum Survey and Exploration Team of Shanxi Geological Bureau. 1979.

    [28]

    曹家欣, 王乃樑, 崔海亭, 等. 山西太谷榆社武乡一带晚新生代地层与沉积环境的初步研究[J]. 第四纪研究, 1980, (1): 77-86.

    Cao Jiaxin, Wang Nailiang, Cui Haiting, et al. A preliminary study on the Late Cenozoic stratigraphy and sedimentary environment in the Wuxiang area of Yushe, Taigu, Shanxi[J]. Quaternary Sciences, 1980, (1): 77-86.

    [29]

    王乃樑, 莫多闻, 杨景春, 等. 山西地堑系新生代沉积与构造地貌[M]. 北京: 科学出版社, 1996: 120-156.

    Wang Nailiang, Mo Duowen, Yang Jingchun, et al. Cenozoic Sedimentation and Tectonic Geomorphology of the Shanxi Grabens[M]. Beijing: Science Press, 1996: 120-156.

    [30]

    Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research, 1995, 100(B4): 6093-6095.

    [31]

    肖国桥, 詹涛, 葛俊逸. 地磁极性年表的发展回顾[J]. 地球科学进展, 2010, 25 (4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201004006.htm

    Xiao Guoqiao, Zhan Tao, Ge Junyi. Development of geomagnetic polarity timescale: A review[J]. Advances in Earth Science, 2010, 25 (4): 365-373. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201004006.htm

    [32]

    Taylor S R, McLennan S M. The continental crust: Its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks[J]. Journal of Geology, 1985, 94 (4): 632-633.

    [33]

    李得路. 鄂尔多斯盆地南部三叠系延长组长7油页岩地球化学特征及古沉积环境分析[D]. 长安: 长安大学博士学位论文, 2018: 1-108.

    Li Delu. Analysis of Geochemical Characteristics and Paleosedimentary Environment of Chang 7 Oil Shale in Triassic Yanchang Formation in Southern Ordos Basin[D]. Changan: The Doctoral Dissertation of Changan University, 2018: 1-108.

    [34]

    Gromet L P, Haskin L A, Korotev R L, et al. The "North American shale composite": Its compilation, major and trace element characteristics[J]. Geochimica et Cosmochimica Acta, 1984, 48 (12): 2469-2482.

    [35]

    Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China[J]. Geochimica et Cosmochimica Acta, 1998, 62 (11): 1959-1975.

    [36]

    Gallet S, Jahn B. M, Torii M. Geochemical characterization of the Luochuan loess-paleosol sequence, China, and paleoclimatic implications[J]. Chemical Geology, 1996, 133 (1-4): 67-88.

    [37]

    Wang Gen, Wang Yongli, Wei Zhifu, et al. Geochemical records of Qionghai Lake sediments in Southwestern China linked to Late Quaternary climate changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 109902. doi: 10.1016/j.palaeo.2020.109902.

    [38]

    李蒙, 赵红格, 李文厚, 等. 贺兰山地区晚三叠世沉积主微量元素物源分析及方法探讨[J]. 高校地质学报, 2018, 24 (6): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201806006.htm

    Li Meng, Zhao Hongge, Li Wenhou, et al. Provenance analysis and method discussion of major and trace elements in Late Triassic sediments in Helan Mountains[J]. Geological Journal of China Universities, 2018, 24 (6): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201806006.htm

    [39]

    宫少军, 秦志亮, 叶思源, 等. 黄河三角洲ZK5钻孔沉积物地球化学特征及其沉积环境[J]. 沉积学报, 2014, 32 (5): 855-862. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201405008.htm

    Gong Shaojun, Qin Zhiliang, Ye Siyuan, et al. Geochemical characteristics and sedimentary environment of sediments from ZK5 borehole in the Yellow River Delta[J]. Chinese Journal of Sedimentology, 2014, 32 (5): 855-862. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201405008.htm

    [40]

    李楠, 郝青振, 张绪教, 等. 东秦岭黄土物源的常量元素和微量元素地球化学证据[J]. 第四纪研究, 2016, 36 (2): 332-346. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.02.09

    Li Nan, Hao Qingzhen, Zhang Xujiao, et al. Geochemical evidence of major and trace elements of loess provenance in east Qinling[J]. Quaternary Sciences, 2016, 36 (2): 332-346. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.02.09

    [41]

    鲍晶. 柴达木盆地沉积通量及元素地球化学记录的新生代风化剥蚀[D]. 兰州: 兰州大学博士学位论文, 2017: 1-127.

    Bao Jing. Cenozoic Weathering and Denudation Recorded from Sedimentary Fluxes and Element Geochemical Records in the Qaidam Basin[D]. Lanzhou: The Doctoral Thesis of Lanzhou University, 2017: 1-127.

    [42]

    Nesbitt H W, Young G M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 1982, 5885 (299): 715-717.

    [43]

    陈旸, 陈骏, 刘连文. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 2001, 7 (2): 167-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200102011.htm

    Chen Yang, Chen Jun, Liu Lianwen. Chemical composition and chemical weathering characteristics of Late Tertiary red clay in Xifeng, Gansu[J]. Journal of Geomechanics, 2001, 7 (2): 167-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200102011.htm

    [44]

    毛光周, 刘池洋. 地球化学在物源及沉积背景分析中的应用[J]. 地球科学与环境学报, 2011, 33 (4): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201104001.htm

    Mao Guangzhou, Liu Chiyang. Application of geochemistry in the analysis of provenance and sedimentary background[J]. Journal of Earth Sciences and Environment, 2011, 33 (4): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201104001.htm

    [45]

    陈渠, 吕镔, 刘秀铭, 等. 伊犁典型黄土磁学与常量元素地球化学特征及其古气候意义[J]. 第四纪研究, 2021, 41 (6): 1632-1644. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.11

    Chen Qu, Lü Bin, Liu Xiuming, et al. Rock magnetism and geochemical characteristics of major elements of typical loesss in the Ily Basin and their paleoclimatic significance[J]. Quaternary Sciences, 2021, 41 (6): 1632-1644. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.11

    [46]

    黄湘通, 郑洪波, 杨守业, 等. 长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义[J]. 第四纪研究, 2009, 29 (2): 299-307. http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2009.02.14

    Huang Xiangtong, Zheng Hongbo, Yang Shouye, et al. Elemental geochemistry of sediments from Hole DY03 in the Yangtze River Delta and their significance for provenance tracing[J]. Quaternary Sciences, 2009, 29 (2): 299-307. http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2009.02.14

    [47]

    熊平生, 刘沛林, 王鹏. 衡阳盆地红土剖面的磁化率、Rb/Sr值及其古气候指示意义[J]. 地理科学, 2018, 38 (02): 300-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201802017.htm

    Xiong Pingsheng, Liu Peilin, Wang Peng. The magnetic susceptibility, Rb/Sr ratio of red earth profile in Hengyang Basin and its significance of palaeoclimate[J]. Scientia Geographica Sinica, 2018, 38 (2): 300-306. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201802017.htm

    [48]

    柏道远, 李长安, 陈渡平, 等. 洞庭盆地第四纪气候演变的沉积物地球化学记录[J]. 山东科技大学学报(自然科学版), 2012, 31 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201202000.htm

    Bai Daoyuan, Li Chang'an, Chen Duping, et al. Sediment geochemical records of Quaternary climate evolution in the Dongting Basin[J]. Journal of Shandong University of Science and Technology(Natural Science), 2012, 31 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SDKY201202000.htm

    [49]

    Nesbitt H W, Young G M. Formation and diagenesis of weathering profiles[J]. Journal of Geology, 1989, 97 (2): 129-147.

    [50]

    Scheffler K, Buehmann D, Schwark L. Analysis of Late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies response to climate evolution and sedimentary environment[J]. Palaeogeagraphy, Palaeoclimatology, Palaeoecology, 2006, 240 (1-2): 184-203.

    [51]

    曾艳, 陈敬安, 朱正杰. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26 (8): 805-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108002.htm

    Zeng Yan, Chen Jing'an, Zhu Zhengjie. Application and prospect of lake sediment Rb/Sr ratio in paleoclimate/paleoenvironment research[J]. Advances in Earth Science, 2011, 26 (8): 805-810. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201108002.htm

    [52]

    陈敬安, 曾艳, 王敬富, 等. 湖泊沉积物不同赋存状态Rb、Sr地球化学记录研究[J]. 矿物岩石地球化学通报, 2013, 32 (4): 408-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201304005.htm

    Chen Jing'an, Zeng Yan, Wang Jingfu, et al. Study on the geochemical records of Rb and Sr in different occurrence states of lake sediments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32 (4): 408-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201304005.htm

    [53]

    申洪源, 贾玉连, 李徐生, 等. 内蒙古黄旗海不同粒级湖泊沉积物Rb、Sr组成与环境变化[J]. 地理学报, 2006, 61 (11): 1208-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE200803011.htm

    Shen Hongyuan, Jia Yulian, Li Xusheng, et al. Compositions of Rb, Sr and environmental changes in lake sediments with different grain sizes in Huangqihai, Inner Mongolia[J]. Acta Geographica Sinica, 2006, 61 (11): 1208-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE200803011.htm

    [54]

    钟巍, 李吉均, 方小敏, 等. 青藏高原东北边缘临夏盆地近30Ma B.P. 以来古气候环境演变特征——沉积物地球化学元素记录[J]. 地理研究, 1998, 17 (3): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ803.005.htm

    Zhong Wei, Li Jijun, Fang Xiaomin, et al. The evolution characteristics of paleoclimate environment since nearly 30Ma B.P. in the Linxia Basin on the northeastern margin of the Qinghai-Tibet Plateau-Records of geochemical elements in sediments[J]. Geographical Research, 1998, 17 (3): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ803.005.htm

    [55]

    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update[J]. Chemical Geology, 2006, 232 (1-2): 12-32.

    [56]

    Breit G N, Wanty R B. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 1991, 91 (2): 83-97.

    [57]

    Wanty R B, Goldhaber M B. Thermodynamics and kinetics of reactions involving vanadium in natural systems: Accumulation of vanadium in sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 1992, 56 (4): 1471-1483.

    [58]

    钱利军, 陈洪德, 林良彪, 等. 四川盆地西缘地区中侏罗统沙溪庙组地球化学特征及其环境意义[J]. 沉积学报, 2012, 30 (6): 1061-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206007.htm

    Qian Lijun, Chen Hongde, Lin Liangbiao, et al. Geochemical characteristics of the Middle Jurassic Shaximiao Formation in the western margin of the Sichuan Basin and its environmental significance[J]. Acta Sedimentologica Sinica, 2012, 30 (6): 1061-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201206007.htm

    [59]

    Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvania(Missourian)Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA[J]. Chemical Geology, 1992, 99 (1-3): 65-82.

    [60]

    邓宏文, 钱凯. 试论湖相泥质岩的地球化学二分性[J]. 石油与天然气地质, 1993, 14 (2): 85-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199302000.htm

    Deng Hongwen, Qian Kai. On the geochemical dichotomy of lacustrine argillaceous rocks[J]. Oil and Gas Geology, 1993, 14 (2): 85-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT199302000.htm

    [61]

    任雪萍. 柴达木盆地晚新生代古气候和化学风化研究[D]. 兰州: 兰州大学博士学位论文, 2021: 1-132.

    Ren Xueping. Late Cenozoic Paleoclimate and Chemical Weathering Research in the Qaidam Basin[D]. Lanzhou: The Doctoral Thesis of Lanzhou University, 2021: 1-132.

    [62]

    郭正堂. 黄土高原见证季风和荒漠的由来[J]. 中国科学: 地球科学, 2017, 47 (4): 421-437. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704006.htm

    Guo Zhengtang. The Loess Plateau witnesses the origin of monsoons and deserts[J]. Science China: Earth Sciences, 2017, 47 (4): 421-437. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704006.htm

    [63]

    安芷生, 张培震, 王二七, 等. 中新世以来我国季风-干旱环境演化与青藏高原的生长[J]. 第四纪研究, 2006, 26 (5): 678-693. http://www.dsjyj.com.cn/article/id/dsjyj_8667

    An Zhisheng, Zhang Peizhen, Wang Erqi, et al. Evolution of monsoon-arid environment in China and the growth of the Tibetan Plateau since Miocene[J]. Quaternary Sciences, 2006, 26 (5): 678-693. http://www.dsjyj.com.cn/article/id/dsjyj_8667

    [64]

    Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65Ma to present[J]. Science, 2001, 292 (5517): 686-693.

    [65]

    马万里, 江小青, 李璇, 等. 柴达木盆地西北缘上干柴沟组泥岩地球化学特征与古环境古气候意义[J]. 矿物岩石地球化学通报, 2021, 40 (5): 1166-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105019.htm

    Ma Wanli, Jiang Xiaoqing, Li Xuan, et al. Geochemical characteristics of mudstones and paleoenvironmental paleoclimate significance in the Ganchaigou Formation on the northwestern margin of the Qaidam Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40 (5): 1166-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105019.htm

    [66]

    苏庆达, 聂军胜, 李祥忠, 等. 柴达木盆地中新世-早上新世有机碳同位素记录和植被演化历史[J]. 第四纪研究, 2022, 42 (4): 948-957. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.04.03

    Su Qingda, Nie Junsheng, Li Xiangzhong, et al. Organic carbon isotopic record and vegetation evolution history in the Qaidam Basin during Miocene-Early Pliocene[J]. Quaternary Sciences, 2022, 42 (4): 948-957. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.04.03

    [67]

    施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54 (1): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB901.001.htm

    Shi Yafeng, Li Jijun, Li Bingyuan, et al. Uplift of the Tibetan Plateau and environmental changes in East Asia during the Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54 (1): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB901.001.htm

    [68]

    杨小强, 郑思静, 闫永刚, 等. 南海北部晚中新世-上新世期间碎屑物质输入对青藏高原隆升与季风演化的响应[J]. 第四纪研究, 2022, 42 (3): 650-661. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.03.03

    Yang Xiaoqiang, Zheng Sijing, Yan Yonggang, et al. Response of terrigenous flux to the uplift of the Tibetan Plateau and summer monsoon evolution during the Late Miocene-Pliocene in the northern South China Sea[J]. Quaternary Sciences, 2022, 42 (3): 650-661. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.03.03

    [69]

    刘玮, 王利康, 杨振京, 等. 太原盆地QK1钻孔60kaB.P. 以来气候环境演化的沉积记录[J]. 科学技术与工程, 2020, 20 (2): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202002009.htm

    Liu Wei, Wang Likang, Yang Zhenjing, et al. Sedimentary records of climate and environmental evolution since 60kaB.P. in the QK1 hole in Taiyuan Basin[J]. Science Technology and Engineering, 2020, 20 (2): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS202002009.htm

    [70]

    Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at~8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin[J]. Earth and Planetary Science Letters, 2006, 248 (1): 198-208.

    [71]

    Yuan D Y, Ge W P, Chen Z W, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies[J]. Tectonics, 2013, 32 (5): 1358-1370.

    [72]

    闫小兵, 李自红, 郭瑾, 等. 山西晚新生代古地理环境变迁与新构造运动响应[J]. 地震工程学报, 2014, 36 (2): 338-346+352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201402021.htm

    Yan Xiaobing, Li Zihong, Guo Jin, et al. Late Cenozoic paleogeographical environment changes in Shanxi and response to neotectonic movement[J]. China Earthquake Engineering Journal, 2014, 36 (2): 338-346+352. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201402021.htm

    [73]

    李平日, 梁全武. 滹沱河上游和牧马河河道变迁的一些新资料[J]. 地质论评, 1965, 23 (3): 240-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP196503014.htm

    Li Pingri, Liang Quanwu. Some new information on the changes of the upper Hutuo River and the Muma River[J]. Geological Review, 1965, 23 (3): 240-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP196503014.htm

    [74]

    莫多闻. 山西临汾盆地晚新生代环境演变研究[J]. 北京大学学报(自然科学版), 1991, 27 (6): 738-746. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199106015.htm

    Mo Duowen. A study on the Late Cenozoic environmental evolution in Linfen Basin, Shanxi[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1991, 27 (6): 738-746. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ199106015.htm

  • 加载中

(9)

(9)

计量
  • 文章访问数:  1078
  • PDF下载数:  169
  • 施引文献:  0
出版历程
收稿日期:  2022-05-23
修回日期:  2022-09-27
刊出日期:  2023-01-30

目录