贵州绥阳麻黄洞非典型钟乳石的演化过程

范宝祥, 周忠发, 安丹, 闫利会, 郑维熙, 朱粲粲. 贵州绥阳麻黄洞非典型钟乳石的演化过程[J]. 第四纪研究, 2021, 41(6): 1565-1573. doi: 10.11928/j.issn.1001-7410.2021.06.05
引用本文: 范宝祥, 周忠发, 安丹, 闫利会, 郑维熙, 朱粲粲. 贵州绥阳麻黄洞非典型钟乳石的演化过程[J]. 第四纪研究, 2021, 41(6): 1565-1573. doi: 10.11928/j.issn.1001-7410.2021.06.05
范宝祥, 周忠发, 安丹, 闫利会, 郑维熙, 朱粲粲. 贵州绥阳麻黄洞非典型钟乳石的演化过程[J]. 第四纪研究, 2021, 41(6): 1565-1573. doi: 10.11928/j.issn.1001-7410.2021.06.05 FAN Baoxiang, ZHOU Zhongfa, AN Dan, YAN Lihui, ZHENG Weixi, ZHU Cancan. The evolution process of atypical stalactites in Mahuang Cave, Suiyang County, Guizhou Province[J]. Quaternary Sciences, 2021, 41(6): 1565-1573. doi: 10.11928/j.issn.1001-7410.2021.06.05
Citation: FAN Baoxiang, ZHOU Zhongfa, AN Dan, YAN Lihui, ZHENG Weixi, ZHU Cancan. The evolution process of atypical stalactites in Mahuang Cave, Suiyang County, Guizhou Province[J]. Quaternary Sciences, 2021, 41(6): 1565-1573. doi: 10.11928/j.issn.1001-7410.2021.06.05

贵州绥阳麻黄洞非典型钟乳石的演化过程

  • 基金项目:

    贵州省科技计划项目(批准号:黔科合基础[2020]1Y154)、贵州师范大学资助博士科研项目(批准号:GZNUD[2017]6号)、国家自然科学基金项目(批准号:41361081和41661088)和贵州省高层次创新型人才培养计划(批准号:黔科合平台人才[2016]5674)共同资助

详细信息
    作者简介:

    范宝祥, 男, 28岁, 硕士研究生, 自然地理学专业, E-mail: fantx101026@163.com

    通讯作者: 周忠发, E-mail: fa6897@163.com
  • 中图分类号: P931.5

The evolution process of atypical stalactites in Mahuang Cave, Suiyang County, Guizhou Province

More Information
  • 通过对贵州绥阳麻黄洞洞内6处非典型钟乳石进行详细测量和统计学定量分析,描述其发育形态和空间分布特征,并探讨其形成演化过程及影响因素。主要结论为:从发育形态上看,麻黄洞洞内非典型钟乳石共计分布6处,最大面积5.06 m2,最小0.18 m2,由于洞道结构的差异性及洞穴风的作用,非典型钟乳石的生长方向各有不同,但主要方向与洞道的走向呈近似平行状态;发育过程来看,麻黄洞非典型钟乳石的形成主要是附着于洞穴顶板的基岩或已形成的洞穴次生化学沉积物表面,由滴水在洞穴风的影响下不断进行脱气沉积而形成;总体上,麻黄洞洞内非典型钟乳石的形成主要是水动力条件、基岩性质、洞道结构及风动力条件等因素耦合的作用,其中,洞穴风是形成非典型钟乳石的主要动力。

  • 加载中
  • 图 1 

    麻黄洞位置、洞道特征及非典型钟乳石分布位置

    Figure 1. 

    Location, features of Mahuang Cave tunnel and distribution of atypical stalactites

    图 2 

    非典型钟乳石照片

    Figure 2. 

    Photo of atypical stalactites

    图 3 

    监测点风速图

    Figure 3. 

    Wind speed chart of monitoring point

    图 4 

    非典型钟乳石的走向和洞道走向

    Figure 4. 

    Trend of atypical stalactites and bedrock joint trend

    图 5 

    非典型钟乳石的演化过程

    Figure 5. 

    Evolution process of atypical stalactites

    图 6 

    洞穴内空气、水的CO2分压图

    Figure 6. 

    CO2 partial pressure diagram of air and water in the cave

    图 7 

    监测点结构示意图

    Figure 7. 

    Schematic diagram of the monitoring point structure

    图 8 

    洞内外虚拟温差图

    Figure 8. 

    Virtual temperature difference map inside and outside the cave

    表 1 

    非典型钟乳石分布面积基本参数

    Table 1. 

    Basic parameters of atypical stalactites distribution area

    监测点 长度(m) 宽度(m) 分布面积(m2)
    1#(风口1) 0.50 0.20 1.00
    2#(风口2) 1.20 0.60 0.72
    3#(陡坎) 1.40 0.60 0.84
    4#(高位瀑布) 0.60 0.30 0.18
    5#(水道) 0.40 9.00 3.60
    6#(3*滴水点) 1.10 4.60 5.06
    下载: 导出CSV

    表 2 

    麻黄洞3*滴水点滴水基本参数(mg/L)

    Table 2. 

    The basic parameters of 3* drip water in Mahuang Cave

    时间 K+ Na+ Ca+ Mg+ Sr+ HCO3- CL- So42- NO3- 水温 pH SIc
    5月 0.02 0.05 1.46 0.50 0.01 102.00 0.07 0.15 0.18 13.63 8.35 0.78
    10月 0.02 0.04 1.46 0.51 0.01 138.00 0.07 0.13 0.20 14.56 8.06 0.55
    下载: 导出CSV

    表 3 

    麻黄洞3*滴水点滴量(ml/s)

    Table 3. 

    Drip volume of 3* drip water in Mahuang Cave

    时间 2018年 2019
    11 12 1 2 3 4 5 6 7 8 9 10
    滴量 1.27 2.60 2.23 2.12 2.40 3.67 3.17 2.00 2.83 2.67 1.67 1.89
    下载: 导出CSV

    表 4 

    监测点的洞道结构参数

    Table 4. 

    Tunnel structure parameters at monitoring points

    采样点 长度(m) 宽度(m) 洞高(m) 坡度(°)
    1#(风口1) 4.210 3.518 1.953 4.7
    2#(风口2) 15.028 2.284 3.676 1.4
    2#(风口2)尾部 6.766 6.318
    3#(陡坎) 13.383 1.097 8.803 20.1
    3#(陡坎)尾部 2.639 8.414
    4#(高位瀑布) 4.553 1.137 6.493 0
    4#(高位瀑布)尾部 3.254 8.690
    5#(水道) 17.788 11.131 1.372 -9.0
    5#(水道)尾部 8.805 3.604
    6#(3*滴水点) 13.720 10.535 1.886 0
    6#(3*滴水点)尾部 10.413 2.547
    下载: 导出CSV
  • [1]

    韦跃龙, 陈伟海, 罗劬侃. 洞穴次生化学沉积物与地质背景及洞穴环境的耦合关系——以广西巴马水晶宫为例[J]. 地理学报, 2016, 71(9): 1528-1543. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201609007.htm

    Wei Yuelong, Chen Weihai, Luo Qukan. Coupling relationship among speleothems, geological background and cave environment[J]. Acta Geographica Sinica, 2016, 71(9): 1528-1543. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201609007.htm

    [2]

    朱学稳. 洞穴钟乳石类的分类方案[J]. 中国岩溶, 2005, 24(3): 169-174. doi: 10.3969/j.issn.1001-4810.2005.03.001

    Zhu Xuewen. The classification scheme of speleothems[J]. Carsologica Sinica, 2005, 24(3): 169-174. doi: 10.3969/j.issn.1001-4810.2005.03.001

    [3]

    朱金庆. 钟乳石黄芪汤治疗消化道溃疡临床研究[J]. 新中医, 2019, 51(7): 130-132. https://www.cnki.com.cn/Article/CJFDTOTAL-REND201907041.htm

    Zhu Jinqing. Clinical study on aeolian stalactite Huangqi Tang for gastrointestinal uicer[J]. New Chinese Medicine, 2019, 51(7): 130-132. https://www.cnki.com.cn/Article/CJFDTOTAL-REND201907041.htm

    [4]

    西北大学地质系矿物教研室. 矿物学[M]. 北京: 地质出版社, 1978: 89-92.

    Department of Mineralogy and Geology, Northwest University. Mineralogy[M]. Beijing: Geological Publishing House, 1978: 89-92.

    [5]

    Haddad-Martim P M, Hubbe A, Giannini P, et al. Quaternary depositional facies in cave entrances and their relation to landscape evolution: The example of Cuvieri Cave, Eastern Brazil[J]. Catena, 2017, 157(8): 372-387.

    [6]

    张英俊. 应用岩溶学及洞穴学[M]. 贵阳: 贵州人民出版社, 1985: 208.

    Zhang Yingjun. Applied Karstology and Speleology[M]. Guiyang: Guizhou People's Publishing House, 1985: 208.

    [7]

    何知礼. 钟乳石和石笋中气——液包体的发现及其成因[J]. 北京钢铁学院学报, 1979, (1): 1-10+191. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD197901000.htm

    He Zhili. Breath in stalactites and stalagmites: Discovery and causes of liquid inclusions[J]. Journal of Beijing Institute of Iron and Steel, 1979, (1): 1-10+191. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD197901000.htm

    [8]

    王海芝, 程捷. 周口店东洞洞穴沉积物的地球化学特征及其环境指示意义[J]. 第四纪研究, 2008, 28(6): 1090-1097. doi: 10.3321/j.issn:1001-7410.2008.06.014 http://www.dsjyj.com.cn/article/id/dsjyj_8921

    Wang Haizhi, Chen Jie. Geochemical characteristics of Dongdong cave deposits in Zhoukoudian and their environmental significance[J]. Quaternary Sciences, 2008, 28(6): 1090-1097. doi: 10.3321/j.issn:1001-7410.2008.06.014 http://www.dsjyj.com.cn/article/id/dsjyj_8921

    [9]

    肖加飞, 魏家庸, 胡瑞忠. 贵州拉丁晚期扬子台地边缘地表暴露带的特征及裂隙中微型钟乳石的成因[J]. 地球学报, 2004, 25(2): 177-180. doi: 10.3321/j.issn:1006-3021.2004.02.015

    Xiao Jiafei, Wei Jiayong, Hu Ruizhong. Characteristics of the exposed surface of the margin of the Yangtze platform in the late Latin Period in Guizhou and the origin of micro-stalactites in the fissures[J]. Acta Geoscientica Sinica, 2004, 25(2): 177-180. doi: 10.3321/j.issn:1006-3021.2004.02.015

    [10]

    王家葵, 蒋淼. 简论石钟乳神仙服食功效之演变[C]//中华中医药学会中药基础理论分会. 第四届全国临床中药学学术研讨会论文摘要集. 北京: 中华中医药学会, 2011: 42.

    Wang Jiakui, Jiang Miao. A Brief Discussion on the Evolution of Stone Stalactite's Immortality[C]//Chinese Society of Chinese Medicine Basic Theory Branch. The 4th National Symposium on Clinical Chinese Materia Medica Abstracts. Beijing: Chinese Society of Chinese Medicine, 2011: 42.

    [11]

    段然, 王志刚. 基于溶洞石景保护的旅游洞穴景观照明参数建议[J]. 照明工程学报, 2018, 29(6): 103-107. doi: 10.3969/j.issn.1004-440X.2018.06.019

    Duan Ran, Wang Zhigang. Suggestions on the landscape lighting parameters of tourist caves based on the protection of karst caves[J]. China Illuminating Engineering Journal, 2018, 29(6): 103-107. doi: 10.3969/j.issn.1004-440X.2018.06.019

    [12]

    刘葵萍. 贵州洞穴文化教育教学思考[J]. 新西部(下半月), 2007, (3): 171. doi: 10.3969/j.issn.1009-8607-B.2007.03.127

    Liu Kuiping. Thoughts on Guizhou cave culture education teaching[J]. New West, 2007, (3): 171. doi: 10.3969/j.issn.1009-8607-B.2007.03.127

    [13]

    郭雨, 夏永华, 杨明龙. 融合多源测量数据的钟乳石三维建模方法[J]. 测绘通报, 2019, (2): 49-53. doi:10.13474/j.cnki.11-2246.2019.0042.

    Guo Yu, Xia Yonghua, Yang Minglong. Three dimensional modeling method of stalactite integrated with multi-source measurement data[J]. Bulletin of Surveying and Mapping, 2019, (2): 49-53. doi:10.13474/j.cnki.11-2246.2019.0042.

    [14]

    程星. 滴石形态组合及滴率条件——以贵州洞穴为例[J]. 中国岩溶, 1990, 9(2): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR199002001.htm

    Cheng Xing. Relationship between combination of speleothem forms and dripping-water conditions-A case study of Guizhou caves[J]. Carsologica Sinica, 1990, 9(2): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR199002001.htm

    [15]

    Genty D, Deflandre G. Drip flow variations under a stalactite of the Père Noël cave(Belgium): Evidence of seasonal variations and air pressure constraints[J]. Journal of Hydrology, 1998, 211(1): 208-232.

    [16]

    石正友. "钟乳石的形成模拟实验"改进方案[J]. 贵州教育, 2008, 7(21): 43-44. doi: 10.3969/j.issn.0451-0038.2008.21.023

    Shi Zhengyou. Improvement scheme of "Simulation of Stalactite Formation"[J]. Guizhou Education, 2008, 7(21): 43-44. doi: 10.3969/j.issn.0451-0038.2008.21.023

    [17]

    王长生, 周蓉生, 雷国良, 等. 石笋、石钟乳、石柱中稀土元素的仪器中子活化分析[J]. 地质地球化学, 1994, 7(2): 65-67+64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199402014.htm

    Wang Changsheng, Zhou Rongsheng, Lei Guoliang, et al. Instrumental neutron activation analysis of rare earth elements in stalagmites, stalactites, and pillars[J]. Geology-Geochemistry, 1994, 7(2): 65-67+64. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199402014.htm

    [18]

    李坡, 贺卫, 钱治, 等. 双河洞地质公园研究[M]. 贵阳: 贵州人民出版社, 2008: 58-101.

    Li Po, He Wei, Qian Zhi, et al. Study on Shuanghe Cave Geopark[M]. Guiyang: Guizhou People's Publishing House, 2008: 58-101.

    [19]

    曹明达, 周忠发, 张结, 等. 贵州绥阳阴河洞洞穴壶穴的演化过程[J]. 地理学报, 2016, 71(11): 2010-2019. doi: 10.11821/dlxb201611011

    Cao Mingda, Zhou Zhongfa, Zhang Jie, et al. The evolution of the cavernous potholes in Yinhe Cave, Suiyang County, Guizhou Province[J]. Acta Geographica Sinica, 2016, 71(11): 2010-2019. doi: 10.11821/dlxb201611011

    [20]

    陈桂明, 戚雨, 潘伟. MATLAB数理统计(6. X)[M]. 北京: 科学出版社, 2002: 242.

    Chen Guiming, Qi Yu, Pan Wei. MATLAB Mathematical Statistics(6. X)[M]. Beijing: Science Press, 2002: 242.

    [21]

    Sánchez-Cañete E P, Serrano-Ortiz P, Domingo F, et al. Cave ventilation is influenced by variations in the CO2-dependent virtual temperature[J]. International Journal of Speleology, 2013, 42(1): 1-8. doi: 10.5038/1827-806X.42.1.1

    [22]

    Breitenbach S F M, Lechleitner F A, Meyer H, et al. Cave ventilation and rainfall signals in dripwater in a monsoonal setting: Amonitoring study from NE India[J]. Chemical Geology, 2015, 402(33): 111-124.

    [23]

    刘子琦, 李开萍. 贵州石漠化地区降雨期间洞穴CO2变化特征与其影响因素——以石将军洞为例[J]. 贵州师范大学学报(自然科学版), 2018, 36(4): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR201804003.htm

    Liu Ziqi, Li Kaiping. Characteristics and influencing factors of CO2 change in caves during rainfall in rocky desertification areas of Guizhou-Taking Shijiangjun cave as an example[J]. Journal of Guizhou Normal University(Natural Science Edition), 2018, 36(4): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-NATR201804003.htm

    [24]

    Ridley H E, Prufer K M, Walczak I W, et al. High-resolution monitoring of Yok Balum Cave, Belize: An investigation of seasonal ventilation regimes and the atmospheric and drip-flow response to a local earthquake[J]. Journal of Cave and Karst Studies, 2015, 77(3): 183-199. doi: 10.4311/2014ES0117

    [25]

    Vieten R, Winter A, Warken S F, et al. Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico[J]. International Journal of Speleology, 2016, 45(3): 259-273. doi: 10.5038/1827-806X.45.3.1983

    [26]

    王静, 宋林华, 向昌国, 等. 不同植被类型覆盖下土壤CO2浓度对洞穴景观的影响[J]. 地理研究, 2004, 23(1): 71-77. doi: 10.3321/j.issn:1000-0585.2004.01.009

    Wang Jing, Song Linhua, Xiang Changguo, et al. The impact of the soil CO2 concentration under different types of vegetation on landscape in caves[J]. Geographical Research, 2004, 23(1): 71-77. doi: 10.3321/j.issn:1000-0585.2004.01.009

    [27]

    袁道先. 中国岩溶动力系统[M]. 北京: 地质出版社, 2002: 1-275.

    Yuan Daoxian. China Karst Power System[M]. Beijing: Geological Publishing House, 2002: 1-275.

    [28]

    曹明达, 周忠发, 张结, 等. 白云岩洞穴系统中水-气CO2分压对洞穴水水文化学过程的影响: 以贵州双河洞为例[J]. 环境科学与技术, 2017, 40(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201703008.htm

    Cao Mingda, Zhou Zhongfa, Zhang Jie, et al. Effects of partial pressure of CO2 of water/gas on hydro-chemical process of cave water: A case study in dolomite cave system of Shuanghe Cave in Guizhou Province[J]. Environmental Science & Technology, 2017, 40(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201703008.htm

    [29]

    Fernandez-Cortes A, Sanchez-Moral S, Cuezva S, et al. Annual and transient signatures of gas exchange and transport in the Castaar de Ibor cave(Spain)[J]. International Journal of Speleology, 2009, 38(2): 35-41.

    [30]

    张日萍, 杨勋林, 张瑞, 等. 重庆金佛洞石笋灰度气候环境意义及全新世千年尺度事件[J]. 第四纪研究, 2020, 40(4): 936-944. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.04.09

    Zhang Riping, Yang Xunlin, Zhang Rui, et al. The significance of gray scale climate and environment of stalagmites in Chongqing Jinfo Cave and Holocene millennium-scale events[J]. Quaternary Sciences, 2020, 40(4): 936-944. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.04.09

    [31]

    吴尧, 李廷勇, 陈朝军, 等. 中国石笋微层在古气候重建中的应用研究[J]. 第四纪研究, 2020, 40(4): 1008-1024. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.04.15

    Wu Yao, Li Tingyong, Chen Chaojun, et al. Research on the application of Chinese stalagmite microlayers in paleoclimate reconstruction[J]. Quaternary Sciences, 2020, 40(4): 1008-1024. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.04.15

  • 加载中

(8)

(4)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2020-12-20
修回日期:  2021-03-11
刊出日期:  2021-11-30

目录