新疆吉仁台沟口遗址地貌背景与遗址形成过程

张云鹏, 张家富, 阮秋荣, 王永强, 韩建业, 张俊娜, 雷华蕊, 郭玉杰, 周力平. 新疆吉仁台沟口遗址地貌背景与遗址形成过程[J]. 第四纪研究, 2021, 41(5): 1376-1393. doi: 10.11928/j.issn.1001-7410.2021.05.13
引用本文: 张云鹏, 张家富, 阮秋荣, 王永强, 韩建业, 张俊娜, 雷华蕊, 郭玉杰, 周力平. 新疆吉仁台沟口遗址地貌背景与遗址形成过程[J]. 第四纪研究, 2021, 41(5): 1376-1393. doi: 10.11928/j.issn.1001-7410.2021.05.13
张云鹏, 张家富, 阮秋荣, 王永强, 韩建业, 张俊娜, 雷华蕊, 郭玉杰, 周力平. 新疆吉仁台沟口遗址地貌背景与遗址形成过程[J]. 第四纪研究, 2021, 41(5): 1376-1393. doi: 10.11928/j.issn.1001-7410.2021.05.13 ZHANG Yunpeng, ZHANG Jiafu, RUAN Qiurong, WANG Yongqiang, HAN Jianye, ZHANG Junna, LEI Huarui, GUO Yujie, ZHOU Liping. Geomorphological background and formation process of the Goukou site in Jirentai, Xinjiang[J]. Quaternary Sciences, 2021, 41(5): 1376-1393. doi: 10.11928/j.issn.1001-7410.2021.05.13
Citation: ZHANG Yunpeng, ZHANG Jiafu, RUAN Qiurong, WANG Yongqiang, HAN Jianye, ZHANG Junna, LEI Huarui, GUO Yujie, ZHOU Liping. Geomorphological background and formation process of the Goukou site in Jirentai, Xinjiang[J]. Quaternary Sciences, 2021, 41(5): 1376-1393. doi: 10.11928/j.issn.1001-7410.2021.05.13

新疆吉仁台沟口遗址地貌背景与遗址形成过程

  • 基金项目:

    国家自然科学基金项目(批准号:41771004)资助

详细信息
    作者简介:

    张云鹏, 男, 27岁, 硕士研究生, 第四纪地质学专业, E-mail: yunpeng_z@pku.edu.cn

    通讯作者: 张家富, E-mail: jfzhang@pku.edu.cn
  • 中图分类号: K871.11;P597+.3

Geomorphological background and formation process of the Goukou site in Jirentai, Xinjiang

More Information
  • 2018年全国十大考古新发现"的新疆尼勒克吉仁台沟口遗址,不仅发现了规格较高、保存完整的青铜时代为主体的聚落遗址,更发现了世界上迄今为止最早使用煤炭的遗迹。遗址区的地貌背景和堆积物年代框架有利于我们进一步理清遗址的考古学意义,为此文章对遗址区进行了野外地貌考察,对该区阶地堆积物和黄土进行了粒度分析和光释光测年,得出了如下结论:流经遗址区的喀什河在遗址区发育了4级基座阶地(T1、T2、T3和T4),阶地上堆积物的光释光年代指示它们的形成时间分别是≥ 2.4 ka、≥ 14 ka、约60 ka和≥ 75 ka。除构造活动因素外,这些阶地的形成和阶地堆积物的堆积主要与气候有关,阶地的拔河高度和形成年代指示喀什河的平均下切速率逐渐加快。遗址所在的第三级阶地在基座上堆积厚层砾石,在其形成后堆积了黄土,黄土的来源主要是附近喀什河和伊犁河两岸阶地上的河流堆积物以及下游冲洪积物,遗址区在32.1~30.0 ka期间黄土堆积速率为0.12 mm/a,全新世晚期堆积速率为0.14~0.21 mm/a。古人最早可能在4.5 ka时就在该区活动,在3.6 ka至3.0 ka的某一时段,古人在第三级阶地黄土地面上生活和进行生产活动,并使当时地表 30~20 ka(厚约1.2 m)的黄土地层发生了扰动,随后遗址被废弃。遗址区1.9 ka以来的地层可能未受扰动,古人活动遗迹被后期的黄土堆积埋藏并被保存;遗址区坡积物不发育,未受洪水或山洪影响,遗址区地貌环境相对稳定,古人生活时的原始地貌保留至今。

  • 加载中
  • 图 1 

    吉仁台沟口遗址位置图

    Figure 1. 

    Location map of the Goukou site of Jirentai. (a)DEM map showing the location of the site relative to the Yili basin and the rivers in the region; (b)Google Earth image; (c)Photograph showing the geomorphological features of the site area on a river terrace of the Kashi River

    图 2 

    新疆吉仁台沟口遗址的碳十四校对年龄统计图

    Figure 2. 

    The calibrated radiocarbon ages for the Gukou site of Jirentai in Xinjiang. Original data from literature[1], and the radiocarbon ages are calibrated using the program OxCal v4.4.3 and the IntCal 20 calibrated curve[50~51] for terrestrial samples

    图 3 

    (a) 遗址区代表河流阶地的露头剖面(Ⅰ、Ⅱ、Ⅲ和Ⅳ)及遗址探坑的位置,(b)照片和剖面Ⅰ显示的第一级(T1)和第二级(T2)级阶地剖面,(c)照片和剖面Ⅱ显示的第三级(T3)阶地剖面示意图,(d)照片和剖面Ⅲ显示的T2和第四级(T4)阶地剖面,(e)照片和剖面Ⅳ显示的T2阶地剖面示意图

    Figure 3. 

    (a)Photograph showing the locations of the exposure of fluvial terrace profiles(Ⅰ, Ⅱ, Ⅲ and Ⅳ); (b)Profile Ⅰ represents the T1 and T2 terraces; (c)Profile Ⅱ shows the T3 terrace; (d)Profile Ⅲ shows the T2 and T4 terraces; (e)Profile Ⅳ shows the T2 terrace

    图 4 

    遗址区河流阶地综合横剖面示意图和阶地形成年龄

    Figure 4. 

    Schematic diagram of the fluvial terraces in the site area and their formation ages

    图 5 

    研究样品的位置分布(a)和研究样品的粒度分布曲线(b~g)

    Figure 5. 

    Location distribution(a) and grain-size distribution curves(b~g) of the studied samples

    图 6 

    遗址黄土沉积物粒度非参数化(a)和参数化(b)端元分解结果

    Figure 6. 

    End-member modeling analysis of the loess samples from the site area: (a)Non-parametric and (b) parametric

    图 7 

    阶地样品GK2018-1 (a)和遗址剖面样品18NJ-T3852-OSL3 (b)细粒石英的光释光衰减曲线(N是自然信号,其他是不同再生剂量产生的信号)以及它们的生长曲线(内图)

    Figure 7. 

    Decay curves and growth curves(inset)for quartz OSL signals from a floodplain sample(GK2018-1)from the T1 terrace (a) and a loess sample(18NJ-T3852-OSL3)from the site section (b), respectively(N refers to natural signals, and the others to the signals induced by laboratory-irradiated doses)

    图 8 

    两个样品细粒石英的预热结果(a:GK2018-1;b:18NJ-T3852-OSL3)和剂量恢复实验结果(c)

    Figure 8. 

    Results of preheat(a: GK2018-1; b: 18NJ-T3852-OSL3)and dose recovery (c) tests on fine-grained quartz from two samples

    图 9 

    两个样品细粒石英光释光样品De分布图

    Figure 9. 

    De distribution of fine-grained quartz from two samples from the studied area

    图 10 

    吉仁台遗址区河流阶地貌的发育和演化过程

    Figure 10. 

    Geomorphological evolution of the fluvial terraces in the Goukou site area of Jirentai, Xinjiang

    图 11 

    吉仁台遗址的形成过程

    Figure 11. 

    The formation process of the Jirentai site

    表 1 

    参数化拟合3个端元相应参数

    Table 1. 

    Parametric fitting of the corresponding parameters of the 3 end members

    端元 粒度参数 粒度组分(%)
    均值(μm) 分选 偏度 峰度 粘土 粉砂
    EM1 1.16 1.52 0.11 2.71 99.89 0.11 0
    EM2 6.96 3.4 0.22 2.75 35.65 60.62 3.73
    EM3 30.36 2.07 -0.46 3.19 0.88 85.84 13.28
    下载: 导出CSV

    表 2 

    新疆吉仁台沟口遗址光释光样品环境剂量率、等效剂量和年龄

    Table 2. 

    Dose rate, equivalent dose and age of all samples from the Goukou site of Jirentai, Xinjiang

    样品位置和编号 实验室编号 深度(m) 沉积物 U(ppm) Th(ppm) K(%) 剂量率(Gy/ka) 测片数 等效剂量(Gy) 光释光年龄(ka)
    T1阶地
    GK2018-1 L3876 0.65 漫滩砂 2.91±0.11 11.60±0.32 2.27±0.07 4.51±0.11 8 10.70±0.40 2.4±0.1
    T2阶地
    GK2018-2 L3877 0.50 黄土 2.85±0.11 11.70±0.33 2.30±0.07 4.31±0.16 8 11.81±0.48 2.7±0.2
    T3阶地
    GK2018-3 L3878 5.00 河流砂 2.62±0.10 9.84±0.30 2.25±0.07 4.12±0.10 6 249.3±52.2 60.4±12.7
    T4阶地
    GK2018-4 L3879 1.08 冲沟粉砂 4.28±0.15 10.70±0.31 2.05±0.06 4.39±0.17 10 330.1±31.3 75.2±7.7
    沟口大坝阶地
    GK2018-6 L3881 3.27 漫滩砂 2.66±0.10 11.50±0.33 2.41±0.07 4.49±0.11 8 63.02±4.35 14.0±1.0
    GK2018-7 L3882 11.56 黄土 3.17±0.12 10.60±0.31 2.02±0.06 3.86±0.15 8 121.1±11.6 31.3±3.2
    后山山脚下剖面
    GK2018-5 L3880 1.67 黄土 4.22±0.15 10.70±0.31 1.90±0.06 4.22±0.16 8 84.16±4.83 20.0±1.4
    遗址探坑18NJ-T3852
    18NJ-T3852-OSL1 L3883 0.40 黄土 2.48±0.10 10.90±0.32 2.16±0.06 4.01±0.15 8 7.53±0.35 1.9±0.1
    18NJ-T3852-OSL2 L3884 1.10 遗址黄土 2.67±0.10 9.87±0.30 1.96±0.06 3.74±0.14 8 42.19±1.98 11.3±0.7
    18NJ-T3852-OSL3 L3885 1.84 遗址黄土 3.08±0.12 11.00±0.32 2.26±0.07 4.23±0.16 8 20.63±0.87 4.9±0.3
    18NJ-T3852-OSL4 L3886 1.99 黄土 2.49±0.10 9.30±0.28 2.11±0.06 3.75±0.15 8 112.6±7.8 30.0±2.4
    18NJ-T3852-OSL5 L3887 2.24 黄土 2.48±0.10 9.80±0.29 2.22±0.07 3.89±0.15 8 124.8±10.1 32.1±2.9
    遗址探坑18NJ-T3353
    18NJ-T3353-OSL1 L3888 0.55 遗址黄土 2.83±0.11 10.50±0.32 2.15±0.06 4.05±0.15 7 15.88±0.73 3.9±0.2
    18NJ-T3353-OSL2 L3889 2.55 黄土 2.91±0.11 10.50±0.32 1.98±0.06 3.85±0.15 7 133.1±7.9 34.6±2.4
    下载: 导出CSV
  • [1]

    王永强, 袁晓, 阮秋荣. 新疆尼勒克县吉仁台沟口遗址2015-2018年考古收获及初步认识[J]. 西域研究, 2019, (1): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYJ201901011.htm

    Wang Yongqiang, Yuan Xiao, Ruan Qiurong. The achievement and preliminary study on the excavation during 2015-2018 at Jirentai Goukou Site, Nileke County, Xinjiang, China[J]. The Western Regions Studies, 2019, (1): 133-138. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYJ201901011.htm

    [2]

    袁晓, 罗佳明, 阮秋荣. 新疆尼勒克县吉仁台沟口遗址2019年发掘收获与初步认识[J]. 西域研究, 2020, (1): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYJ202001012.htm

    Yuan Xiao, Luo Jiaming, Ruan Qiurong. Preliminary studies on the excavation of the Jirentai Goukou Site in Nileke County of Xinjiang 2019[J]. The Western Regions Studies, 2020, (1): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYJ202001012.htm

    [3]

    王永强, 阮秋荣. 新疆尼勒克县吉仁台沟口墓地和遗址[J]. 大众考古, 2015, (9): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KGDZ201509006.htm

    Wang Yongqiang, Ruan Qiurong. Cemetery and ruins of Jirentai Goukou Site, Nileke County, Xinjiang[J]. Popular Archaeology, 2015, (9): 12-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KGDZ201509006.htm

    [4]

    阮秋荣. 新疆伊犁发现中国最早用煤遗迹[J]. 中国煤炭, 2015, (9): 73-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201509018.htm

    Ruan Qiurong. The earliest traces of coal used in China discovered in Yili, Xinjiang[J]. China Coal, 2015, (9): 73-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGME201509018.htm

    [5]

    王永强, 阮秋荣. 2015年新疆尼勒克县吉仁台沟口考古工作的新收获[J]. 西域研究, 2016, (1): 132-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYJ201601018.htm

    Wang Yongqiang, Ruan Qiurong. New achievement of the archaeological work at Jirentai Goukou in Nileke County, Xinjiang in 2015[J]. The Western Regions Studies, 2016, (1): 132-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XYYJ201601018.htm

    [6]

    阮秋荣, 王永强. 新疆尼勒克县吉仁台沟口遗址[J]. 考古, 2017, (7): 57-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU201707007.htm

    Ruan Qiurong, Wang Yongqiang. Jirentai Goukou ruins, Nileke County, Xinjiang[J]. Archaeology, 2017, (7): 57-70. https://www.cnki.com.cn/Article/CJFDTOTAL-KAGU201707007.htm

    [7]

    王清, 马志坤, 陈秋荷, 等. 新疆尼勒克县吉仁台沟口遗址石器功能分析: 来自植物微体遗存的证据[J]. 第四纪研究, 2020, 40(2): 450-461. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.02.15

    Wang Qing, Ma Zhikun, Chen Qiuhe, et al. Analysis on the function of stone tools at the Jirentai Goukou Site in Nileke County, Xinjiang: Evidence from plant microphysical remains[J]. Quaternary Sciences, 2020, 40(2): 450-461. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.02.15

    [8]

    郭雅琦. 新疆吉仁台沟口遗址出土古代盘羊的线粒体全基因组分析[D]. 长春: 吉林大学硕士学位论文, 2020: 2-3.

    Guo Yaqi. The Complete Mitochondrial Genome Sequence Analysis of Ovis ammon from Goukou Site in Jirentai, Xinjiang[D]. Changchun: The Master's Dissertation of Jilin University, 2020: 2-3.

    [9]

    李亚萍, 张俊娜. 古地貌演化对洛阳盆地新石器中晚期至夏商时期水稻种植的影响[J]. 第四纪研究, 2020, 40(2): 499-511. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.02.19

    Li Yaping, Zhang Junna. The influence of landscape evolution on rice planting in the middle-late Neolithic period to Xia-Shang dynasties in Luoyang Basin[J]. Quaternary Sciences, 2020, 40(2): 499-511. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.02.19

    [10]

    Michael J. Storozum(司徒克), 秦臻, 刘海旺, 等. 河南省内黄县河流地质考古研究[J]. 第四纪研究, 2020, 40(2): 579-593.

    Michael J. Storozum, Qin Zhen, Liu Haiwang, et al. The alluvial geoarchaeology of Neihuang County, Henan Province[J]. Quaternary Sciences, 2020, 40(2): 579-593.

    [11]

    李拓宇, 任小林, 廖奕楠, 等. 雅鲁藏布江中游及昌果沟遗址古环境分析[J]. 第四纪研究, 2020, 40(2): 547-555. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.02.23

    Li Tuoyu, Ren Xiaolin, Liao Yinan, et al. Paleoenvironment analysis of the middle reaches of Yarlung Zangbo River and Changguogou site[J]. Quaternary Sciences, 2020, 40(2): 547-555. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2020.02.23

    [12]

    鄂崇毅. 新疆西风区粉尘沉积研究[D]. 兰州: 兰州大学博士学位论文, 2009: 93-108.

    E Chongyi. Dust Deposition Researches in the Westerly Region in Xinjiang[D]. Lanzhou: The Doctoral Dissertation of Lanzhou University, 2009: 93-108.

    [13]

    覃金堂. 中国黄土多矿物光释光年代学研究[D]. 北京: 北京大学博士学位论文, 2012: 93-112.

    Qin Jintang. Optically Stimulated Luminescence Dating of Chinese Loess: A Multiple-mineral Approach[D]. Beijing: The Doctoral Dissertation of Peking University, 2012: 93-112.

    [14]

    E C Y, Lai Z P, Sun Y J, et al. A luminescence dating study of loess deposits from the Yili River basin in Western China[J]. Quaternary Geochronology, 2012, 10: 50-55. doi:10.1016/j.quageo.2012.04.022.

    [15]

    Yang S L, Forman S L, Song Y G, et al. Evaluating OSL-SAR protocols for dating quartz grains from the loess in Ili Basin, Central Asia[J]. Quaternary Geochronology, 2014, 20: 78-88. doi:10.1016/j.quageo.2013.11.004.

    [16]

    Kang S G, Wang X L, Lu Y C, et al. A high-resolution quartz OSL chronology of the Talede loess over the past 30 ka and its implications for dust accumulation in the Ili Basin, Central Asia[J]. Quaternary Geochronology, 2015, 30: 181-187. doi:10.1016/j.quageo.2015.04.006.

    [17]

    Li Y, Song Y G, Lai Z P, et al. Rapid and cyclic dust accumulation during MIS 2 in Central Asia inferred from loess OSL dating and grain-size analysis[J]. Scientific Reports, 2016, 6(1): 1-6. doi: 10.1038/s41598-016-0001-8

    [18]

    邱思静, 陈一凡, 王振, 等. 天山北麓乌鲁木齐河阶地晚更新世黄土磁学特征及古气候意义[J]. 第四纪研究, 2016, 36(5): 1319-1330. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.05.25

    Qiu Sijing, Chen Yifan, Wang Zhen, et al. Rock magnetic properties and paleoclimatic implications of Late Pleistocene loess in the range front of the Árümqi River, Xinjiang, NW China[J]. Quaternary Sciences, 2016, 36(5): 1319-1330. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2016.05.25

    [19]

    Qin J T, Zhou L P. Luminescence dating of the Zeketai loess section in the Ili Basin, Northwestern China: Methodological considerations[J]. Journal of Asian Earth Sciences, 2018, 155: 146-153. doi:10.1016/j.jseaes.2017.11.018.

    [20]

    Feng Z D, Ran M, Yang Q L, et al. Stratigraphies and chronologies of Late Quaternary loess-paleosol sequences in the core area of the Central Asian arid zone[J]. Quaternary International, 2011, 240(1-2): 156-166. doi: 10.1016/j.quaint.2010.10.019

    [21]

    李传想, 宋友桂, 千琳勃, 等. 中亚昭苏黄土剖面粒度记录的末次冰期以来气候变化历史[J]. 沉积学报, 2011, 29(6): 1170-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201106020.htm

    Li Chuanxiang, Song Yougui, Qian Linbo, et al. History of climate change recorded by grain size at the Zhaosu loess section in the Central Asia since the Last Glacial Period[J]. Acta Sedimentologica Sinica, 2011, 29(6): 1170-1179. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201106020.htm

    [22]

    李传想, 宋友桂. 粒度年龄模型在伊犁昭苏黄土地层中的初步应用[J]. 地球环境学报, 2011, 2(5): 613-618. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201105004.htm

    Li Chuanxiang, Song Yougui. Application of grain-size age models on Zhaosu loess stratigraphy in Ili region[J]. Journal of Earth Environment, 2011, 2(5): 613-618. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201105004.htm

    [23]

    张文翔, 史正涛, 张虎才, 等. 中国西风区伊犁盆地塔勒德黄土-古土壤元素地球化学特征及环境意义[J]. 第四纪研究, 2011, 31(5): 812-821. doi: 10.3969/j.issn.1001-7410.2011.05.06 http://www.dsjyj.com.cn/article/id/dsjyj_10531

    Zhang Wenxiang, Shi Zhengtao, Zhang Hucai, et al. Geochemical characteristics and environmental significance of the Talede loess-paleosol sequence in westerly area of China[J]. Quaternary Sciences, 2011, 31(5): 812-821. doi: 10.3969/j.issn.1001-7410.2011.05.06 http://www.dsjyj.com.cn/article/id/dsjyj_10531

    [24]

    孙焕宇, 宋友桂, 李越, 等. 天山北麓地区博乐黄土磁化率、粒度特征与古气候意义[J]. 地球环境学报, 2018, 9(2): 123-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201802002.htm

    Sun Huanyu, Song Yougui, Li Yue, et al. Magnetic susceptibility and grain size records of Bole loess section in the northern piedmont of Tianshan Mountains and their implications for paleoclimatic changes[J]. Journal of Earth Environment, 2018, 9(2): 123-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201802002.htm

    [25]

    李越, 宋友桂, 宗秀兰, 等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报, 2019, 74(1): 164-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201901013.htm

    Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin[J]. Acta Geographica Sinica, 2019, 74(1): 164-179. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201901013.htm

    [26]

    Sun H Y, Song Y G, Chen X L, et al. Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 550: 109731. doi:10.1016/j.palaeo.2020.109731.

    [27]

    陈秀玲, 李金婵, 方红, 等. 末次冰期以来新疆伊犁黄土的稀土元素特征及环境演变[J]. 第四纪研究, 2017, 37(1): 14-24. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.01.02

    Chen Xiuling, Li Jinchan, Fang Hong, et al. Rare earth element characteristics and environmental changes recorded by loess deposition in the Ili Basin since the Last Glaciation[J]. Quaternary Sciences, 2017, 37(1): 14-24. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2017.01.02

    [28]

    叶玮. 新疆西风区黄土沉积特征与古气候[M]. 北京: 海洋出版社, 2001: 1-179.

    Ye Wei. Sedimentary Characteristics and Paleoclimate of Loess in the Westerly Region of Xinjiang[M]. Beijing: China Ocean Press, 2001: 1-179.

    [29]

    曾蒙秀, 宋友桂. 西风区昭苏黄土剖面中碳酸盐矿物组成及其古环境意义辨识[J]. 第四纪研究, 2013, 33(3): 424-436. doi: 10.3969/j.issn.1001-7410.2013.03.03 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2013.03.03

    Zeng Mengxiu, Song Yougui. Carbonate mineral composition in the Zhaosu loess section in the westerly area and identification of its paleoenvironmental significance[J]. Quaternary Sciences, 2013, 33(3): 424-436. doi: 10.3969/j.issn.1001-7410.2013.03.03 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2013.03.03

    [30]

    李志忠, 凌智永, 陈秀玲, 等. 新疆伊犁河谷晚全新世风沙沉积粒度旋回与气候变化[J]. 地理科学, 2010, 30(4): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201004022.htm

    Li Zhizhong, Ling Zhiyong, Chen Xiuling, et al. Late Holocene climate changes revealed by grain-size cycles in Takemukul Desert in Yili of Xinjiang[J]. Scientia Geographica Sinica, 2010, 30(4): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201004022.htm

    [31]

    陈秀玲, 李志忠, 凌智永, 等. 新疆伊犁河谷晚全新世以来的风砂沉积与环境演化[J]. 海洋地质与第四纪地质, 2010, 30(6): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201006008.htm

    Chen Xiuling, Li Zhizhong, Ling Zhiyong, et al. Holocene aeolian deposits and environmental evolution in Yili Valley, Xinjiang[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201006008.htm

    [32]

    靳建辉, 李志忠, 陈秀玲, 等. 新疆伊犁塔克尔莫乎尔沙漠全新世晚期沉积微量元素反映的古气候变化[J]. 沉积学报, 2011, 29(2): 336-345.

    Jin Jianhui, Li Zhizhong, Chen Xiuling, et al. Paleoclimatic significance of geochemical elements from Takermohur Desert, Xinjiang since Late Holocene[J]. Acta Sedimentologica Sinica, 2011, 29(2): 336-345.

    [33]

    姜修洋, 李志忠, 陈秀玲, 等. 新疆伊犁河谷风沙沉积晚全新世孢粉记录及气候变化[J]. 中国沙漠, 2011, 31(4): 855-861. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201104009.htm

    Jiang Xiuyang, Li Zhizhong, Chen Xiuling, et al. Late Holocene climate and environment changes inferred from pollen recorded in Takelmukul Desert in Yili Valley of Xinjiang, China[J]. Journal of Desert Research, 2011, 31(4): 855-861. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201104009.htm

    [34]

    Yang B, Wang J S, Bräuning A, et al. Late Holocene climatic and environmental changes in arid Central Asia[J]. Quaternary International, 2009, 194(1-2): 68-78. doi: 10.1016/j.quaint.2007.11.020

    [35]

    Wang L, Jia J, Zhao H, et al. Optical dating of Holocene paleosol development and climate changes in the Yili Basin, arid Central Asia[J]. The Holocene, 2019, 29(6): 1068-1071. doi: 10.1177/0959683619831432

    [36]

    Song Y G, Li C X, Zhao J D, et al. A combined luminescence and radiocarbon dating study of the Ili loess, Central Asia[J]. Quaternary Geochronology, 2012, 10: 2-7. doi:10.1016/j.quageo.2012.04.005.

    [37]

    Song Y G, Lai Z P, Li Y, et al. Comparison between luminescence and radiocarbon dating of Late Quaternary loess from the Ili Basin in Central Asia[J]. Quaternary Geochronology, 2015, 30: 405-410. doi:10.1016/j.quageo.2015.01.012.

    [38]

    Fu X, Li S H, Li B. Optical dating of aeolian and fluvial sediments in north Tian Shan range, China: Luminescence characteristics and methodological aspects[J]. Quaternary Geochronology, 2015, 30: 161-167. doi:10.1016/j.quageo.2015.03.001.

    [39]

    Li G Q, Wen L J, Xia D S, et al. Quartz OSL and K-feldspar pIRIR dating of a loess/paleosol sequence from arid Central Asia, Tian Shan Mountains, NW China[J]. Quaternary Geochronology, 2015, 28: 40-53. doi:10.1016/j.quageo.2015.03.011.

    [40]

    Li G Q, Rao Z G, Duan Y W, et al. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid Central Asia, since the Penultimate Glaciation[J]. Earth and Planetary Science Letters, 2016, 448: 1-12. doi:10.1016/j.epsl.2016.05.008.

    [41]

    葛本伟, 刘安娜. 天山北麓黄土沉积的光释光年代学及环境敏感粒度组分研究[J]. 干旱区资源与环境, 2017, 31(2): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201702019.htm

    Ge Benwei, Liu Anna. Optically stimulated luminescence dating and analysis of environmentally sensitive grain-size component of loess in the northern slope of Tianshan Mountains[J]. Journal of Arid Land Resources and Environment, 2017, 31(2): 110-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201702019.htm

    [42]

    张博!, 陈杰, 覃金堂, 等. 帕米尔高原瓦恰盆地黄土的石英光释光测年[J]. 第四纪研究, 2018, 38(3): 636-645. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.03.08

    Zhang Boxuan, Chen Jie, Qin Jintang, et al. Quartz optically stimulated luminescence dating of loess from Waqia Basin in the Pamir Plateau[J]. Quaternary Sciences, 2018, 38(3): 636-645. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.03.08

    [43]

    Duan F T, An C B, Wang W, et al. Dating of a Late Quaternary loess section from the northern slope of the Tianshan Mountains (Xinjiang, China) and its paleoenvironmental significance[J]. Quaternary International, 2020, 544: 104-112. doi:10.1016/j.quaint.2020.02.034.

    [44]

    Yang H, Li G Q, Huang X, et al. Loess depositional dynamics and paleoclimatic changes in the Yili Basin, Central Asia, over the past 250 ka[J]. Catena, 2020, 195: 104881. doi:10.1016/j.catena.2020.104881.

    [45]

    王小丽. RS与GIS支持下的伊犁谷地地质灾害风险评价——以尼勒克县滑坡为例[D]. 西安: 长安大学硕士学位论文, 2013: 14-17.

    Wang Xiaoli. Geological Hazard Risk Assessment on Ili Valley Based on RS and GIS-A Case Study of Landslides in Nileke County[D]. Xi'an: The Master's Dissertation of Chang'an University, 2013: 14-17.

    [46]

    张静. 新疆尼勒克县地质灾害评价研究[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2016: 7-11.

    Zhang Jing. Research on Evaluation of Geological Hazards of Nileke County in Xinjiang[D]. Árümqi: The Master's Dissertation of Xinjiang Agricultural University, 2016: 7-11.

    [47]

    杨章. 喀什河流域的新构造运动[J]. 干旱区地理, 1985, 8(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL198501008.htm

    Yang Zhang. Neotectonic movement in the Kashi River basin[J]. Arid Land Geography, 1985, 8(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL198501008.htm

    [48]

    尹光华. 伊犁盆地新构造运动与地震[J]. 内陆地震, 1993, 7(2): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ199302013.htm

    Yin Guanghua. Neotectonic movement and earthquakes in Ili depression basin[J]. Inland Earthquake, 1993, 7(2): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-LLDZ199302013.htm

    [49]

    尹光华, 蒋靖祥, 张勇. 新疆伊犁喀什河断裂带及其活动性研究[J]. 内陆地震, 2003, 17(2): 109-116. doi: 10.3969/j.issn.1001-8956.2003.02.003

    Yin Guanghua, Jiang Jingxiang, Zhang Yong. Research on the Kashi River fault in Yili, Xinjiang and its activity[J]. Inland Earthquake, 2003, 17(2): 109-116. doi: 10.3969/j.issn.1001-8956.2003.02.003

    [50]

    Ramsey C B. Bayesian analysis of radiocarbon dates[J]. Radiocarbon, 2009, 51(1): 337-360. doi: 10.1017/S0033822200033865

    [51]

    Reimer P J, Austin W, Bard E, et al. The IntCal 20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP)[J]. Radiocarbon, 2020, 62(4): 1-33.

    [52]

    Blott S J, Pye K. GRADISTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments[J]. Earth Surface Processes & Landforms, 2010, 26(11): 1237-1248. http://www.geo.mtu.edu/~raman/Ashfall/Syllabus/Entries/2009/6/21_GSD_files/GRADISTAT.pdf

    [53]

    Zimmerman D W. Thermoluminescent dating using fine grains from pottery[J]. Archaeometry, 1971, 13(1): 29-52. doi: 10.1111/j.1475-4754.1971.tb00028.x

    [54]

    Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1): 57-73. doi: 10.1016/S1350-4487(99)00253-X

    [55]

    Roberts H M, Wintle A G. Equivalent dose determinations for polymineralic fine-grains using the SAR protocol: Application to a Holocene sequence of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2001, 20(5): 859-863. http://www.sciencedirect.com/science/article/pii/S0277379100000512

    [56]

    Weibull W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanies, 1951, 18(3): 293-297. doi: 10.1115/1.4010337

    [57]

    Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, 2015, 16(12): 4494-4506. http://openresearch-repository.anu.edu.au/bitstream/1885/153126/2/01_Paterson_New_methods_for_unmixing_2015.pdf

    [58]

    Li Y, Song Y G, Fitzsimmons K E, et al. Origin of loess deposits in the North Tian Shan piedmont, Central Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 559: 109972. doi:10.1016/j.palaeo.2020.109972.

    [59]

    叶玮. 新疆伊犁地区自然环境特点与黄土形成条件[J]. 干旱区地理, 1999, 22(3): 9-16. doi: 10.3321/j.issn:1000-6060.1999.03.002

    Ye Wei. Characteristics of physical environment and conditions of loess formation in Yili area, Xinjiang[J]. Arid Land Geography, 1999, 22(3): 9-16. doi: 10.3321/j.issn:1000-6060.1999.03.002

    [60]

    Schettler G, Shabunin A, Kemnitz H, et al. Seasonal and diurnal variations in dust characteristics on the northern slopes of the Tien Shan-Grain-size, mineralogy, chemical signatures and isotope composition of attached nitrate[J]. Journal of Asian Earth Sciences, 2014, 88(1): 257-276. http://www.sciencedirect.com/science/article/pii/S1367912014001515

    [61]

    Lin Y C, Mu G J, Xu L S, et al. The origin of bimodal grain-size distribution for aeolian deposits[J]. Aeolian Research, 2016, 20: 80-88. doi:doi.org/10.1016/j.aeolia.2015.12.001.

    [62]

    Smalley I, O'Hara-Dhand K, Wint J, et al. Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation[J]. Quaternary International, 2009, 198(1-2): 7-18. doi: 10.1016/j.quaint.2008.06.009

    [63]

    Zhang J F, Qiu W L, Hu G, et al. Determining the age of terrace formation using luminescence dating a case of the Yellow River terraces in the Baode area, China[J]. Methods and Protocols, 2020, 3(1): 17. doi: 10.3390/mps3010017

    [64]

    张金玉, 刘静, 王伟, 等. 活动造山带地区河流阶地与下切速率及其时空分布样式[J]. 第四纪研究, 2018, 38(1): 204-219. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.01.17

    Zhang Jinyu, Liu-Zeng Jing, Wang Wei, et al. Fluvial terraces and river incision rates in active orogen and their spatial and temporal pattern[J]. Quaternary Sciences, 2018, 38(1): 204-219. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.01.17

    [65]

    杨海军, 李曰俊, 师骏, 等. 南天山晚新生代褶皱冲断带构造特征[J]. 第四纪研究, 2010, 30(5): 1030-1043. doi: 10.3969/j.issn.1001-7410.2010.05.21 http://www.dsjyj.com.cn/article/id/dsjyj_8602

    Yang Haijun, Li Yuejun, Shi Jun, et al. Tectonic characteristics of the Late Cenozoic south Tian Shan fold-thrust belt[J]. Quaternary Sciences, 2010, 30(5): 1030-1043. doi: 10.3969/j.issn.1001-7410.2010.05.21 http://www.dsjyj.com.cn/article/id/dsjyj_8602

    [66]

    张天琪, 吕红华, 赵俊香, 等. 河流阶地演化与构造抬升速率——以天山北麓晚第四纪河流作用为例[J]. 第四纪研究, 2014, 34(2): 281-291. doi: 10.3969/j.issn.1001-7410.2014.02.02 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2014.02.02

    Zhang Tianqi, Lü Honghua, Zhao Junxiang, et al. Fluvial terrace formation and tectonic uplift rate-A case study of Late Quaternary fluvial process in the north piedmont of the Tian Shan, Northwestern China[J]. Quaternary Sciences, 2014, 34(2): 281-291. doi: 10.3969/j.issn.1001-7410.2014.02.02 http://www.dsjyj.com.cn/article/doi/10.3969/j.issn.1001-7410.2014.02.02

    [67]

    武登云, 张天琪, 程璐, 等. 地貌形态指标揭示的北天山乌鲁木齐河流域新构造活动特征[J]. 第四纪研究, 2018, 38(1): 193-203. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.01.16

    Wu Dengyun, Zhang Tianqi, Cheng Lu, et al. Neotectonic activation of the Árümqi River basin revealed by geomorphic indices[J]. Quaternary Sciences, 2018, 38(1): 193-203. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.01.16

    [68]

    吴国栋, 尹光华. 新疆伊犁喀什河断裂带分段性研究[J]. 内陆地震, 2010, 24(1): 25-30. doi: 10.3969/j.issn.1001-8956.2010.01.005

    Wu Guodong, Yin Guanghua. Research on subsection of Kashi River fault zone in Ili of Xinjiang[J]. Inland Earthquake, 2010, 24(1): 25-30. doi: 10.3969/j.issn.1001-8956.2010.01.005

    [69]

    施雅风, 于革. 40-30 ka B. P. 中国暖湿气候和海侵的特征与成因探讨[J]. 第四纪研究, 2003, 23(1): 1-11. doi: 10.3321/j.issn:1001-7410.2003.01.001 http://www.dsjyj.com.cn/article/id/dsjyj_9177

    Shi Yafeng, Yu Ge. Warm-humid climate and transgressions during 40-30 ka B. P. and their potential mechanisms[J]. Quaternary Sciences, 2003, 23(1): 1-11. doi: 10.3321/j.issn:1001-7410.2003.01.001 http://www.dsjyj.com.cn/article/id/dsjyj_9177

    [70]

    段阜涛, 安成邦, 赵永涛, 等. 新疆湖泊岩芯记录的末次间冰期以来气候变化初步研究[J]. 第四纪研究, 2018, 38(5): 1156-1165. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.05.10

    Duan Futao, An Chengbang, Zhao Yongtao, et al. A preliminary study on the climate change since the last interglaciation based on lake sediments from Xinjiang, Northwest China[J]. Quaternary Sciences, 2018, 38(5): 1156-1165. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2018.05.10

    [71]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1-16.

    [72]

    宋友桂, 宗秀兰, 李越, 等. 中亚黄土沉积与西风区末次冰期快速气候变化[J]. 第四纪研究, 2019, 39(3): 535-548. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.03.02

    Song Yougui, Zong Xiulan, Li Yue, et al. Loess sediments and rapid climate oscillation during the last glacial period in the westerlies-dominated Central Asia[J]. Quaternary Sciences, 2019, 39(3): 535-548. http://www.dsjyj.com.cn/article/doi/10.11928/j.issn.1001-7410.2019.03.02

    [73]

    杨保, 施雅风. 40-30 ka B. P. 中国西北地区暖湿气候的地质记录及成因探讨[J]. 第四纪研究, 2003, 23(1): 60-68. doi: 10.3321/j.issn:1001-7410.2003.01.007 http://www.dsjyj.com.cn/article/id/dsjyj_9226

    Yang Bao, Shi Yafeng. Warm-humid climate in northwest China during the period of 40-30 ka B. P.: Geological records and origin[J]. Quaternary Sciences, 2003, 23(1): 60-68. doi: 10.3321/j.issn:1001-7410.2003.01.007 http://www.dsjyj.com.cn/article/id/dsjyj_9226

  • 加载中

(11)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-04-02
修回日期:  2021-06-22
刊出日期:  2021-09-30

目录