青藏高原腹地班德湖记录的全新世夏季风变化与流域环境响应

李友谟, 吴铎, 袁子杰, 陈林, 陈雪梅, 周爱锋. 青藏高原腹地班德湖记录的全新世夏季风变化与流域环境响应[J]. 第四纪研究, 2022, 42(5): 1328-1348. doi: 10.11928/j.issn.1001-7410.2022.05.08
引用本文: 李友谟, 吴铎, 袁子杰, 陈林, 陈雪梅, 周爱锋. 青藏高原腹地班德湖记录的全新世夏季风变化与流域环境响应[J]. 第四纪研究, 2022, 42(5): 1328-1348. doi: 10.11928/j.issn.1001-7410.2022.05.08
李友谟, 吴铎, 袁子杰, 陈林, 陈雪梅, 周爱锋. 青藏高原腹地班德湖记录的全新世夏季风变化与流域环境响应[J]. 第四纪研究, 2022, 42(5): 1328-1348. doi: 10.11928/j.issn.1001-7410.2022.05.08 LI Youmo, WU Duo, YUAN Zijie, CHEN Lin, CHEN Xuemei, ZHOU Aifeng. Holocene summer monsoon variation and environmental response in the drainage basin of Lake Bande in the inner Tibetan Plateau[J]. Quaternary Sciences, 2022, 42(5): 1328-1348. doi: 10.11928/j.issn.1001-7410.2022.05.08
Citation: LI Youmo, WU Duo, YUAN Zijie, CHEN Lin, CHEN Xuemei, ZHOU Aifeng. Holocene summer monsoon variation and environmental response in the drainage basin of Lake Bande in the inner Tibetan Plateau[J]. Quaternary Sciences, 2022, 42(5): 1328-1348. doi: 10.11928/j.issn.1001-7410.2022.05.08

青藏高原腹地班德湖记录的全新世夏季风变化与流域环境响应

  • 基金项目:

    国家自然科学基金项目(批准号: 41807442和42171150)和科技部第二次青藏高原综合科学考察研究项目(批准号: 2019QZKK0601)共同资助

详细信息
    作者简介:

    李友谟, 男, 24岁, 硕士研究生, 自然地理学专业, E-mail: liym2020@lzu.edu.cn

    通讯作者: 吴铎, E-mail: dwu@lzu.edu.cn
  • 中图分类号: P941.78, P534.63+2, P597+.3

Holocene summer monsoon variation and environmental response in the drainage basin of Lake Bande in the inner Tibetan Plateau

More Information
  • 青藏高原作为地球"第三极", 对全球气候变化响应敏感。在季风与西风协同作用下, 青藏高原在过去数千年中的年代际、百年时间尺度上存在南北相反的气候变化格局; 但受限于青藏高原腹地缺少年代可靠的全新世高分辨率气候记录, 千年时间尺度高原南北气候变化模态异同仍不明晰, 更无从得知高原腹地湖泊及其流域的生态环境对气候变化的响应过程。本研究聚焦高原腹地沱沱河上游的开放湖泊班德湖(34.239°N, 92.099°E; 4583m a.s.l), 基于长115cm的BDH19A沉积物岩芯的植物残体AMS 14C年代建立了可靠的年代框架, 通过粒度、元素、矿物、自生碳酸盐及其碳、氧同位素、有机质含量和正构烷烃等多指标, 重建了过去10ka以来青藏高原中部的气候变化与生态环境响应过程。结果显示, 青藏高原腹地在全新世以来表现出北半球夏季太阳辐射控制下夏季风降水逐渐减少的季风模式, 导致流域和湖泊生产力持续降低, 区域风沙活动整体增强。在千年时间尺度上, 10~8.7ka高原中部夏季风降水量最大, 加之可能由于植物覆盖度较高, 流域径流侵蚀减弱, 风沙活动减少; 7.7~5.2ka和4~2ka夏季风降水维持高值, 入湖径流增加, 促进流域和湖泊生物生产力提高, 风沙活动受到抑制; 相反, 8.7~7.7ka、5.2~4ka和2ka以来高原中部风沙活动的加剧是对亚洲夏季风快速衰退的响应, 当前班德湖流域风沙环境是过去2ka干旱风沙环境的延续与加剧。

  • 加载中
  • 图 1 

    研究区地理位置及气候

    Figure 1. 

    Map showing the location and climate of the study area. (a)Distribution of Lake Bande and the cited paleoclimatic records in the Tibetan Plateau, and circulation systems affecting the plateau[58]; (b)The drainage basin of Lake Bande and the BDH19A core location; (c)Monthly mean precipitation and temperature recorded by the Tuotuohe Meteorological Station near Lake Bande from 1981 to 2010(data source: http://data.cma.cn)and monthly mean δ18Op(1991~2005)[58]

    图 2 

    班德湖BDH19A钻孔放射性碳测年结果及年代框架

    Figure 2. 

    Radiocarbon dating results and chronological framework of BDH19A core from Lake Bande. (a)Calibration of carbon reservoir effect(x and y represent depth and age, respectively); (b)"Depth-age" model

    图 3 

    班德湖BDH19A钻孔沉积物的岩性、矿物成分等地球化学指标变化

    Figure 3. 

    Variation of lithology, indexes of geochemistry(e.g., mineral type)of BDH19A core from Lake Bande.(a~c)Percentages of sand, silt and clay(%), respectively, (d~e)Principal component 1 and 2, respectively; (f~g)Percentages of organic matter and carbonate(%), respectively. The photo of the core was shown in the left, and the white boxes represent locations of 14C dates

    图 4 

    班德湖BDH19A钻孔元素主成分1和主成分2空间荷载图

    Figure 4. 

    The spatial load diagram of principal component 1 and 2 of elements in BDH19A core from Lake Bande

    图 5 

    班德湖岩芯沉积物XRD分析结果

    Figure 5. 

    XRD analysis results of sedimentary core from Lake Bande.(a~l)XRD analysis spectrum of representative samples, and C and Q represent mineral calcite and quartz, respectively

    图 6 

    班德湖BDH19A岩芯不同深度的方解石矿物扫描电镜图片

    Figure 6. 

    Scanning Electron Microscopy results of samples with different depth in BDH19A core from Lake Bande. Calcite has a structure of cubic crystal, self or semi-self morphology

    图 7 

    班德湖自生碳酸盐矿物δ18Ocδ13Cc

    Figure 7. 

    Variations of δ18Oc and δ13Cc of authigenic carbonate mineral from Lake Bande. (a)Time-series of δ18Oc and δ13Cc sequence; black solid rectangles represent samples for XRD analysis; the intervals are divided into three units; (b)Scatter plot of δ18Oc and δ13Cc with polynomial(second-order)curve fitting in different units

    图 8 

    班德湖沉积物的正构烷烃随时间序列变化

    Figure 8. 

    Variations of n-alkanes in the sediments of Lake Bande. (a)Proportion of aquatic plants(Paq); (b)Average chain length(ACL); (c)Carbon preponderance index(CPI); (d~f)Relative proportion of C17~19, C23~25 and C27~33(%), respectively; (g)Total concentration of n-alkanes(Σn-alkane, μg/g)(gray solid line)and polynomial curve fitting results(grey blue line)

    图 9 

    降水和湖水δD与δ18O散点图

    Figure 9. 

    δ18O versus δD of precipitation and lake water. Black line shows the Global Meteoric Water Line(GMWL). The brown rectangle(TTH)means annual mean precipitation isotopes at Tuotuohe Station from 1991 to 2005 documented in Gobal Network of Isotopes in Precipitation(GNIP)[58]; Modern lake water isotopes of Lake Bande(BDH: Lake Bande, green rectangular); Blue rectangles represent water isotopes of four surrounding lakes, including GLC: Goulu Co; CC: Cha Co; XC: Xiacangjia Co; WLN: Wuli Co

    图 10 

    过去10 ka青藏高原古气候记录对比及气候强迫

    Figure 10. 

    Paleoclimatic records from the Tibetan Plateau with climate forcing factor during the past 10 ka. (a)Tree-ring δ18O sequence from Delingha[13]; (b)Mineral cluster 2 recorded from the Lake Heihai, which represents the intensity of ISM precipitation[19]; (c)Pollen-based mean annual precipitation(Pann) in Qinghai Lake Basin[24]; (d)Authigenic carbonate δ18Oc from Lake Bande(this study); (e)δ18O of ostracod shells from Linggo Co[32]; (f)δ18O from authigenic carbonate(red line)and ostracod shells(dark green dots)from Aweng Co[26]; (g)δD records of long chain n-alkanes C27(dark red line and dots)and C29(black line and dots)from Paru Co[18]; (h)Stalagmite δ18O records from Tianmen Cave[14]; (i)35°N solar insolation in July[108]. Black dotted lines in(a~e)represent polynomial(third-order)fitting curves

    图 11 

    基于班德湖多指标重建的青藏高原中部过去10 ka的气候变化与环境响应

    Figure 11. 

    Climate change and environmental response in the central Tibetan Plateau during the past 10 ka recorded by multiply porxies from Lake Bande. (a)Principal component 1 values; (b)Percentage of sand(%); (c)Proportion of aquatic plants(Paq); (d)Organic matter content(%); (e)Total concentration of n-alkanes(Σn-alkane, μg/g)(gray solid line)and polynomial curve fitting(grey blue line); (f~g)Authigenic carbonate δ13C andδ18O(‰, VPDB). The light yellow shaded areas indicate periods with drought and strong aeolian activities under the influence of rapid decline of the Asian Summer Monsoon

    表 1 

    青藏高原中部班德湖BDH19A钻孔放射性碳测年结果

    Table 1. 

    Radiocarbon dating results of BDH19A core from Lake Bande in the central Tibetan Plateau

    Beta编号 样品 深度(cm) 材料 14C年代±误差(a B.P.) δ13C(‰) 碳库校正14C年代±误差(a B.P.) 日历年年代(2σ)(cal.a B.P.)
    615413 BDH19A-S 0.5 水生植物残体 4470±30 -13.5 2±30 -56~60
    535112 BDH19A8-9 cm 8.5 水生植物残体 4720±30 252±30 0~427
    535113 BDH19A28-29 cm 28.5 水生植物残体 5430±30 -6.3 962±30 793~925
    535114 BDH19A45-46 cm 45.5 水生植物残体 7220±30 -5.4 2752±30 2769~2929
    535115 BDH19A70-71 cm 70.5 水生植物残体 10080±30 -25.6 5612±30 6306~6476
    535116 BDH19A82-82.5 cm 82.25 木头 7480±30 -24.8 8193~8370
    535117 BDH19A107.5-108 cm 107.75 木头 8360±30 -23.9 9294~9468
    下载: 导出CSV

    表 2 

    班德湖BDH19A钻孔元素主成分分析*

    Table 2. 

    PCA for XRF elements in BDH19A core from Lake Bande

    元素 主成分1 主成分2
    Al 0.90 -0.15
    Si 0.94 0.04
    K 0.96 -0.70
    Ca 0.48 0.77
    Ti 0.94 -0.14
    Fe 0.92 -0.28
    Cu 0.28 -0.68
    Zn 0.51 -0.71
    Rb 0.88 -0.29
    Sr 0.63 0.67
    Mn 0.63 0.34
    Zr 0.66 0.54
    方差贡献(%) 57.64 21.79
    累积方差贡献(%) 57.64 79.43
    *加粗字体为元素在该主成分中荷载最大
    下载: 导出CSV
  • [1]

    Qiu J. China: The Third Pole[J]. Nature, 2008, 454 (7203): 393-396. doi: 10.1038/454393a

    [2]

    Immerzeel W W, Van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328 (5984): 1382-1385. doi: 10.1126/science.1183188

    [3]

    Wu G X, Liu Y M, Zhang Q, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 2007, 8 (4): 770-789. doi: 10.1175/JHM609.1

    [4]

    Li W K, Guo W D, Qiu B, et al. Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales[J]. Nature Communications, 2018, 9 (1): 1-9. doi:10.1038/s41467-018-06762-5.

    [5]

    姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32 (9): 976-984. doi: 10.16418/j.issn.1000-3045.2017.09.007

    Yao Tandong, Piao Shilong, Shen Miaogen, et al. Chained impacts on modern environment of interaction between Westerlies and Indian monsoon on Tibetan Plateau[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (9): 976-984. doi: 10.16418/j.issn.1000-3045.2017.09.007

    [6]

    Chen F H, Zhang J F, Liu J B, et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review[J]. Quaternary Science Reviews, 2020, 243: 1-21. doi:10.1016/j.quascirev.2020.106444.

    [7]

    Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2 (9): 663-667. doi: 10.1038/nclimate1580

    [8]

    陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去、现在与未来[J]. 科学通报, 2015, 60 (32): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201532003.htm

    Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60 (32): 3025-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201532003.htm

    [9]

    姚檀栋, Thompson L G, 施雅风, 等. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学(D辑), 1997, 27 (5): 447-452. doi: 10.3321/j.issn:1006-9267.1997.05.006

    Yao Tandong, Thompson L G, Shi Yafeng, et al. Study on climate change records since the Last Interglacial in Guriya ice core[J]. Science in China(Series D), 1997, 27 (5): 447-452. doi: 10.3321/j.issn:1006-9267.1997.05.006

    [10]

    Yao T D, Thompson L G, Duan K Q, et al. Temperature and methane records over the last 2 ka in Dasuopu ice core[J]. Science in China(Series D), 2002, 45 (12): 1068-1074.

    [11]

    Gou X H, Deng Y, Chen F H, et al. Tree ring based streamflow reconstruction for the Upper Yellow River over the past 1234 years[J]. Chinese Science Bulletin, 2010, 55 (36): 4179-4186. doi: 10.1007/s11434-010-4215-z

    [12]

    Shao X, Xu Y, Yin Z Y, et al. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 2010, 29 (17-18): 2111-2122. doi: 10.1016/j.quascirev.2010.05.005

    [13]

    Yang B, Qin C, Bräuning A, et al. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6, 700 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (30): 1-7. doi:10.1073/pnas.2102007118.

    [14]

    Cai Y J, Zhang H W, Cheng H, et al. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections[J]. Earth and Planetary Science Letters, 2012, 335: 135-144. doi:10.1016/j.epsl.2012.04.035.

    [15]

    Gasse F, Fontes J C, Van Campo E, et al. Holocene environmental changes in Bangong Co basin(Western Tibet). Part 4: Discussion and conclusions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 120 (1-2): 79-92. doi: 10.1016/0031-0182(95)00035-6

    [16]

    Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years[J]. Quaternary International, 2005, 136 (1): 131-140. doi: 10.1016/j.quaint.2004.11.014

    [17]

    An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2 (1): 1-7. doi:10.1038/srep00619.

    [18]

    Bird B W, Polisar P J, Lei Y, et al. A Tibetan lake sediment record of Holocene Indian summer monsoon variability[J]. Earth and Planetary Science Letters, 2014, 399: 92-102. doi:10.1016/j.epsl.2014.05.017.

    [19]

    Ramisch A, Lockot G, Haberzettl T, et al. A persistent northern boundary of Indian summer monsoon precipitation over Central Asia during the Holocene[J]. Scientific Reports, 2016, 6 (1): 1-7. doi:10.1038/srep25791.

    [20]

    Hou J Z, D'Andrea W J, Wang M D, et al. Influence of the Indian monsoon and the subtropical jet on climate change on the Tibetan Plateau since the Late Pleistocene[J]. Quaternary Science Reviews, 2017, 163: 84-94. doi:10.1016/j.quascirev.2017.03.013.

    [21]

    Wu D, Zhou A F, Zhang J W, et al. Temperature-induced dry climate in basins in the northeastern Tibetan Plateau during the Early to Middle Holocene[J]. Quaternary Science Reviews, 2020, 237: 1-16. doi:10.1016/j.quascirev.2020.106311.

    [22]

    Zhao Y, Tzedakis P C, Li Q, et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years[J]. Science Advances, 2020, 6 (19): 1-12. doi:10.1126/sciadv.aay6193.

    [23]

    唐领余, 沈才明, 吕厚远, 等. 青藏高原第四纪孢粉研究五十年[J]. 中国科学: 地球科学, 2021, 51 (12): 2015-2034. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202112001.htm

    Tang Lingyu, Shen Caiming, Lü Houyuan, et al. Fifty years of Quaternary palynology in the Tibetan Plateau[J]. Science China: Earth Sciences, 2021, 64 (11): 1825-1843. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202112001.htm

    [24]

    Lv F Y, Chen J H, Zhou A F, et al. Vegetation history and precipitation changes in the NE Qinghai-Tibet Plateau: A 7, 900-years pollen record from Caodalian Lake[J]. Paleoceanography and Paleoclimatology, 2021, 36 (4): 1-18. doi:10.1029/2020PA004126.

    [25]

    Shen M G, Zhang G X, Cong N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2014, 189-190: 71-80. doi:10.1016/j.agrformet.2014.01.003.

    [26]

    Zhang Y Z, Zhang J W, McGowan S, et al. Climatic and environmental change in the western Tibetan Plateau during the Holocene, recorded by lake sediments from Aweng Co[J]. Quaternary Science Reviews, 2021, 259: 1-15. doi:10.1016/j.quascirev.2017.03.013.

    [27]

    Wang N, Jiang X, Thompson L G, et al. Accumulation rates over the past 500 years recorded in ice cores from the northern and southern Tibetan Plateau, China[J]. Arctic, Antarctic, and Alpine Research, 2007, 39 (4): 671-677. doi: 10.1657/1523-0430(07-507)[WANG]2.0.CO;2

    [28]

    段克勤, 姚檀栋, 王宁练, 等. 青藏高原南北降水变化差异研究[J]. 冰川冻土, 2008, 30 (5): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200805003.htm

    Duan Keqin, Yao Tandong, Wang Ninglian, et al. The difference in precipitation variability between the north and south Tibetan Plateaus[J]. Journal of Glaciology and Geocryology, 2008, 30 (5): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200805003.htm

    [29]

    杨保. 树轮记录的小冰期以来青藏高原气候变化的时空特征[J]. 第四纪研究, 2012, 32 (1): 81-94. doi: 10.3969/j.issn.1001-7410.2012.01.09 http://www.dsjyj.com.cn/article/id/dsjyj_10573

    Yang Bao. Spatial and temporal patterns of climate variations over the Tibetan Plateau during the period 1300-2010[J]. Quaternary Sciences, 2012, 32 (1): 81-94. doi: 10.3969/j.issn.1001-7410.2012.01.09 http://www.dsjyj.com.cn/article/id/dsjyj_10573

    [30]

    Zhang Q B, Evans M N, Lyu L X. Moisture dipole over the Tibetan Plateau during the past five and a half centuries[J]. Nature Communications, 2015, 6 (1): 1-6. doi:10.1038/ncomms9062.

    [31]

    Zhu L P, Lü X M, Wang J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015, 5 (1): 1-8. doi:10.1038/srep13318.

    [32]

    贺跃, 鲍征宇, 侯居峙, 等. 令戈错湖芯重建过去17 ka青藏高原大气环流变化[J]. 科学通报, 2016, 61 (33): 3583-3595. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201633008.htm

    He Yue, Bao Zhengyu, Hou Juzhi, et al. Variation of the mid-latitude westerlies and Indian summer monsoon since the last deglaciation: Evidence from grain-size data from Linggo Co, central Tibet[J]. Chinese Science Bulletin, 2016, 61 (33): 3583-3595. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201633008.htm

    [33]

    李秀美, 侯居峙, 王明达, 等. 季风与西风对青藏高原全新世气候变化的影响: 同位素证据[J]. 第四纪研究, 2019, 39 (3): 678-686. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.03.14

    Li Xiumei, Hou Juzhi, Wang Mingda, et al. Influence of monsoon and westerlies on Holocene climate change in the Tibetan Plateau: Isotopic evidence[J]. Quaternary Sciences, 2019, 39 (3): 678-686. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.03.14

    [34]

    唐领余, 沈才明. 青藏高原全新世花粉记录[J]. 微体古生物学报, 1996, 13 (4): 407-466. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT604.009.htm

    Tang Lingyu, Shen Caiming. Holocene pollen records of the Qinghai-Xizang Plateau[J]. Acta Micropalaeontologica Sinica, 1996, 13 (4): 407-466. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT604.009.htm

    [35]

    Tang L Y, Shen C M, Liu K, et al. Changes in South Asian monsoon: New high-resolution paleoclimatic records from Tibet, China[J]. Chinese Science Bulletin, 2000, 45 (1): 87-91. doi: 10.1007/BF02884911

    [36]

    Herzschuh U, Borkowski J, Schewe J, et al. Moisture-advection feedback supports strong Early- to -mid Holocene monsoon climate on the eastern Tibetan Plateau as inferred from a pollen-based reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 402: 44-54. doi:10.1016/j.palaeo.2014.02.022.

    [37]

    Morinaga H, Itota C, Isezaki N, et al. Oxygen-18 and carbon-13 records for the last 14, 000 years from lacustrine carbonates of Siling-Co(Lake)in the Qinghai-Tibetan Plateau[J]. Geophysical Research Letters, 1993, 20 (24): 2909-2912. doi: 10.1029/93GL02982

    [38]

    Morrill C, Overpeck J T, Cole J E, et al. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet[J]. Quaternary Research, 2006, 65 (2): 232-243. doi: 10.1016/j.yqres.2005.02.014

    [39]

    Liu X Q, Shen J, Wang S M, et al. Southwest monsoon changes indicated by oxygen isotope of ostracode shells from sediments in Qinghai Lake since the Late Glacial[J]. Chinese Science Bulletin, 2007, 52 (4): 539-544. doi: 10.1007/s11434-007-0086-3

    [40]

    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005, 308 (5723): 854-857. doi: 10.1126/science.1106296

    [41]

    Pan B L, Yi C L, Jiang T, et al. Holocene lake-level changes of Linggo Co in central Tibet[J]. Quaternary Geochronology, 2012, 10: 117-122. doi:10.1016/j.quageo.2012.03.009.

    [42]

    Liu X D, Dong B W. Influence of the Tibetan Plateau uplift on the Asian monsoon-arid environment evolution[J]. Chinese Science Bulletin, 2013, 58 (34): 4277-4291. doi: 10.1007/s11434-013-5987-8

    [43]

    Qiang M R, Song L, Chen F H, et al. A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai-Tibetan Plateau(China)[J]. Journal of Paleolimnology, 2013, 49 (4): 575-590. doi: 10.1007/s10933-012-9660-z

    [44]

    Ahlborn M, Haberzettl T, Wang J, et al. Holocene lake level history of the Tangra Yumco Lake system, southern-central Tibetan Plateau[J]. The Holocene, 2016, 26 (2): 176-187. doi: 10.1177/0959683615596840

    [45]

    Liu X J, Madsen D B, Liu R, et al. Holocene lake level variations of Longmu Co, western Qinghai-Tibetan Plateau[J]. Environmental Earth Sciences, 2016, 75 (4): 1-14. doi:10.1007/s12665-015-5188-7.

    [46]

    Guo Y, Zhu L P, Frenzel P, et al. Holocene lake level fluctuations and environmental changes at Taro Co, southwestern Tibet, based on ostracod-inferred water depth reconstruction[J]. The Holocene, 2016, 26 (1): 29-43. doi: 10.1177/0959683615596829

    [47]

    Shi X H, Kirby E, Furlong K P, et al. Rapid and punctuated late Holocene recession of Siling Co, central Tibet[J]. Quaternary Science Reviews, 2017, 172: 15-31. doi:10.1016/j.quascirev.2017.07.017.

    [48]

    Zhang S, Zhang J F, Zhao H, et al. Spatiotemporal complexity of the "Greatest Lake Period" in the Tibetan Plateau[J]. Science Bulletin, 2020, 65 (16): 1317-1319. doi: 10.1016/j.scib.2020.05.004

    [49]

    张菀漪, 张静雅, Nusrat Nazir, 等. 青藏高原东北缘冬给错纳湖全新世湖面波动[J]. 第四纪研究, 2019, 39 (4): 1018-1033. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.20

    Zhang Wanyi, Zhang Jingya, Nusrat Nazir, et al. The records of Donggi Cona lake-level fluctuations since the Holocene in the Northeastern Tibetan Plateau[J]. Quaternary Sciences, 2019, 39 (4): 1018-1033. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.20

    [50]

    张婷, 王永莉, 魏志福, 等. 青藏高原柴达木盆地湖泊长链烯酮和中位酮的研究及其意义[J]. 第四纪研究, 2021, 41 (4): 1056-1068. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.15

    Zhang Ting, Wang Yongli, Wei Zhifu, et al. The significance of long-chain alkenones and mid-chain ketones in lakes of Qaidam Basin, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2021, 41 (4): 1056-1068. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.15

    [51]

    Jin C F, Günther F, Li S J, et al. Reduced Early Holocene moisture availability inferred from δD values of sedimentary n-alkanes in Zigetang Co, Central Tibetan Plateau[J]. The Holocene, 2016, 26 (4): 556-566. doi: 10.1177/0959683615612568

    [52]

    Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27 (3-4): 351-364. doi: 10.1016/j.quascirev.2007.10.017

    [53]

    Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. doi: 10.1016/j.earscirev.2019.03.005.

    [54]

    丛禄, 王懿萱, 孙爱军, 等. 青藏高原中部当穹错末次冰消期以来潮面变化研究[J]. 第四纪研究, 2021, 41 (6): 1619-1631. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.10

    Cong Lu, Wang Yixuan, Sun Aijun, et al. Lake level variations of Tangqung Co since last deglaciation, cental Tibetan Plateau[J]. Qualtermary Sciences, 2021, 41 (6): 1619-1631. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.06.10

    [55]

    董楠, 朱立平, 陈浩, 等. 青藏高原赤布张错介形类反映的近13000年气候变化[J]. 第四纪研究, 2021, 41 (2): 434-445. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.12

    Dong Nan, Zhu Liping, Chen Hao, et al. Climate changes of past 13000 years based on Ostracod in Chibuzhang Co, Tibetan Plateau[J]. Quaternary Sciences, 2021, 41 (2): 434-445. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.12

    [56]

    Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16 (4): 436-468. doi: 10.3402/tellusa.v16i4.8993

    [57]

    Craig H. The measurement of oxygen isotope paleotemperatures[M]//Tongiorgi E. Stable Isotopes in Oceanographic Studies and Paleotemperatures. Pisa: Consiglio Nazionale delle Richerche, Laboratorio Di Geologia Nucleare, 1965: 161-182.

    [58]

    Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations[J]. Reviews of Geophysics, 2013, 51 (4): 525-548. doi: 10.1002/rog.20023

    [59]

    Tan L C, Cai Y J, Cheng H. Climate significance of speleothem δ18O from Central China on decadal timescale[J]. Journal of Asian Earth Sciences, 2015, 106: 150-155. doi:10.1016/j.jseaes.2015.03.008.

    [60]

    Chen F H, Wu D, Chen J H, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs: A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154: 111-129. doi:10.1016/j.quascirev.2016.10.021.

    [61]

    Liu J B, Chen J H, Zhang X J, et al. Holocene East Asian summer monsoon records in Northern China and their inconsistency with Chinese stalagmite δ18O records[J]. Earth-Science Reviews, 2015, 148: 194-208. doi:10.1016/j.earscirev.2015.06.004.

    [62]

    Liu J B, Chen S Q, Chen J H, et al. Chinese cave δ18O records do not represent northern East Asian summer monsoon rainfall[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (15): 2987-2988.

    [63]

    Liu X K, Liu J B, Chen S Q, et al. New insights on Chinese cave δ18O records and their paleoclimatic significance[J]. Earth-Science Reviews, 2020, 207: 1-15. doi:10.1016/j.earscirev.2020.103216.

    [64]

    Qiang M R, Liu Y Y, Jin Y X, et al. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China[J]. Geophysical Research Letters, 2014, 41 (2): 589-595. doi: 10.1002/2013GL058806

    [65]

    Bhattacharya R, Hausmann S, Hubeny J B, et al. Ecological response to hydrological variability and catchment development: Insights from a shallow oxbow lake in lower Mississippi Valley, Arkansas[J]. Science of the Total Environment, 2016, 569: 1087-1097. doi:10.1016/j.scitotenv.2016.06.174.

    [66]

    李秀美, 侯居峙, 王明达, 等. 青藏高原达则错近1000年来生态系统变化及可能机制[J]. 湖泊科学, 2021, 33 (4): 1276-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202104027.htm

    Li Xiumei, Hou Juzhi, Wang Mingda, et al. Ecolosystem changes and possible mechanisms of Dagze Co in the Tibetan Plateau during the past 1000 years[J]. Journal of Lake Sciences, 2021, 33 (4): 1276-1288. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202104027.htm

    [67]

    肖霞云, 沈吉, 谭金凤. 末次冰消期滇西地区气候突变事件: 湖泊孢粉记录[J]. 第四纪研究, 2019, 39 (4): 964-974. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.15

    Xiao Xiayun, Shen Ji, Tan Jinfeng. Climatic abrupt events during the last deglaciation in the western Yunnan Province revealed by pollen records[J]. Quaternary Sciences, 2019, 39 (4): 964-974. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.15

    [68]

    王敏, 蒙红卫, 黄林培, 等. 云南阳宗海流域过去13000年植被演替与森林火灾[J]. 第四纪研究, 2020, 40 (1): 175-189. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.17

    Wang Min, Meng Hongwei, Huang Linpei, et al. Vegetation succession and forest fires over the past 13000 years in the catchment of Yangzonghai Lake, Yunnan[J]. Quaternary Sciences, 2020, 40 (1): 175-189. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.17

    [69]

    Anslan S, Azizi Rad M, Buckel J, et al. Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment(Tibetan Plateau)?[J]. Biogeosciences, 2020, 17 (5): 1261-1279. doi: 10.5194/bg-17-1261-2020

    [70]

    Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34 (2): 261-289. doi: 10.1016/S0146-6380(02)00168-7

    [71]

    Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters, 2008, 275 (1-2): 1-16. doi:10.1016/j.epsl.2008.07.012.

    [72]

    张姚, 吴铎, 张欢, 等. 不同时间尺度青海湖沉积物总有机碳对气候变化的敏感性[J]. 湖泊科学, 2019, 31 (5): 1468-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201905025.htm

    Zhang Yao, Wu Duo, Zhang Huan, et al. Total organic carbon sensitivity to climate change from Lake Qinghai sediments at different time scales[J]. Journal of Lake Sciences, 2019, 31 (5): 1468-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201905025.htm

    [73]

    潘进疆, 黄俊华, 张蕊, 等. 鄂西大九湖晚更新世以来沉积物的碳氮比值、有机碳氮同位素特征与气候环境演变[J]. 第四纪研究, 2021, 41 (4): 916-930. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.04

    Pan Jinjiang, Huang Junhua, Zhang Rui, et al. The variation of carbon and nitrogen isotopic compositions in the Dajiuhu sediments and climate changes since Late Pleistocene in the western Hubei of Central China[J]. Quaternary Sciences, 2021, 41 (4): 916-930. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.04

    [74]

    蒲阳, 韩悦, 张虎才, 等. 鄂陵湖晚全新世沉积物记录的黄河源区气候环境变化[J]. 第四纪研究, 2021, 41 (4): 1000-1011. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.10

    Pu Yang, Han Yue, Zhang Hucai, et al. Late Holocene climatic and environmental variation in the source area of the Yellow River recorded by sediments from the Lake Ngoring, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2021, 41 (4): 1000-1011. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.10

    [75]

    Andersson R A, Kuhry P, Meyers P, et al. Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic[J]. Organic Geochemistry, 2011, 42 (9): 1065-1075. doi: 10.1016/j.orggeochem.2011.06.020

    [76]

    Jia G D, Li Z Y, Peng P A, et al. Aeolian n-alkane isotopic evidence from North Pacific for a Late Miocene decline of C4 plant in the arid Asian interior[J]. Earth and Planetary Science Letters, 2012, 321-322 (3): 32-40.

    [77]

    Zhou B. Vegetation variations and paleoenvironmental changes since the 28 ka recorded by n-alkanes from core MD05-2905, northern South China Sea[J]. Quaternary International, 2012, 279-280: 562. doi:10.1016/j.quaint.2012.08.2088.

    [78]

    Liu H, Liu W G. n-alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau[J]. Organic Geochemistry, 2016, 99: 10-22. doi:10.1016/j.orggeochem.2016.06.003.

    [79]

    Hyun S, Shin K H, Lee S C, et al. Terrestrial n-alkanes and their carbon isotope records from the Hanon paleo-maar sediment, Jeju Island, Korea: Implications for paleoclimate and paleovegetation over the last 35 kyrs[J]. Quaternary International, 2017, 441: 89-100. doi:10.1016/j.quaint.2016.08.047.

    [80]

    刘虎, 杨洪, 曹蕴宁, 等. 青藏高原地区湖泊正构烷烃有机单体氢同位素组成及其水文与环境应用[J]. 中国科学: 地球科学, 2018, 48 (6): 778-791. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201806010.htm

    Liu Hu, Yang Hong, Cao Yunning, et al. Compound-specific δD and its hydrological and environmental implication in the lakes on the Tibetan Plateau[J]. Science China: Earth Science, 2018, 61 (6): 765-777. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201806010.htm

    [81]

    徐向春, 周斌, 周雪航, 等. 中国黄土高原沉积物稳定碳同位素指标在古植被环境研究中的进展[J]. 第四纪研究, 2021, 41 (4): 931-947. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.05

    Xu Xiangchun, Zhou Bin, Zhou Xuehang, et al. A review for the stable carbon isotope proxies in the paleovegetation researches in the loess-paleosol deposits on the Chinese Loess Plateau[J]. Quaternary Sciences, 2021, 41 (4): 931-947. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.05

    [82]

    Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments—Ⅱ[J]. Organic Geochemistry, 1987, 11 (6): 513-527. doi: 10.1016/0146-6380(87)90007-6

    [83]

    Ling Y, Zheng M P, Sun Q, et al. Last deglacial climatic variability in Tibetan Plateau as inferred from n-alkanes in a sediment core from Lake Zabuye[J]. Quaternary International, 2017, 454: 15-24. doi:10.1016/j.quaint.2017.08.030.

    [84]

    赵佳玉, 王淑贤, Darin Andrey, 等. 新疆阿尔泰全新世双湖沉积物正构烷烃分布及其环境意义[J]. 第四纪研究, 2021, 41 (4): 965-975. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.07

    Zhao Jiayu, Wang Shuxian, Darin Andrey, et al. n-Alkane distribution and their paleoenvironmental implications during Holocene in lacustrine sediments in Lake Shuang, Xinjiang[J]. Quaternary Sciences, 2021, 41 (4): 965-975. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.07

    [85]

    强明瑞, 陈发虎, 周爱锋, 等. 苏干湖沉积物粒度组成记录尘暴事件的初步研究[J]. 第四纪研究, 2006, 26 (6): 915-922. doi: 10.3321/j.issn:1001-7410.2006.06.005 http://www.dsjyj.com.cn/article/id/dsjyj_8697

    Qiang Mingrui, Chen Fahu, Zhou Aifeng, et al. Preliminary study on dust storm events documented by grain size component of Sugan Lake sediments, north Qaidam Basin[J]. Quaternary Sciences, 2006, 26 (6): 915-922. doi: 10.3321/j.issn:1001-7410.2006.06.005 http://www.dsjyj.com.cn/article/id/dsjyj_8697

    [86]

    Jin Z D, Cao J J, Wu J L, et al. A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2006, 31 (3): 285-291. doi: 10.1002/esp.1243

    [87]

    Xiao J L, Chang Z G, Si B, et al. Partitioning of the grain-size components of Dali Lake core sediments: Evidence for lake-level changes during the Holocene[J]. Journal of Paleolimnology, 2009, 42 (2): 249-260. doi: 10.1007/s10933-008-9274-7

    [88]

    Kylander M E, Ampel L, Wohlfarth B, et al. High-resolution X-ray fluorescence core scanning analysis of Les Echets(France)sedimentary sequence: New insights from chemical proxies[J]. Journal of Quaternary Science, 2011, 26 (1): 109-117. doi: 10.1002/jqs.1438

    [89]

    胡洁, 汪勇, 金院, 等. 长江下游升金湖沉积物记录的过去千年高分辨率气候环境变化[J]. 第四纪研究, 2022, 42 (2): 421-434. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.08

    Hu Jie, Wang Yong, Jin Yuan, et al. High-resolution paleoclimatic changes recorded in Lake Shengjin, lower reaches of the Yangtze River over the last millennium[J]. Quaternary Sciences, 2022, 42 (2): 421-434. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2022.02.08

    [90]

    冀克家, 朱二雷, 储国强, 等. 青藏高原中部湖泊江错纹层记录的过去2000年降水变化[J]. 第四纪研究, 2021, 41 (2): 424-433. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.11

    Ji Kejia, Zhu Erlei, Chu Guoqiang, et al. Precipitation record based on varve chronology in Jiang Co on the central Tibetan Plateau during the past 2000 years[J]. Quaternary Sciences, 2021, 41 (2): 424-433. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.02.11

    [91]

    Yu G, Tang L Y, Yang X D, et al. Modern pollen samples from alpine vegetation on the Tibetan Plateau[J]. Global Ecology and Biogeography, 2001, 10 (5): 503-519. doi: 10.1046/j.1466-822X.2001.00258.x

    [92]

    Kim S T, O'Neil J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61 (16): 3461-3475. doi: 10.1016/S0016-7037(97)00169-5

    [93]

    He Y X, Zheng Y W, Pan A D, et al. Biomarker-based reconstructions of Holocene lake-level changes at Lake Gahai on the northeastern Tibetan Plateau[J]. The Holocene, 2014, 24 (4): 405-412. doi: 10.1177/0959683613519689

    [94]

    Poynter J, Eglinton G. Molecular composition of three sediments from Hole 717c: The Bengal fan[C]//Cochran J R, Stow D A V eds. Proceedings of the Ocean Drilling Program: Scientific Results. College Stationz: TX(Ocean Drilling Program), 1990: 155-161. doi: 10.2973/odp.proc.sr.116.151.1990.

    [95]

    Marzi R, Torkelson B E, Olson R K. A revised carbon preference index[J]. Organic Geochemistry, 1993, 20 (8): 1303-1306.

    [96]

    Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31 (7-8): 745-749.

    [97]

    Hou J Z, D'Andrea W J, Liu Z H. The influence of 14C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau[J]. Quaternary Science Reviews, 2012, 48: 67-79. doi:10.1016/j.quascirev.2012.06.008.

    [98]

    Zhang J W, Ma X Y, Qiang M R, et al. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China[J]. Quaternary Science Reviews, 2016, 144: 66-82. doi:10.1016/j.quascirev.2016.05.034.

    [99]

    O'Leary M H. Carbon isotopes in photosynthesis[J]. Bioscience, 1988, 38 (5): 328-336.

    [100]

    Reimer P J, Austin W E N, Bard E, et al. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve(0-55 cal kBP)[J]. Radiocarbon, 2020, 62 (4): 725-757.

    [101]

    Blaauw M. Methods and code for 'classical' age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5 (5): 512-518.

    [102]

    Blott S J, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes and Landforms, 2001, 26 (11): 1237-1248.

    [103]

    Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 2004, 23 (7-8): 811-831.

    [104]

    IPCC. Summary for policymakers[M]//Masson-Delmotte V P, Zhai A, Pirani S L, et al. Climate Change 2021: The Physical Science Basis. Contribution of Working Group Ⅰ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021: 6-9.

    [105]

    Henderson A C G, Holmes J A, Leng M J. Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau: Effective moisture variability and atmospheric circulation changes[J]. Quaternary Science Reviews, 2010, 29 (17-18): 2215-2223.

    [106]

    Tian L D, Yao T D, MacClune K, et al. Stable isotopic variations in West China: A consideration of moisture sources[J]. Journal of Geophysical Research: Atmospheres, 2007, 112: 1-12. doi:1029/2006JD007718.

    [107]

    Yu W S, Yao T D, Tian L D, et al. Relationships between δ18O in precipitation and air temperature and moisture origin on a south-north transect of the Tibetan Plateau[J]. Atmospheric Research, 2008, 87 (2): 158-169.

    [108]

    Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428 (1): 261-285.

    [109]

    Wu D, Chen X M, Lv F Y, et al. Decoupled Early Holocene summer temperature and monsoon precipitation in Southwest China[J]. Quaternary Science Reviews, 2018, 193: 54-67. doi:10.1016/j.quascirev.2018.05.038.

    [110]

    Jin Z D, An Z S, Yu J M, et al. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial[J]. Quaternary Science Reviews, 2015, 122: 63-73. doi:10.1016/j.quascirev.2015.05.015.

    [111]

    崔巧玉, 赵艳. 大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变[J]. 第四纪研究, 2019, 39 (6): 1346-1356. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.06.03

    Cui Qiaoyu, Zhao Yan. Climatic abrupt events implied by lacustrine sediments of Arxan Crater Lake, in the central Great Khingan Mountains, NE China during Holocene[J]. Quaternary Sciences, 2019, 39 (6): 1346-1356. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.06.03

    [112]

    蒋庆丰, 金典, 郑佳楠, 等. 末次冰消期以来赛里木湖沉积记录的气候突变[J]. 第四纪研究, 2019, 39 (4): 952-963. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.14

    Jiang Qingfeng, Jin Dian, Zheng Jianan, et al. Abrupt climate events recorded by Sayram Lake sediments since the last deglaciation[J]. Quaternary Sciences, 2019, 39 (4): 952-963. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.14

    [113]

    方小敏, 韩永翔, 马金辉, 等. 青藏高原沙尘特征与高原黄土堆积: 以2003-03-04拉萨沙尘天气过程为例[J]. 科学通报, 2004, 49 (11): 1084-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200411013.htm

    Fang Xiaomin, Han Yongxiang, Ma Jinhui, et al. Dust characteristics and loess accumulation in the Tibetan Plateau: A case study of the dust weather process in Lhasa from 2003-03-04[J]. Chinese Science Bulletin, 2004, 49 (11): 1084-1090. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200411013.htm

    [114]

    王薇, 徐兆凯, 冯旭光, 等. 西菲律宾海现代风尘物质组成特征及其物源指示意义[J]. 地球科学, 2020, 45 (2): 559-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002016.htm

    Wang Wei, Xu Zhaokai, Feng Xuguang, et al. Composition characteristics and provenance implication of modern dust in the west Philippine Sea[J]. Earth Science, 2020, 45 (2): 559-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202002016.htm

    [115]

    Zhang D E. Synoptic-climatic studies of dust fall in China since historic times[J]. Science in China(Series B), 1984, 27 (8): 825-836.

    [116]

    Dypvik H, Harris N B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and(Zr+Rb)/Sr ratios[J]. Chemical Geology, 2001, 181 (1-4): 131-146.

    [117]

    Wu Y H, Lüicke A, Jin Z D, et al. Holocene climate development on the central Tibetan Plateau: A sedimentary record from Cuoe Lake[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 234 (2-4): 328-340.

    [118]

    Yancheva G, Nowaczyk R N, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445 (7123): 74-77.

    [119]

    Chen J, An Z S, Head J. Variation of Rb/Sr ratios in the loess-paleosol sequences of Central China during the last 130, 000 years and their implications for monsoon paleoclimatology[J]. Quaternary Research, 1999, 51 (3): 215-219.

    [120]

    陈诗越, 王苏民, 金章东, 等. 青藏高原中部湖泊沉积物中Zr/Rb值及其环境意义[J]. 海洋地质与第四纪地质, 2003, 23 (4): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200304006.htm

    Chen Shiyue, Wang Sumin, Jin Zhangdong, et al. Variation of Zr/Rb ratios in lacustrine sediments of the cenral Tibetan Plateau and its envrionment implications[J]. Marine Geology & Quaternary Geology, 2003, 23 (4): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200304006.htm

    [121]

    Duan Y, Ma L H. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit(eastern Qinghai-Tibet Plateau, China)[J]. Organic Geochemistry, 2001, 32 (12): 1429-1442.

    [122]

    Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments[J]. Marine Chemistry, 2004, 92 (1-4): 239-261.

    [123]

    Simoneit B R T, Sheng G Y, Chen X J, et al. Molecular marker study of extractable organic matter in aerosols from urban areas of China[J]. Atmospheric Environment, Part A: General Topics, 1991, 25 (10): 2111-2129.

    [124]

    Ohkouchi N, Kawamura K, Taira A. Molecular paleoclimatology: Reconstruction of climate variabilities in the Late Quaternary[J]. Organic Geochemistry, 1997, 27 (3-4): 173-183.

    [125]

    Volkman J K, Barrett S M, Blackburn S I, et al. Microalgal biomarkers: A review of recent research developments[J]. Organic Geochemistry, 1998, 29 (5-7): 1163-1179.

    [126]

    冷程程, 赵成, 崔巧玉, 等. 大兴安岭阿尔山天池沉积物中正构烷烃记录揭示的全新世古气候变化[J]. 第四纪研究, 2021, 41 (4): 976-985. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.08

    Leng Chengcheng, Zhao Cheng, Cui Qiaoyu, et al. Paleoclimatic changes recorded by n-alkanes from the lacustrine sediments of Arxan Crater Lake, in the central Great Khingan Mountains, Northeast China during the Holocene[J]. Quaternary Sciences, 2021, 41 (4): 976-985. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.04.08

    [127]

    孙晓双, 张灿, 柴轶凡, 等. 云南高海拔湖泊对末次冰消期气候突变的响应[J]. 第四纪研究, 2019, 39 (4): 975-984. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.16

    Sun Xiaoshuang, Zhang Can, Chai Yifan, et al. High-altitude lake sediments in response to abrupt climatic events during the last deglaciation in Southwestern China[J]. Quaternary Sciences, 2019, 39 (4): 975-984. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.04.16

    [128]

    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27 (5-6): 213-250.

    [129]

    Rao Z G, Jia G D, Qiang M R, et al. Assessment of the difference between mid-and long chain compound specific δD n-alkanes values in lacustrine sediments as a paleoclimatic indicator[J]. Organic Geochemistry, 2014, 76: 104-117. doi:10.1016/j.orggeochem.2014.07.015.

    [130]

    Duan Y, Xu L. Distributions of n-alkanes and their hydrogen isotopic composition in plants from Lake Qinghai(China)and the surrounding area[J]. Applied Geochemistry, 2012, 27 (3): 806-814.

    [131]

    Duan Y, Wu Y Z, Cao X X, et al. Hydrogen isotope ratios of individual n-alkanes in plants from Gannan Gahai Lake(China)and surrounding area[J]. Organic Geochemistry, 2014, 77: 96-105. doi:10.1016/j.orggeochem.2014.10.005.

    [132]

    Liu W G, Yang H, Wang H Y, et al. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau[J]. Organic Geochemistry, 2015, 83: 190-201. doi:10.1016/j.orggeochem.2015.03.017.

    [133]

    Aichner B, Herzschuh U, Wilkes H. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau[J]. Organic Geochemistry, 2010, 41 (7): 706-718.

    [134]

    Han J, Calvin M. Hydrocarbon distribution of algae and bacteria, and microbiological activity in sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 1969, 64 (2): 436-443.

    [135]

    Mügler I, Sachse D, Werner M, et al. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co(Tibetan Plateau)and Holzmaar(Germany)[J]. Organic Geochemistry, 2008, 39 (6): 711-729.

    [136]

    Guenther F, Aichner B, Siegwolf R, et al. A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau[J]. Quaternary International, 2013, 313: 3-16. doi:10.1016/j.quaint.2013.07.013.

    [137]

    Meyers P A, Ishiwatari R. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20 (7): 867-900.

    [138]

    Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30 (21-22): 2851-2891.

    [139]

    Meyers P A, Lallier-Vergès E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21 (3): 345-372.

    [140]

    崔利芳, 王伦澈, 屈赛, 等. 气温、降水量和人类活动对长江流域植被NDVI的影响[J]. 地球科学, 2020, 45 (6): 1905-1917. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006004.htm

    Cui Lifang, Wang Lunche, Qu Sai, et al. Impacts of temperature, precipitation and human activity on vegetation NDVI in Yangtze River Basin[J]. Earth Science, 2020, 45 (6): 1905-1917. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006004.htm

  • 加载中

(11)

(2)

计量
  • 文章访问数:  3317
  • PDF下载数:  244
  • 施引文献:  0
出版历程
收稿日期:  2022-02-12
修回日期:  2022-06-19
刊出日期:  2022-09-30

目录