光释光年代学对腾格里沙漠化机制及风沙物源的指示

范育新, 张青松, 蔡青松, 高敏敏, 颜雪域, 杨光亮. 光释光年代学对腾格里沙漠化机制及风沙物源的指示[J]. 第四纪研究, 2022, 42(2): 350-367. doi: 10.11928/j.issn.1001-7410.2022.02.03
引用本文: 范育新, 张青松, 蔡青松, 高敏敏, 颜雪域, 杨光亮. 光释光年代学对腾格里沙漠化机制及风沙物源的指示[J]. 第四纪研究, 2022, 42(2): 350-367. doi: 10.11928/j.issn.1001-7410.2022.02.03
范育新, 张青松, 蔡青松, 高敏敏, 颜雪域, 杨光亮. 光释光年代学对腾格里沙漠化机制及风沙物源的指示[J]. 第四纪研究, 2022, 42(2): 350-367. doi: 10.11928/j.issn.1001-7410.2022.02.03 FAN Yuxin, ZHANG Qingsong, CAI Qingsong, GAO Minmin, YAN Xueyu, YANG Guangliang. OSL chronology of sediments in the Tengger Sandy Desert and its indication to aeolian sand source and desertification mechanism[J]. Quaternary Sciences, 2022, 42(2): 350-367. doi: 10.11928/j.issn.1001-7410.2022.02.03
Citation: FAN Yuxin, ZHANG Qingsong, CAI Qingsong, GAO Minmin, YAN Xueyu, YANG Guangliang. OSL chronology of sediments in the Tengger Sandy Desert and its indication to aeolian sand source and desertification mechanism[J]. Quaternary Sciences, 2022, 42(2): 350-367. doi: 10.11928/j.issn.1001-7410.2022.02.03

光释光年代学对腾格里沙漠化机制及风沙物源的指示

  • 基金项目:

    国家自然科学基金项目(批准号:41772169和91962212)和科技部第二次青藏高原综合科学考察研究项目(批准号:2019QZKK0704)共同资助

详细信息
    作者简介:

    范育新, 男, 46岁, 教授, 光释光年代学及第四纪沉积物源研究, E-mail: yxfan@lzu.edu.cn

  • 中图分类号: P534.63;P597+.3

OSL chronology of sediments in the Tengger Sandy Desert and its indication to aeolian sand source and desertification mechanism

  • 腾格里沙漠地处东亚夏季风现代影响区的西北边缘,长期以来被认为是东亚沙尘暴多发中心之一。近年来的研究较明确地支持腾格里沙漠晚更新世以来的沉积环境发生了巨大变化,但该区沙漠化的机制仍需进一步研究。文章基于石英矿物的光释光测年技术,研究了腾格里沙漠南部腹地系列剖面的沉积年代,结合已有研究结果,重建了该区风沙堆积历史,获得如下认识:1)腾格里沙漠末次冰盛期以来的风沙堆积主要集中在16~10 ka及约1.5 ka以来两个时段;2)腾格里地区16~10 ka的风沙堆积发生在区域由干变湿的时段,而7.3 ka、5.1 ka和3.8~3.3 ka的风沙堆积发生于区域湿度较高背景下的干旱时段。由于这些时段的气候环境有利于风沙的堆积与固定而不利于风沙的产生,因而推断16.0~3.3 ka时段腾格里地区的风沙主要来自上风向地区的输入;3)腾格里大面积地区的沙丘/沙山堆积于最近0.37 ka以来降水较少的时段,略晚于区域高强度的人类工程活动,表明现今可见的沙丘/沙山地貌景观的形成是人类高强度工程活动触发、就地起沙的结果。

  • 加载中
  • 图 1 

    研究区地理概况及采样点和涉及到的其他剖面点(BYG[77]、GL1/2[63, 78]、TGL1[63]、TGL3[63]、TGL4[63]、TGL5[63]、TD03[17]、TD06[17]、MD03[17]、MD05-3[17]、MD06[17]、TD13-1[17]、TD13-2[17]、TD13-5[17]、TD13-6[17]、XS[24]和SJC[58])的空间分布

    Figure 1. 

    Geographical setting and distribution of sampling locations and referred profiles(BYG[77], GL1/2[63, 78], TGL1[63], TGL3[63], TGL4[63], TGL5[63], TD03[17], TD06[17], MD03[17], MD05-3[17], MD06[17], TD13-1[17], TD13-2[17], TD13-5[17], TD13-6[17], XS[24] and SJC[58]).

    图 2 

    代表性剖面TGL-8-1沉积地层照片

    Figure 2. 

    Photos of the sedimentary characteristics in the representative section TGL-8-1.

    图 3 

    腾格里地区不同剖面地层柱状图及光释光测年结果

    Figure 3. 

    The lithology and OSL dating results obtained at profiles within the hinterland of the Tengger Sandy desert.

    图 4 

    代表性样品TGL-53-300的OSL信号衰减曲线(a)和剂量增长曲线(b)

    Figure 4. 

    Decay curve of OSL signal (a) and dose response curve (b) from the representative sample TGL-53-300

    图 5 

    TGL-63-126样品等效剂量(De)与特征饱和剂量(D0)相关关系图

    Figure 5. 

    Plot of De versus D0 of OSL signals for the representative sample TGL-63-126

    图 6 

    腾格里南部地区风沙沉积物中石英矿物的等效剂量(De)值与灵敏度校正后的自然光释光信号强度(Ln/Tn)关系图图中虚线代表根据最小年龄模型计算得出的De

    Figure 6. 

    The relationship between the De values and Ln/Tn of OSL signals from quartz fractions in aeolian sands in the hinterland of southern Tengger. The dotted line represents the De values calculated based on the minimum age model

    图 7 

    腾格里地区沙漠化历史与气候背景的对比

    Figure 7. 

    Coupling of desertification in Tengger area with the climate backgrounds.

    图 8 

    腾格里地区近2 ka以来沙漠化历史与气候记录及周边地区人类活动历史对比

    Figure 8. 

    Coupling of desertification in the hinterland of the Tengger with the climate backgrounds and human activity history in the vicinity area during the latest 2 ka.

    表 1 

    腾格里沙漠腹地沉积剖面和沉积特征

    Table 1. 

    Sedimentary profiles and characteristics within the hinterland of the Tengger Sandy Desert

    剖面 TGL-8-1 TGL-14 TGL-4
    坐标和海拔 37°46′25.90″N,103°40′21.57″E;1609 m 38°03′01.00″N,103°14′23.00″E;1510 m 38°01′36.86″N,104°23′27.13″E;1441 m
    地貌特征 丘间洼地的垛状固定沙丘,地表见白刺、黄蒿和沙米 丘间地风蚀残丘,出露地表约1 m 垛状固定沙丘,地表以白刺为主,见少量碱蓬
    沉积特征 0~20 cm(U1):棕黄色细砂,在10 cm处取OSL样;
    20~35 cm(U2):棕黄色黄土;
    35~100 cm(U3):棕黄色粘土质砂,在40 cm处取OSL样;
    100~150 cm(U4):棕黄色细砂
    0~20 cm(U1):棕褐色粘土,表面有泥裂;
    20~140 cm(U2):灰白色中~细砂,钙质胶结,在40 cm和140 cm处取OSL样;
    140~330 cm(U3):140~170 cm为湿砂,其粒度比下层粗,170~330 cm为干的灰白色细砂,发育水平层理,单层厚度约2 cm,在250 cm和330 cm处取OSL样
    0~110 cm(U1):棕黄色细砂,无明显层理,有较多植物根系,在100 cm处取OSL样;
    110~140 cm(U2):灰白色中~细砂与棕黄色细砂交错;
    140~150 cm(U3):灰白色粘土质细砂
    剖面 TGL-3 TGL-63 TGL-60
    坐标和海拔 37°41′48.42″N,104°40′41.38″E;1436 m 37°54′17.13″N,104°36′05.23″E;1430 m 38°15′31.05″N,104°20′59.90″E;1370 m
    地貌特征 固定沙丘链,地表被植被固定 河流冲蚀天然露头,顶部为现代固定沙丘覆盖,长有梭梭、蒿类、柠条、沙蓬等 开挖于固定沙丘底部,沙丘顶部植物以沙棘为主
    沉积特征 0~145 cm(U1):棕黄色细砂,0~60 cm、100~145 cm无明显层理,60~100 cm有平行层理,有较多植物根系,在40 cm和130 cm处取OSL样;
    145~230 cm(U2):棕褐色粉砂质粘土,有虫孔、植物根系,220 cm处见地下潜水出露;
    230~240 cm(U3):棕黄色细砂,在230 cm处取样
    0~55 cm(U1):棕黄色中~细砂;
    55~82 cm(U2):棕黄色砂质荒漠土,在68 cm处取OSL样;
    82~130 cm(U3):棕灰色土壤,120~130 cm见胶膜状或者菌丝体状的白色碳酸盐淋滤,见腐烂的植物根,该层自顶部至底部成壤作用逐渐增强,腐烂的植物根系增多,在86 cm和126 cm处取OSL样;
    130~150 cm(U4):棕褐色粘土,粘土质地坚硬,并见碳屑,未见底
    0~67 cm(U1):棕黄色中~细砂,在30 cm和65 cm处取OSL样;
    67~140 cm(U2):棕褐色粘土质粉砂,在130 cm处取OSL样;
    140~165 cm(U3):棕褐色粘土,虫孔发育;
    165~180 cm(U4):灰白色粘土(未见底),虫孔发育
    剖面 TGL-12 TGL-14-2 TGL-13-2
    坐标和海拔 37°48′55″N,103°02′41″E;1584 m 38°04′01.25″N,103°14′15.89″E;1496 m 38°03′04″N,102°53′11″E;1486 m
    地貌特征 半固定沙丘底部,周围植被主要为白刺、黄蒿、沙米 沙丘,表层被植被覆盖 沙丘高约15 m,沙丘底部粘土出露
    沉积特征 0~30 cm(U1):棕黄色中~细砂,在30 cm处取OSL样;
    30~35 cm(U2):棕褐色粘土;
    35~40 cm(U3):灰白色粘土;
    40~50 cm(U4):棕黄色细砂
    0~30 cm(U1):棕黄色土壤;
    30~60 cm(U2):棕黄色松散细砂,在50 cm处取OSL样
    0~100 cm(U1):现代棕黄色风成沙,在100 cm处取OSL样;
    100~120 cm(U2):棕褐色粘土;
    120~160 cm(U3):棕黄色风成沙,在150 cm处取OSL样
    剖面 TGL-53
    坐标和海拔 37°53′06.34″N,102°56′39.98″E;1539 m
    地貌特征 高约10 m的半固定沙丘,丘顶部长有蒿类、沙棘、沙蓬等植物,剖面位于沙丘底部
    沉积特征 0~50 cm(U1):松散的棕黄色风成沙,植物根系发育,在45 cm处取OSL样;
    50~110 cm(U2):棕灰色中~细砂(风成沙),在约70 cm见楔状灰白色黄土,厚约5 cm;96~100 cm处发育薄层的灰白色黄土,质地较硬;100~110 cm为棕灰色中~细砂,与该层上部一致;
    110~128 cm(U3):棕灰色细砂,在117 cm处取OSL样;
    128~142 cm(U4):灰白色细砂;
    142~168 cm(U5):为棕褐色粉砂质粘土,在166~168 cm处发育薄层棕褐色粘土;
    168~220 cm(U6):灰白色黄土,质地较硬;
    220~255 cm(U7):灰白色细砂,质地明显较松散,在240 cm处取OSL样;
    255~273 cm(U8):棕黄色黄土,质地较硬;
    273~305 cm(U9):棕灰色中~细砂,在277 cm和300 cm处取OSL样;
    305~370 cm(U10):棕褐色粉砂质粘土(粉砂与棕褐色粘土互层),在310 cm、340 cm处发育4 cm厚的棕褐色粘土,在350 cm、360 cm处发育2 cm厚的薄层粘土,在341 cm处取OSL样;
    370~377 cm(U11):棕褐色粘土;
    377~398 cm(U12):棕黄色粘土质细砂,发育黄色潜育化斑点;
    398~413 cm(U13):棕褐色粘土;
    413~421 cm(U14):棕褐色粉砂质粘土(粉砂与棕褐色粘土共存,粘土含量高);
    421~460 cm(U15):棕灰色中~细砂,潜育化明显,判断为湖相砂,在422 cm处取OSL样;
    460~500 cm(U16):棕褐色粘土,未见底
    下载: 导出CSV

    表 2 

    测量石英post-IR OSL释光信号的程序*

    Table 2. 

    The protocol used to measure OSL post-IR OSL signals from quartz grains

    步骤 实验过程 观测结果
    1 辐照再生剂量(beta dose)Di,i=0,1,2… -
    2 260 ℃预热(preheat),持续10 s -
    3 125 ℃红外(IR)激发100 s -
    4 125 ℃条件蓝光激发测量OSL信号,激发时间40 s Li
    5 实验剂量,Dt -
    6 220 ℃条件下热释光(cutheat) -
    7 125 ℃红外(IR)激发100 s -
    8 125 ℃条件蓝光激发测量OSL信号,激发时间40 s Ti
    9 280 ℃条件下晒退(Illumination),持续时间40 s -
    10 返回第一步 -
    *测量自然释光信号时i=0,D0=0
    下载: 导出CSV

    表 3 

    研究区样品石英OSL测年结果

    Table 3. 

    OSL dating results of quartz fraction in the study area

    剖面 海拔(m) 样品编号 深度(cm) 岩性 U(×10-6) Th(×10-6) K(%) Rb(×10-6) 剂量率(Gy/ka) 粒径(μm) 等效剂量(Gy)* 测片数(个) 年代(ka)
    TGL-3 1436 TGL-3-40 40 棕黄色细砂 1.19±0.39 1.02±0.39 1.41±0.03 / 1.94±0.12 90~125 0.91±0.06# 4 0.47±0.04
    TGL-3-130 130 棕黄色细砂 1.29±0.37 1.03±0.37 1.34±0.02 / 1.76±0.10 90~125 0.64±0.06# 4 0.37±0.04
    TGL-3-230 230 棕黄色细砂 5.38±0.50 3.49±0.50 1.17±0.02 / 2.68±0.14 90~125 20.73±1.03 15 7.90±0.57
    TGL-4 1441 TGL-4-100 100 棕黄色细砂 0.59±0.37 0.73±0.37 1.39±0.03 / 1.64±0.10 90~125 0.51±0.20# 4 0.31±0.12
    TGL-8-1 1609 TGL-8-1-10 10 棕黄色细砂 1.14±0.40 1.09±0.40 1.08±0.02 / 1.64±0.11 90~125 0.42±0.04# 4 0.26±0.03
    TGL-8-1-40 40 棕黄色粘土质砂 1.13±0.41 1.09±0.41 1.34±0.02 / 1.87±0.12 90~125 7.03±0.22 12 3.78±0.26
    TGL-12 1584 TGL-12-30 30 棕黄色中~细砂 1.22±0.38 0.92±0.38 1.40±0.03 / 1.91±0.11 90~125 0.23±0.02# 4 0.12±0.01
    TGL-13-2 1486 TGL-13-2-100 100 棕黄色细砂 0.78±0.44 1.08±0.44 1.23±0.02 / 1.56±0.11 90~125 0.58±0.08# 4 0.37±0.06
    TGL-13-2-150 150 棕黄色细砂 1.59±0.42 1.40±0.42 1.10±0.02 / 1.63±0.10 90~125 12.03±0.88 13 7.44±0.72
    TGL-14 1510 TGL-14-40 40 灰白色中~细砂 1.71±0.45 1.56±0.45 1.52±0.03 / 2.20±0.13 90~125 25.31±2.43 14 11.65±1.31
    TGL-14-140 140 灰白色中~细砂 1.88±0.40 1.53±0.40 1.41±0.03 / 1.99±0.11 90~125 19.81±0.63 14 10.06±0.64
    TGL-14-250 250 灰白色细砂 1.35±0.65 1.28±0.65 1.93±0.04 / 2.30±0.15 90~125 36.05±2.71 14 15.85±1.58
    TGL-14-330 330 灰白色细砂 1.81±0.47 1.44±0.47 1.53±0.03 / 2.00±0.12 125~180 33.57±3.07 14 16.73±1.81
    TGL-14-2 1496 TGL-14-2-50 50 棕黄色细砂 1.77±0.37 1.33±0.37 1.26±0.02 / 1.96±0.11 90~125 0.89±0.04# 4 0.46±0.03
    TGL-53 1539 TGL-53-45 45 棕黄色中~细砂 1.66±0.30 8.50±0.60 1.77±0.04 81.09±4.00 2.91±0.13 90~125 1.10± 0.28 7 0.39±0.10
    TGL-53-117 117 棕灰色细砂 2.20±0.30 9.58±0.60 1.97±0.04 86.33±4.00 3.15±0.14 90~125 28.35±2.00 10 9.24±0.77
    TGL-53-240 240 灰白色细砂 2.19±0.30 8.56±0.60 1.89±0.04 80.81±4.00 3.02±0.14 63~90 43.01±3.82 18 14.88±1.48
    TGL-53-277 277 棕灰色中~细砂 2.62±0.40 9.86±0.60 2.01±0.04 89.19±4.00 3.31±0.15 63~90 36.97±3.94 19 11.67±1.35
    TGL-53-300 300 棕灰色中~细砂 2.69±0.40 10.66±0.70 1.93±0.04 90.30±5.00 3.31±0.15 63~90 32.36±4.37 11 10.25±1.46
    TGL-53-341 341 棕褐色砂质粘土 2.41±0.30 10.56±0.70 1.96±0.04 85.12±4.00 3.25±0.15 63~90 39.53±5.32 22 12.72±1.80
    TGL-53-422 422 棕灰色中~细砂 1.86±0.30 7.68±0.60 1.92±0.04 79.27±4.00 2.82±0.13 90~125 36.57±3.81 17 13.30±1.51
    TGL-60 1370 TGL-60-30 30 棕黄色中~细砂 1.36±0.30 5.54±0.50 1.85±0.04 74.30±4.00 2.70±0.13 90~125 2.20±0.08 14 0.83±0.05
    TGL-60-65 65 棕黄中~细砂 1.81±0.30 6.15±0.60 1.87±0.04 76.21±4.00 2.75±0.13 90~125 2.14±0.08 14 0.80±0.05
    TGL-60-130 130 棕褐色砂质粘土 2.78±0.40 7.12±0.60 1.99±0.04 79.23±4.00 3.13±0.15 90~125 10.02±0.53 16 3.29±0.23
    TGL-63 1430 TGL-63-68 68 棕黄色砂质荒漠土 2.09±0.30 7.46±0.60 1.91±0.04 75.97±4.00 2.94±0.13 90~125 1.12±0.21 14 0.39±0.08
    TGL-63-86 86 棕灰色土壤 2.64±0.40 9.38±0.60 1.97±0.04 84.35±4.00 3.25±0.15 90~125 4.53±0.97 14 1.44±0.31
    TGL-63-126* 126 棕灰色土壤 4.13±0.50 8.16±0.60 1.83±0.04 76.75±4.00 3.36±0.16 90~125 >111.59±5.11 18 >34.24±2.26
    (1)从“*”样品中获得的De>2 D0,因此按照2 D0计算了其最小De值和年代
    (2)“/”这些样品中未测Rb含量,在计算剂量率时按照80±5 ×10-6进行了估算
    (3)“#”这些样品的De值在南京大学地理与海洋学院光释光实验室测得
    下载: 导出CSV
  • [1]

    聂文果, 魏怀东. 荒漠化监测与防沙治沙法[J]. 干旱区资源与环境, 2002, 16 (3): 78-82. doi: 10.3969/j.issn.1003-7578.2002.03.014

    Nie Wenguo, Wei Huaidong. Monitor of desertification and law of China for desert control[J]. Journal of Arid Land Resources and Environment, 2002, 16 (3): 78-82. doi: 10.3969/j.issn.1003-7578.2002.03.014

    [2]

    董光荣, 申建友, 金炯. 气候变化与沙漠化关系的研究[J]. 干旱区资源与环境, 1988, 2 (1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH198801002.htm

    Dong Guangrong, Shen Jianyou, Jin Jiong. On the relationship between desertification and climatic changes[J]. Journal of Arid Land Resources and Environment, 1988, 2 (1): 33-47. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH198801002.htm

    [3]

    朱震达, 王涛. 中国沙漠化研究的理论与实践[J]. 第四纪研究, 1992, (2): 3-12. http://www.dsjyj.com.cn/article/id/dsjyj_9895

    Zhu Zhenda, Wang Tao. Theory and practice on sandy desertification in China[J]. Quaternary Sciences, 1992, (2): 3-12. http://www.dsjyj.com.cn/article/id/dsjyj_9895

    [4]

    董玉祥. "荒漠化"与"沙漠化"[J]. 中国科技术语, 2000, 2 (4): 18-21. doi: 10.3969/j.issn.1673-8578.2000.04.008

    Dong Yuxiang. Desertification and sand desertification[J]. China Terminology, 2000, 2 (4): 18-21. doi: 10.3969/j.issn.1673-8578.2000.04.008

    [5]

    朱震达. 土地荒漠化问题研究现状与展望[J]. 地理研究, 1994, 13 (1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ199401014.htm

    Zhu Zhenda. Current situation and prospect of land desertification problem[J]. Geographical Research, 1994, 13 (1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ199401014.htm

    [6]

    Verstraete M M, Scholes R J, Smith M S. Climate and desertification: Looking at an old problem through new lenses[J]. Frontiers in Ecology and the Environment, 2009, 7 (8): 421-428. doi: 10.1890/080119

    [7]

    张钛仁, 张玉峰, 柴秀梅, 等. 人类活动对我国西北地区沙质荒漠化影响与对策研究[J]. 中国沙漠, 2010, 30 (2): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201002002.htm

    Zhang Tairen, Zhang Yufeng, Chai Xiumei, et al. Impact of human activities on sandy desertification of Northwestern China and countermeasures analysis[J]. Journal of Desert Research, 2010, 30 (2): 228-234. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201002002.htm

    [8]

    Xu D Y, Ding X. Assessing the impact of desertification dynamics on regional ecosystem service value in North China from 1981 to 2010[J]. Ecosystem Services, 2018, 30: 172-180. doi:10.1016/j.ecoser.2018.03.002.

    [9]

    Reynolds J F, Smith D M S, Lambin E F, et al. Global desertification: Building a science for dryland development[J]. Science, 2007 316 (5826): 847-851. doi: 10.1126/science.1131634

    [10]

    马明, 李小婷, 唐翠平. 荒漠化的现状、成因及防止对策[J]. 现代园艺, 2014, (8): 154-155. doi: 10.3969/j.issn.1006-4958.2014.08.123

    Ma Ming, Li Xiaoting, Tang Cuiping. The present situation, causes and countermeasures of desertification[J]. Modern Horticulture, 2014, (8): 154-155. doi: 10.3969/j.issn.1006-4958.2014.08.123

    [11]

    Kaushalya R. Monitoring the impact of desertification in western Rajasthan using remote sensing[J]. Journal of Arid Environments, 1992, 22 (3): 293-304. doi: 10.1016/S0140-1963(18)30648-7

    [12]

    Bao Y S, Cheng L L, Bao Y F, et al. Desertification: China provides a solution to a global challenge[J]. Frontiers of Agricultural Science and Engineering, 2017, 4 (4): 402-413. doi: 10.15302/J-FASE-2017187

    [13]

    Li S H, Sun J M. Optical dating of Holocene dune sands from the Hulun Buir Desert, Northeastern China[J]. The Holocene, 2006, 16 (3): 457-462. doi: 10.1191/0959683606hl942rr

    [14]

    Zhao H, Lu Y C, Yin J H. Optical dating of Holocene sand dune activities in the Horqin sand-fields in Inner Mongolia, China, using the SAR protocol[J]. Quaternary Geochronology, 2007, 2 (1-4): 29-33. doi: 10.1016/j.quageo.2006.03.008

    [15]

    Fan Y X, Zhao H, Chen F H. The equivalent dose of different grain size quartz fractions from lakeshore sediments in the arid region of North China[J]. Quaternary Geochronology, 2010, 5 (2-3): 205-211. doi: 10.1016/j.quageo.2009.05.012

    [16]

    Fan Y X, Chen X L, Liu W H, et al. Formation of present desert landscape surrounding Jilantai Salt Lake in Northern China based on OSL dating[J]. Frontiers of Earth Science, 2015, 9 (3): 497-508. doi: 10.1007/s11707-014-0482-3

    [17]

    Fan Y X, Zhang F, Zhang F, et al. History and mechanisms for the expansion of the Badain Jaran Desert, Northern China, since 20 ka: Geological and luminescence chronological evidence[J]. The Holocene, 2016, 26 (4): 532-548. doi: 10.1177/0959683615612588

    [18]

    Fan X L, Zhang X Y, Tian M Z. Climate change during the last glacial period on the southeast margin of Badain Jaran Desert, Northwest China[J]. Journal of Mountain Science, 2019, 16 (10): 2379-2388. doi: 10.1007/s11629-018-5186-9

    [19]

    Qiang M R, Chen F H, Wang Z T, et al. Aeolian deposits at the southeastern margin of the Tengger Desert(China): Implications for surface wind strength in the Asian dust source area over the past 20 000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010 286 (1): 66-80. https://www.sciencedirect.com/science/article/pii/S0031018209005343

    [20]

    Qiang M R, Jin Y X, Liu X X, et al. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau: Variability, processes, and climatic implications[J]. Quaternary Science Reviews, 2016 132: 57-73. doi:10.1016/j.quascirev.2015.11.010.

    [21]

    Yang X P, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China-A critical review[J]. Quaternary Science Reviews, 2011, 30 (23): 3219-3233. https://www.sciencedirect.com/science/article/pii/S0277379111002599

    [22]

    Yang X P, Forman S, Hu F G, et al. Initial insights into the age and origin of the Kubuqi sand sea of Northern China[J]. Geomorphology, 2016 259: 30-39. doi:10.1016/j.geomorph.2016.02.004.

    [23]

    Lu H Y, Zhou Y L, Liu W G, et al. Organic stable carbon isotopic composition reveals Late Quaternary vegetation changes in the dune fields of Northern China[J]. Quaternary Research, 2012, 77 (3): 433-444. doi: 10.1016/j.yqres.2012.01.009

    [24]

    Lu H Y, Yi S W, Xu Z W, et al. Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J]. Chinese Science Bulletin, 2013, 58 (23): 2775-2783. doi: 10.1007/s11434-013-5919-7

    [25]

    Zhou J X, Zhu Y, Yuan C Q. Origin and lateral migration of linear dunes in the Qaidam Basin of NW China revealed by dune sediments, internal structures, and optically stimulated luminescence ages, with implications for linear dunes on Titan[J]. Geological Society of America Bulletin, 2012 124 (7-8): 1147-1154. doi: 10.1130/B30550.1

    [26]

    Chen F H, Li G Q, Zhao H, et al. Landscape evolution of the Ulan Buh Desert in Northern China during the Late Quaternary[J]. Quaternary Research, 2014, 81 (3): 476-487. doi: 10.1016/j.yqres.2013.08.005

    [27]

    Liu S W, Lai Z P, Wang Y X, et al. Growing pattern of mega-dunes in the Badain Jaran Desert in China revealed by luminescence ages[J]. Quaternary International, 2016 410: 111-118. doi:10.1016/j.quaint.2015.09.048.

    [28]

    Wang N A, Ning K, Li Z L, et al. Holocene high lake-levels and pan-lake period on Badain Jaran Desert[J]. Science China: Earth Sciences, 2016, 59 (8): 1633-1641. doi: 10.1007/s11430-016-5307-7

    [29]

    Ding Z L, Sun J M, Yang S L, et al. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change[J]. Geochimica et Cosmochimica Acta, 2001, 65 (6): 901-913. doi: 10.1016/S0016-7037(00)00571-8

    [30]

    Wang X, Chen F, Hasi E, et al. Desertification in China: An assessment[J]. Earth-Science Reviews, 2008, 88 (3): 188-206. https://www.sciencedirect.com/science/article/pii/S0012825208000305

    [31]

    Zheng H B, Wei X C, Tada R, et al. Late Oligocene-Early Miocene birth of the Taklimakan Desert[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015 112 (25): 7662-7667. doi: 10.1073/pnas.1424487112

    [32]

    杨小平. 巴丹吉林沙漠及其毗邻地区的景观类型及其形成机制初探[J]. 中国沙漠, 2000, 20 (2): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200002012.htm

    Yang Xiaoping. Landscape types and its formation mechanism in the Badain Jaran Desert and its surrounding areas[J]. Journal of Desert Research, 2000, 20 (2): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200002012.htm

    [33]

    强明瑞, 李森, 金明, 等. 60 ka来腾格里沙漠东南缘风成沉积与沙漠演化[J]. 中国沙漠, 2000, 20 (3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200003006.htm

    Qiang Mingrui, Li Sen, Jin Ming, et al. Aeolian deposits on the southeastern margin of Tengger Desert and desert evolution during the last 60000 years[J]. Journal of Desert Research, 2000, 20 (3): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200003006.htm

    [34]

    杨东, 方小敏, 董光荣, 等. 1.8 Ma BP以来陇西断岘黄土剖面沉积特征及其反映的腾格里沙漠演化[J]. 中国沙漠, 2006, 26 (1): 6-13. doi: 10.3321/j.issn:1000-694X.2006.01.002

    Yang Dong, Fang Xiaomin, Dong Guangrong, et al. Loess deposit characteristic in Duanxian section of Longxi Basin and its reflected evolution of Tengger Desert at north of China since last 1.8 Ma[J]. Journal of Desert Research, 2006, 26 (1): 6-13. doi: 10.3321/j.issn:1000-694X.2006.01.002

    [35]

    杜婧, 鲁瑞洁, 刘小槺, 等. 全新世以来毛乌素沙地东南缘成壤环境演变研究-以榆林镇北台为例[J]. 第四纪研究, 2019, 39 (2): 420-428. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.02.14

    Du Jing, Lu Ruijie, Liu Xiaokang, et al. Study on the evolution of pedogenesis environment on the southeast margin of the Mu Us Desert since Holocene[J]. Quaternary Sciences, 2019, 39 (2): 420-428. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.02.14

    [36]

    白敏, 鲁瑞洁, 丁之勇, 等. 青海湖湖东沙地粒度端元分析及其指示意义[J]. 第四纪研究, 2020, 40 (5): 1203-1215. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.10

    Bai Min, Lu Ruijie, Ding Zhiyong, et al. End-member analysis of grain-size in the east of Qinghai Lake and its environmental implications[J]. Quaternary Sciences, 2020, 40 (5): 1203-1215. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.05.10

    [37]

    Yang X P, Rost K T, Lehmkuhl F, et al. The evolution of dry lands in Northern China and in the Republic of Mongolia since the Last Glacial Maximum[J]. Quaternary International, 2004 118-119: 69-85. doi:10.1016/S1040-6182 (03) 00131-9.

    [38]

    Zhou W J, Dodson J, Head M J, et al. Environmental variability within the Chinese desert-loess transition zone over the last 20000 years[J]. The Holocene, 2002, 12 (1): 107-112. doi: 10.1191/0959683602hl525rr

    [39]

    Sun J M, Li S H, Han P, et al. Holocene environmental changes in the central Inner Mongolia, based on single-aliquot-quartz optical dating and multi-proxy study of dune sands[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006 233 (1-2): 51-62. doi: 10.1016/j.palaeo.2005.09.016

    [40]

    Fan Y X, Chen X L, Fan T L, et al. Sedimentary and OSL dating evidence for the development of the present Hobq Desert landscape, Northern China[J]. Science China: Earth Sciences, 2013, 56 (12): 2037-2044. doi: 10.1007/s11430-013-4673-7

    [41]

    Xu Z W, Lu H Y, Yi S W, et al. Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field, north-Central China[J]. Earth and Planetary Science Letters, 2015 427: 149-159. doi:10.1016/j.epsl.2015.07.002.

    [42]

    王涛, 吴薇, 薛娴, 等. 中国北方沙漠化土地时空演变分析[J]. 中国沙漠, 2003, 23 (3): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200303004.htm

    Wang Tao, Wu Wei, Xue Xian, et al. Time-space evolution of desertification land in Northern China[J]. Journal of Desert Research, 2003, 23 (3): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200303004.htm

    [43]

    杨永梅, 郭志林, 杨改河. 人类活动对现代毛乌素沙地沙漠化的驱动作用[J]. 安徽农业科学, 2010, 38 (31): 17688-17690. doi: 10.3969/j.issn.0517-6611.2010.31.126

    Yang Yongmei, Guo Zhilin, Yang Gaihe. Driving action of human activities on desertification of present Mu Us sandy land[J]. Journal of Anhui Agricultural Science, 2010, 38 (31): 17688-17690. doi: 10.3969/j.issn.0517-6611.2010.31.126

    [44]

    Lai Z P, Kaiser K, Brückner H. Luminescence-dated aeolian deposits of Late Quaternary age in the southern Tibetan Plateau and their implications for landscape history[J]. Quaternary Research, 2009, 72 (3): 421-430. doi: 10.1016/j.yqres.2009.07.005

    [45]

    Jia F F, Lu R J, Gao S Y, et al. Holocene aeolian activities in the southeastern Mu Us Desert, China[J]. Aeolian Research, 2015, 19: 267-274. doi:10.1016/j.aeolia.2015.01.002.

    [46]

    Li G Q, Jin M, Chen X M, et al. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the Middle Pleistocene based on sedimentology, chronology and proxy indexes[J]. Quaternary Science Reviews, 2015 128: 69-80. doi:10.1016/j.quascirev.2015.09.010.

    [47]

    Yu L P, Lai Z P, An P, et al. Aeolian sediments evolution controlled by fluvial processes, climate change and human activities since LGM in the Qaidam Basin, Qinghai-Tibetan Plateau[J]. Quaternary International, 2015 372: 23-32. doi:10.1016/j.quaint.2014.09.043.

    [48]

    Peng L, Yang X P. Landscape spatial patterns in the Maowusu(Mu Us) Sandy Land, Northern China and their impact factors[J]. Catena, 2016 145: 321-333. doi:10.1016/j.catena.2016.06.023.

    [49]

    Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002 203 (3-4): 845-859. doi: 10.1016/S0012-821X(02)00921-4

    [50]

    Li G J, Chen J, Chen Y, et al. Dolomite as a tracer for the source regions of Asian dust[J]. Journal of Geophysical Research: Atmospheres, 2007 112: D17021. doi:10.1029/-2007jd008676.

    [51]

    Peng J, Wang X L, Yin G M, et al. Accumulation of aeolian sediments around the Tengger Desert during the Late Quaternary and its implications on interpreting chronostratigraphic records from drylands in North China[J]. Quaternary Science Reviews, 2022 275: 107288. doi:10.1016/j.quascirev.2021.107288.

    [52]

    Li Y, Song Y G. Discussion of the paper "Loess genesis and worldwide distribution" by Yanrong Li, Wenhui Shi, Adnan Aydin, et al[J]. Earth-Science Reviews, 2020 221: 103151. doi:10.1016/j.earscirev.2020.103151.

    [53]

    Shi W H, Li Y R, Bai M H, et al. Reply to Li and Song's discussion of "Loess genesis and worldwide distribution"[J]. Earth-Science Reviews, 2021 103718. doi:10.1016/j.earscirev.2021.103718.

    [54]

    Derbyshire E, Meng X M, Kemp R A. Provenance, transport and characteristics of modern aeolian dust in western Gansu Province, China, and interpretation of the Quaternary loess record[J]. Journal of Arid Environments, 1998, 39 (3): 497-516. doi: 10.1006/jare.1997.0369

    [55]

    Fan Y X, Wang F, Yang G L, et al. Decoupling of the detrital linkage between proximal dunefields and Early and Middle Pleistocene accumulation in the Chinese Loess Plateau: Evidence from the Badain Jaran and Tengger sandy deserts[J]. Quaternary Science Reviews, 2021 264: 107026. doi:10.1016/j.quascirev.2021.107026.

    [56]

    Xia D S, Wang Y J, Jia J, et al. Mountain loess or desert loess?New insight of the sources of Asian atmospheric dust based on mineral magnetic characterization of surface sediments in NW China[J]. Atmospheric Environment, 2020 232: 117564. doi:10.1016/j.atmosenv.2020.117564.

    [57]

    钱正安, 宋敏红, 李万元. 近50年来中国北方沙尘暴的分布及变化趋势分析[J]. 中国沙漠, 2002, 22 (2): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200202002.htm

    Qian Zhengan, Song Minhong, Li Wanyuan. Analyses on distributive variation and forecast of sand-dust storms in recent 50 years in North China[J]. Journal of Desert Research, 2002, 22 (2): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200202002.htm

    [58]

    Chen F H, Cheng B, Zhao H, et al. Post-glacial climate variability and drought events in the monsoon transition zone of Western China[J]. Developments in Quaternary Sciences, 2007, 9: 25-39. doi:10.1016/S1571-0866 (07) 09004-5.

    [59]

    Sun J M, Zhu X K. Temporal variations in Pb isotopes and trace element concentrations within Chinese eolian deposits during the past 8 Ma: Implications for provenance change[J]. Earth and Planetary Science Letters, 2010 290 (3-4): 438-447. doi: 10.1016/j.epsl.2010.01.001

    [60]

    Wu F, Ho S S H, Sun Q L, et al. Provenance of Chinese Loess: Evidence from stable lead isotope[J]. Terrestrial Atmospheric and Oceanic Sciences, 2011, 22 (3): 305-314. doi: 10.3319/TAO.2010.11.19.01(TT)

    [61]

    孙继敏. 黄土沉积与地球圈层相互作用[J]. 第四纪研究, 2020, 40 (1): 1-7. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.01

    Sun Jimin. Loess deposits and its relationship with earth sphere interactions[J]. Quaternary Sciences, 2020, 40 (1): 1-7. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.01.01

    [62]

    Zhang H C, Peng J L, Ma Y Z, et al. Late Quaternary palaeolake levels in Tengger Desert, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004 211 (1): 45-58. https://www.sciencedirect.com/science/article/pii/S0031018204002305

    [63]

    Peng J, Dong Z B, Han F Q, et al. Aeolian activity in the south margin of the Tengger Desert in Northern China since the Late Glacial Period revealed by luminescence chronology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016 457: 330-341. doi. org/10.1016/j. palaeo. 2016.06.028. doi: 10.1016/j.palaeo.2016.06.028

    [64]

    阎满存, 董光荣, 李保生, 等. 腾格里沙漠东南缘沙漠演化的初步研究[J]. 中国沙漠, 1998, 18 (02): 16-22. doi: 10.3321/j.issn:1000-694X.1998.02.003

    Yan Mancun, Dong Guangrong, Li Baosheng, et al. A preliminary study on the evolution of southeastern margin in Tengger Desert[J]. Journal of Desert Research, 1998, (02): 111-117. doi: 10.3321/j.issn:1000-694X.1998.02.003

    [65]

    凌智永, 李志忠, 罗磊, 等. 关于沙漠环境演变几种研究指标的探讨[J]. 云南地理环境研究, 2009, 21 (2): 86-91. doi: 10.3969/j.issn.1001-7852.2009.02.016

    Ling Zhiyong, Li Zhizhong, Luo Lei, et al. The discussion about the several research indicators of the desert environment evolution[J]. Yunnan Geographic Environment Research, 2009, 21 (2): 86-91. doi: 10.3969/j.issn.1001-7852.2009.02.016

    [66]

    王蕾彬, 魏海涛, 贾佳, 等. 亚洲中部干旱区黄土释光测年研究进展及其问题[J]. 地球科学进展, 2018, 33 (1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201801010.htm

    Wang Leibin, Wei Haitao, Jia Jia, et al. Advances and issues in luminescence dating of loess deposits in arid Central Asia[J]. Advances in Earth Science, 2018, 33 (1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201801010.htm

    [67]

    E C Y, Lai Z P, Sun Y J, et al. A luminescence dating study of loess deposits from the Yili River basin in Western China[J]. Quaternary Geochronology, 2012, 10: 50-55. doi:10.1016/j.quageo.2012.04.022.

    [68]

    Song Y G, Lai Z P, Li Y, et al. Comparison between luminescence and radiocarbon dating of Late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 2015, 30: 405-410. doi:10.1016/j.quageo.2015.01.012.

    [69]

    Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single aliquot regeneration dating protocols[J]. Radiation Measurements, 2006, 41 (4): 369-391. doi: 10.1016/j.radmeas.2005.11.001

    [70]

    刘海金, 龚志军, 罗明, 等. 沉积物含水量及误差变化对光释光测年精度的影响研究[J]. 第四纪研究, 2021, 41 (1): 123-135. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.01.11

    Liu Haijin, Gong Zhijun, Luo Ming, et al. Study the effect of the water content and its error on the precision of optical age results for sediments[J]. Quaternary Sciences, 2021, 41 (1): 123-135. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2021.01.11

    [71]

    Fan Y X, Li Z J, Yang G L, et al. Sedimentary evidence and luminescence and ESR dating of Early Pleistocene high lake levels of Megalake Tengger, Northwestern China[J]. Journal of Quaternary Sciences, 2020, 35 (8): 994-1006. doi: 10.1002/jqs.3246

    [72]

    Ha S, Dong G R, Wang G Y. Morphodynamic study of reticulate dunes at southeastern fringe of the Tengger Desert[J]. Science in China(Series D), 1999, 42 (2): 207-215. doi: 10.1007/BF02878520

    [73]

    Li Z J, Sun D H, Chen F H, et al. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J]. Quaternary Science Reviews, 2014, 85: 85-98. doi:10.1016/j.quascirev.2013.12.003.

    [74]

    Yang X P, Ma N N, Dong J F, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, Western China[J]. Quaternary Research, 2010, 73 (1): 10-19. doi: 10.1016/j.yqres.2009.10.009

    [75]

    Pachur H J, Wünnemann B, Zhang H C. Lake evolution in the Tengger Desert, Northwestern China, during the last 40 000 years[J]. Quaternary Research, 1995, 44 (2): 171-180. doi: 10.1006/qres.1995.1061

    [76]

    Long H, Lai Z P, Fuchs M, et al. Timing of Late Quaternary palaeolake evolution in Tengger Desert of Northern China and its possible forcing mechanisms[J]. Global and Planetary Change, 2012, 92-93: 119-129. doi:10.1016/j.gloplacha.2012.05.014.

    [77]

    李琼, 潘保田, 高红山, 等. 腾格里沙漠南缘末次冰盛期以来沙漠演化与气候变化[J]. 中国沙漠, 2006, 26 (6): 875-879. doi: 10.3321/j.issn:1000-694X.2006.06.002

    Li Qiong, Pan Baotian, Gao Hongshan, et al. Desert evolution and climate change of southern margin of Tengger Desert since Last Glacial Maximum[J]. Journal of Desert Research, 2006, 26 (6): 875-879. doi: 10.3321/j.issn:1000-694X.2006.06.002

    [78]

    彭俊, 韩凤清. 腾格里沙漠南缘风积物快组分光释光信号选择研究[J]. 地球学报, 2013, 34 (6): 757-762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306015.htm

    Peng Jun, Han Fengqing. Selections of fast-component OSL signal using sediments from the south edge of Tengger Desert[J]. Acta Geoscientica Sinica, 2013, 34 (6): 757-762. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201306015.htm

    [79]

    Liu D C, Wang X L, Gao X, et al. Progress in the stratigraphy and geochronology of the Shuidonggou site, Ningxia, North China[J]. Chinese Science Bulletin, 2009, 54 (21): 3880-3886. doi: 10.1007/s11434-009-0652-y

    [80]

    Peng F, Lin S C, Patania I, et al. A chronological model for the late Paleolithic at Shuidonggou Locality 2, North China[J]. PLoS One, 2020, 15 (5): e0232682. doi: 10.1371/journal.pone.0232682

    [81]

    Dodson J, Li X Q, Ji M, et al. Early bronze in two Holocene archaeological sites in Gansu, NW China[J]. Quaternary Research, 2009, 72 (3): 309-314. doi: 10.1016/j.yqres.2009.07.004

    [82]

    侯仁之, 俞伟超. 乌兰布和沙漠的考古发现和地理环境的变迁[J]. 考古, 1973, (2): 92-107. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU197302005.htm

    Hou Renzhi, Yu Weichao. Archaeological discoveries and geographical changes in the Ulan Buh Desert[J]. Archaeology, 1973, (2): 92-107. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU197302005.htm

    [83]

    李并成. 民勤县近300余年来的人口增长与沙漠化过程-人口因素在沙漠化中的作用个案考察之一[J]. 西北人口, 1990, (2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-XBRK199002005.htm

    Li Bingcheng. The population growth and desertification process in the past 300 years in Minqin County: One of the cases of the role of population factors in desertification[J]. Northwest Population Journal, 1990, (2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-XBRK199002005.htm

    [84]

    马俊, 牟雪松, 王永达, 等. 近1 ka以来河西地区的沙漠化及对高强度人类活动的响应分析[J]. 干旱区地理, 2018, 41 (5): 1043-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201805017.htm

    Ma Jun, Mou Xuesong, Wang Yongda, et al. Response of desertification to intensified human activities over the latest 1 ka in Hexi region[J]. Arid Land Geography, 2018, 41 (5): 1043-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201805017.htm

    [85]

    Aitken M J. Thermo Luminescence Dating[M]. London: Academic Press, 1985: 359.

    [86]

    Banerjee D, Murray A S, Botter-Jensen L, et al. Equivalent dose estimation using a single aliquot of polymineral fine grains[J]. Radiation Measurements, 2001, 33 (1): 73-94. doi: 10.1016/S1350-4487(00)00101-3

    [87]

    Murray A S, Wintle A G. The single aliquot regenerative dose protocol: Potential for improvements in reliability[J]. Radiation Measurements, 2003, 37 (4-5): 377-381. doi: 10.1016/S1350-4487(03)00053-2

    [88]

    Cunningham A, Wallinga J. Selection of integration time intervals for quartz OSL decay curves[J]. Quaternary Geochronology, 2010, 5 (6): 1-10. https://www.sciencedirect.com/science/article/pii/S1871101410000610

    [89]

    Guérin G, Mercier N, Adamiec G. Dose-rate conversion factors: Update[J]. Ancient TL, 2011, 29 (1): 5-8. https://hal.archives-ouvertes.fr/hal-01743168

    [90]

    Prescott J, Fox P J, Robertson G B, et al. Three-dimensional spectral studies of the bleaching of the thermoluminescence of feldspars[J]. Radiation Measurements, 1994, 23 (2-3): 367-375. https://iopscience.iop.org/article/10.1088/0022-3727/28/6/030/meta

    [91]

    Wintle A G. Luminescence dating: Where it has been and where it is going[J]. Boreas, 2008, 37: 471-482. doi:10.1111/j.1502-3885.2008.00059.x.

    [92]

    Zhang J F, Zhou L P, Yue S Y. Dating fluvial sediments by optically stimulated luminescence: Selection of equivalent doses for age calculation[J]. Quaternary Science Reviews, 2003, 22 (10): 1123-1129.

    [93]

    Galbraith R F, Roberts R G, Laslett G M, et al. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia, Part Ⅰ: Experimental design and statistical models[J]. Archaeometry, 1999, 41 (2): 339-364. https://onlinelibrary.wiley.com/doi/10.1111/j.1475-4754.1999.tb00987.x

    [94]

    Olley J, Caitcheon G, Murray A. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments[J]. Quaternary Science Reviews, 1998, 17 (11): 1033-1040. https://www.sciencedirect.com/science/article/pii/S0277379197000905

    [95]

    Chapot M S, Roberts H M, Duller G A T. A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese loess[J]. Radiation Measurements, 2012, 47 (11-12): 1045-1052. https://www.sciencedirect.com/science/article/pii/S1350448712002648

    [96]

    杨小平, 杜金花, 梁鹏, 等. 晚更新世以来塔克拉玛干沙漠中部地区的环境演变[J]. 科学通报, 2021, 66 (24): 2305-2318. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202124011.htm

    Yang Xiaoping, Du Jinhua, Liang Peng, et al. Palaeoenvironmental changes in the central part of the Taklamakan Desert, Northwestern China since the Late Pleistocene[J]. Chinese Science Bulletin, 2021, 66 (24): 2305-2318. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202124011.htm

    [97]

    鹿化煜, 周亚利, Mason J, 等. 中国北方晚第四纪气候变化的沙漠与黄土记录-以光释光年代为基础的直接对比[J]. 第四纪研究, 2006, 26 (6): 888-894. http://www.dsjyj.com.cn/article/id/dsjyj_8694

    Lu Huayu, Zhou Yali, Mason J, et al. Late Quaternary climatic changes in Northern China: New evidences from sand dune and loess records based on optically stimulated luminescence dating[J]. Quaternary Sciences, 2006, 26 (6): 888-894. http://www.dsjyj.com.cn/article/id/dsjyj_8694

    [98]

    Stevens T, Carter A, Watson T P, et al. Genetic linkage between the Yellow River, the Mu Us Desert and the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2013, 78 (19): 355-368.

    [99]

    Stevens T, Buylaert J P, Thiel C, et al. Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site[J]. Nature Communications, 2018, 9: 983. doi:10.1038/s41467-018-03329-2.

    [100]

    An Z S, Kukla G, Porter S C, et al. Late Quaternary dust flow on the Chinese Loess Plateau[J]. Catena, 1991, 18 (2): 125-132. https://www.sciencedirect.com/science/article/pii/034181629190012M

    [101]

    Peng J, Dong Z B, Han F Q. Optically stimulated luminescence dating of sandy deposits from Gulang County at the southern margin of the Tengger Desert, China[J]. Journal of Arid Land, 2016, 8 (1): 1-12. https://link.springer.com/article/10.1007/s40333-015-0137-6

    [102]

    Wang N A, Li Z L, Cheng H Y, et al. High lake levels on Alxa Plateau during the Late Quaternary[J]. Chinese Science Bulletin, 2011, 56 (17): 1799-1808. https://link.springer.com/article/10.1007/s11434-011-4498-8

    [103]

    Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50 000 years[J]. Quaternary Science Reviews, 2006, 25 (1): 163-178. https://www.sciencedirect.com/science/article/pii/S0277379105000880

    [104]

    Dykoski C A, Edwards R L, Hai C, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005 233 (1-2): 71-86. https://www.sciencedirect.com/science/article/pii/S0012821X05000865

    [105]

    Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate[J]. Science, 2005 308 (5723): 854-857. https://pubmed.ncbi.nlm.nih.gov/15879216/

    [106]

    Wang Y J, Chen H Y, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001 294 (5550): 2345-2348. https://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Wang_HuluCave_Science'01.pdf

    [107]

    Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP 2 and GRIP Greenland ice cores[J]. Nature, 1993 366 (6455): 552-554. https://www.whoi.edu/cms/files/grootes93nat_277984.pdf

    [108]

    Sun Y B, An Z S. Late Pliocene-Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau[J]. Journal of Geophysical Research: Atmospheres, 2005 110: D23101. doi:10.1029/-2005JD006064.

    [109]

    高荣. 河西通史[M]. 天津: 天津古籍出版社, 2011: 13-15.

    Gao Rong. General History of Hexi[M]. Tianjin: Tianjin Ancient Books Publishing House, 2011: 13-15.

    [110]

    傅仲侠. 中国历代战争年表[M]. 北京: 解放军出版社, 2003: 1-1178.

    Fu Zhongxia. Chronology of Chinese Wars[M]. Beijing: PLA Publishing House, 2003: 1-1178.

    [111]

    李并成. 残存在民勤县西沙窝中的古代遗址[J]. 中国沙漠, 1990, 10 (2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS199002004.htm

    Li Bingcheng. Investigation on the ancient ruins in the Western Sandy land of Minqin County[J]. Journal of Desert Research, 1990, 10 (2): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS199002004.htm

    [112]

    Helama S, Jones P D, Briffa K R. Dark Ages Cold Period: A literature review and directions for future research[J]. The Holocene, 2017, 27 (10): 1600-1606. https://journals.sagepub.com/doi/10.1177/0959683617693898

    [113]

    Cronin T M, Dwyer G S, Kamiya T, et al. Medieval Warm Period, Little Ice Age and 20th century temperature variability from Chesapeake Bay[J]. Global and Planetary Change, 2003, 36 (1-2): 17-29. https://www.sciencedirect.com/science/article/pii/S0921818102001613

    [114]

    许容. 甘肃通志[M]. 台北: 文海出版社, 1966: 1-1734.

    Xu Rong. General History of Gansu[M]. Taipei: Wenhai Publishing House, 1966: 1-1734.

    [115]

    Guerra L, Piovano E L, Córdoba F E, et al. Climate change evidences from the end of the Little Ice Age to the Current Warm Period registered by Melincué Lake(Northern Pampas, Argentina)[J]. Quaternary International, 2017 438(part A): 160-174. https://www.researchgate.net/publication/305696266_Climate_change_evidences_from_the_end_of_the_Little_Ice_Age_to_the_Current_Warm_Period_registered_by_Melincue_Lake_Northern_Pampas_Argentina

    [116]

    Yang B, Qin C, Wang J L, et al. A 3 500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014 111 (8): 2903-2908.

    [117]

    Meure M C, Etheridge D, Trudinger C, et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP[J]. Geophysical Research Letters, 2006, 33 (14): L14810. https://www.researchgate.net/publication/240490870_Law_dome_CO2_CH4_and_N2O_ice_core_records_extended_to_2000_years_BP

    [118]

    吴晓军. 河西走廊内陆河流域生态环境的历史变迁[J]. 兰州大学学报, 2000, 28 (4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-LDSK200004008.htm

    Wu Xiaojun. Historical variance of the ecological environment in the inland river area along the Hexi Corridor[J]. Journal of Lanzhou University, 2000, 28 (4): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-LDSK200004008.htm

    [119]

    姜清基. 西夏河西人口[J]. 新学术, 2008: 279-281. doi:cnki:sun:xxus.0.2008-02-072. https://www.cnki.com.cn/Article/CJFDTOTAL-XXUS200802072.htm

    Jiang Qingji. Population in Hexi during the Western Xia Dynasty[J]. New Academic Journal, 2008 279-281. doi:cnki:sun:xxus.0.2008-02-072. https://www.cnki.com.cn/Article/CJFDTOTAL-XXUS200802072.htm

    [120]

    曹志宏. 腾格里沙漠及其边缘区千年以来的气候环境变化[D]. 兰州: 兰州大学硕士学位论文, 2018: 1-61.

    Cao Zhihong. Millennial Climate Change in the Tengger Desert and Its Fringe Areas[D]. Lanzhou: The Master's Thesis of Lanzhou University, 2018: 1-61.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  2114
  • PDF下载数:  249
  • 施引文献:  0
出版历程
收稿日期:  2021-10-11
修回日期:  2021-12-30
刊出日期:  2022-03-30

目录