Paleolimatic implications of lacustrine sediments grain size in short time scales:A case study of Lake Chaonaqiu
-
摘要:
湖泊沉积物粒度在短时间尺度、高分辨率(年际-十年尺度)古气候研究中的指示意义通常被解释为:粒度偏粗指示降水较多、气候湿润,粒度偏细指示降水较少、气候干旱。本文以六盘山朝那湫湖泊73 cm沉积物岩芯粒度指标为研究对象,采用137Cs定年法,重建了朝那湫流域过去268年的高分辨率气候变化序列,结合同一岩芯其他环境代用指标(TOC、C/N值、化学元素等)指示的环境变化信息,对朝那湫湖泊沉积物粒度指示的气候意义进行综合判别。结果表明:朝那湫湖泊沉积物粒度与其他环境代用指标有较好的相关关系,粒度指标能够指示流域降水变化历史,并记录了4次典型的干旱气候事件(1770 A.D.前后、1835 A.D.前后、1875 A.D.前后和1970 A.D.前后),这与邻近地区树轮等气候记录有良好的对应关系,表明本文重建的结果可靠。同时,本文揭示了湖泊沉积物粒度在短时间尺度研究中的特殊指示意义:粒度偏粗指示降水较少、气候干旱,粒度偏细指示降水较多、气候湿润,这主要是由流域降水特点和植被覆盖程度决定的。由于沉积环境复杂,湖泊沉积物粒度的环境指示意义具有多解性,因此在不同的湖泊研究中应充分考虑影响沉积物粒度的各种因素,并结合其他指标进行综合辨识。
Abstract:In short time scales and high resolution (annual or decadal scales) studies, the variations of grain size in lacustrine sediments are often used to indicate the changes of paleoclimate, namely, coarse-grained sediments reflect elevated precipitation and thus wetter climatic conditions; while fine-grained sediments indicate lower precipitation and thus drier climatic conditions. However, the paleoclimatic implications of grain size in lacustrine sediment reveal a complex spatial pattern in different lakes due to site-specific conditions, such as lake/catchment ratio, vegetation cover, and other factors. Thus, it should limit our understanding of long-term paleoclimate variability. Here, the paleoclimatic implications in short time scales of grain-sizes of Lake Chaonaqiu sediments were discussed, based on the characteristics, the geographical location and the significances of multiple proxy indices from lake sediments of Lake Chaonaqiu.
Lake Chaonaqiu, a small open alpine lake in the Liupan Mt. (the lake area is ca. 0.02 km2and the catchment area is ca. 0.2 km2, altitude in 2430 m a. s. l.), is located on the western Loess Plateau (LP), China. A 73-cm long sediment core was obtained in the centre of the lake (35°15'53.08"N, 106°18'35.99"E) using a 60-mm UWTTEC gravity corer, in September 2012. The lithology is mainly consistent of lacustrine black and brown silt. The chronology was well established by 137Cs activities for the past 268 years. A total of 73 samples were taken at 1 cm intervals for grain-size, TOC, TN, C/N ratio and δ13Corg analysis, and 37 samples were collected at 2 cm intervals for XRF analysis.
The sediments was mainly composed of silt (4~63 μm), fine silt (4~16 μm) and coarse silt (16~63 μm) accounted for 40.20%~58.00% and 19.20%~37.00% respectively, the clay (< 4 μm) accounted for 17.10%~30.90%, and the content of sand component (>63 μm) was the lowest, ranging from 0~4.80%. Based on the well correlation of grain-size and other proxy indices of Lake Chaonaqiu sediments, we suggested that the variations of grain-size of Lake Chaonaqiu sediments could effectively indicate paleo-precipitation history in the study area. Fine-grained size indicates humid climate conditions, because the densely vegetation cover in the catchment during wetter period not only stabilizes the surface soil, but also weakens the load capacity of surface runoff, which result in fine-grained size entering into the lake. However, coarse-grained size indicates arid climate conditions, because the sparsely vegetation cover during drier periods exposes more soil surface area, and produces a less cohesive soil, even relatively low-intensity rainfall could create a stronger surface runoff load capacity, resulting in coarse-grained size entering into the lake. Therefore, four drought climate events at Lake Chaonaqiu area were identified (e.g., ca. 1770 A.D., 1835 A.D., 1875 A.D., and 1970 A.D.), which correlate well with the records of tree rings and historical documents in neighboring regions.
-
Key words:
- lacustrine sediment /
- grain size /
- short time scales /
- paleoclimatic implication /
- Lake Chaonaqiu
-
-
[1] Fang X M, Li J J, van der Voo R. Rock magnetic and grain size evidence for intensified Asian atmospheric circulation since 800, 000 years B. P. related to Tibetan uplift[J]. Earth and Planetary Science Letters, 1999, 165(1):129-144. http://cn.bing.com/academic/profile?id=06d2e0e05d181315ed6a3beacbaac1f5&encoded=0&v=paper_preview&mkt=zh-cn
[2] Ding Z L, Yu Z W, Yang S L, et al. Coeval changes in grain size and sedimentation rate of eolian loess, the Chinese Loess Plateau[J]. Geophysical Research Letters, 2001, 28(10):2097-2100. doi: 10.1029/2000GL006110
[3] 孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程[J].第四纪研究, 2004, 24(2):175-183. http://www.dsjyj.com.cn/CN/abstract/abstract9109.shtml
Sun Jimin. Provenance, forming mechanism and transport of loess in China[J]. Quaternary Sciences, 2004, 24(2):175-183. http://www.dsjyj.com.cn/CN/abstract/abstract9109.shtml
[4] 安芷生, 张培震, 王二七, 等.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究, 2006, 26(5):678-693. http://www.dsjyj.com.cn/CN/abstract/abstract8667.shtml
An Zhisheng, Zhang Peizhen, Wang Erchie, et al. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene[J]. Quaternary Sciences, 2006, 26(5):678-693. http://www.dsjyj.com.cn/CN/abstract/abstract8667.shtml
[5] 李涛, 李高军.斜度驱动第四纪冰期-间冰期转换——来自中国黄土的证据[J].第四纪研究, 2018, 38(5):1111-1119. http://www.dsjyj.com.cn/CN/abstract/abstract11526.shtml
Li Tao, Li Gaojun. Obliquity pacing of deglaciations in the Pleistocene:Evidence from the Chinese loess deposits[J]. Quaternary Sciences, 2018, 38(5):1111-1119. http://www.dsjyj.com.cn/CN/abstract/abstract11526.shtml
[6] Sun Y B, Kutzbach J, An Z S, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115:132-142. doi:10.1016/j.quascirev.2015.03.009.
[7] 郭飞, 王婷, 刘宇明, 等.临夏黄土记录的26万年来季风快速变化[J].第四纪研究, 2019, 39(3):558-564. http://www.dsjyj.com.cn/CN/abstract/abstract11620.shtml
Guo Fei, Wang Ting, Liu Yuming, et al. Rapid Asian monsoon changes record by loess depositions in Linxia since 260 ka B. P.[J]. Quaternary Sciences, 2019, 39(3):558-564. http://www.dsjyj.com.cn/CN/abstract/abstract11620.shtml
[8] Sun Y B, Gao S, Li J. Preliminary analysis of grain-size populations with environmentally sensitive terrigenous components in marginal sea setting[J]. Chinese Science Bulletin, 2003, 48(2):184-187. doi: 10.1360/03tb9038
[9] 刘瑞璇, 鹿化煜, 王珧, 等. IODP 355航次船上全体科学家.东阿拉伯海拉克希米盆地浊流沉积序列的粒度变化及其对中更新世气候转型的响应[J].第四纪研究, 2018, 38(5):1120-1129. http://www.dsjyj.com.cn/CN/abstract/abstract11527.shtml
Liu Ruixuan, Lu Huayu, Wang Yao, et al. Grain size analysis of a depositional sequence in the Laxmi Basin(IODP Hole U1456A, Arabian Sea)reveals the Indian monsoon shift at the Mid-Pleistocene Climatic Transition[J]. Quaternary Sciences, 2018, 38(5):1120-1129. http://www.dsjyj.com.cn/CN/abstract/abstract11527.shtml
[10] Zhou X, Yang W, Xiang R, et al. Re-examining the potential of using sensitive grain size of coastal muddy sediments as proxy of winter monsoon strength[J]. Quaternary International, 2014, 333(4):173-178. http://cn.bing.com/academic/profile?id=864bf8f44ac07ee377ffcffbbf9ac250&encoded=0&v=paper_preview&mkt=zh-cn
[11] 孙千里, 周杰, 肖举乐.岱海沉积物粒度特征及其古环境意义[J].海洋地质与第四纪地质, 2001, 21(1):93-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200101015
Sun Qianli, Zhou Jie, Xiao Jule. Grain-size characteristics of Lake Daihai sediments and its paleoenvironment significance[J]. Marine Geology & Quaternary Geology, 2001, 21(1):93-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200101015
[12] Wang H, Liu H, Cui H, et al. Terminal Pleistocene/Holocene paleoenvironmental changes revealed by mineral-magnetism measurements of lake sediments for Dali Nor area, southeastern Inner Mongolia Plateau, China[J]. Palaeogeogrophy, Palaeoclimatology, Palaeoecology, 2001, 170:115-132. doi:10.1016/S0031-0182(01)00231-0.
[13] 刘兴起, 王苏民, 沈吉.青海湖QH-2000钻孔沉积物粒度组成的古气候古环境意义[J].湖泊科学, 2003, 15(2):112-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx200302003
Liu Xingqi, Wang Sumin, Shen Ji. The grain size of the core QH-2000 in Qinghai Lake and its implication for paleoclimate and paleoenvironment[J]. Journal of Lake Sciences, 2003, 15(2):112-117. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx200302003
[14] 张家武, 金明, 陈发虎, 等.青海湖沉积岩芯记录的青藏高原东北部过去800年以来的降水变化[J].科学通报, 2004, 49(1):10-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200401002
Zhang Jiawu, Jin Ming, Chen Fahu, et al. Precipitation variations in the Northeast Tibetan Plateau over the last 800 years documented by sediment cores of Qinghai Lake[J]. Chinese Science Bulletin, 2004, 49(1):10-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200401002
[15] Chen J, Wan G, Zhang D, et al. Environmental records of lacustrine sediments in different time scales:Sediment grain size as an example[J]. Science in China(Series D:Earth Sciences), 2004, 47(10):954-960. doi: 10.1360/03yd0160
[16] Peng Y, Xiao J, Nakamura T, et al. Holocene East Asian monsoonal precipitation pattern revealed by grain-size distribution of core sediments of Daihai Lake in Inner Mongolia of north-central China[J]. Earth and Planetary Science Letters, 2005, 233(3):467-479. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3296a71ee051f2c56285b68879154dc6
[17] 贾飞飞, 鲁瑞洁, 高尚玉.毛乌素沙漠东南缘湖沼相沉积物粒度特征记录的12.2 cal.ka B. P.以来的区域环境变化[J].第四纪研究, 2018, 38(5):1211-1220. http://www.dsjyj.com.cn/CN/abstract/abstract11535.shtml
Jia Feifei, Lu Ruijie, Gao Shangyu. Environmental changes recorded from grain-size characteristics of the lacustrine-peat sediments from southeastern margin of Mu Us Desert since 12.2 cal. ka B. P.[J]. Quaternary Sciences, 2018, 38(5):1211-1220. http://www.dsjyj.com.cn/CN/abstract/abstract11535.shtml
[18] Liu X Q, Herzschuh U, Shen J, et al. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China[J]. Quaternary Research, 2008, 70:412-425. doi:10.1016/j.yqres.2008.06.005.
[19] Xiao J, Chang Z, Si B, et al. Partitioning of the grain-size components of Dali Lake core sediments:Evidence for lake-level changes during the Holocene[J]. Journal of Paleolimnology, 2009, 42(2):249-260. doi: 10.1007/s10933-008-9274-7
[20] 韩艳, 肖霞云, 羊向东, 等.全新世以来滇西北地区天才湖粒度特征及古降水[J].第四纪研究, 2011, 31(6):999-1010. http://www.dsjyj.com.cn/CN/abstract/abstract10551.shtml
Han Yan, Xiao Xiayun, Yang Xiangdong, et al. The grain-size characteristics of Tiancai Lake in northwestern of Yunnan Province and paleo-precipitation history during the Holocene[J]. Quaternary Sciences, 2011, 31(6):999-1010. http://www.dsjyj.com.cn/CN/abstract/abstract10551.shtml
[21] Qiang M R, Liu Y Y, Jin Y X, et al. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China[J]. Geophysical Research Letters, 2014, 41:589-595. doi:10.1002/2013GL058806.
[22] Liu X Q, Herzschuh U, Wang Y B, et al. Glacier fluctuations of Muztagh Ata and temperature changes during the Late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records[J]. Geophysical Research Letters, 2014, 41:6265-6273. doi:10.1002/2014GL060444.
[23] Xiao J L, Fan J W, Zhou L, et al. A model for linking grain-size component to lake level status of a modern clastic lake[J]. Journal of Asian Earth Sciences, 2015, 355:34-43. doi:10.1016/j.quaint.2014.04.023.
[24] Sheng E G, Yu K K, Xu H, et al. Late Holocene Indian summer monsoon precipitation history at Lake Lugu, northwestern Yunnan Province, Southwestern China[J]. Palaeogeogrophy, Palaeoclimatology, Palaeoecology, 2015, 438:24-33. doi:10.1016/j.palaeo.2015.07.026.
[25] 郭超, 马玉贞, 刘杰瑞, 等.过去2000来西藏羊卓雍错沉积物粒度记录的气候变化[J].第四纪研究, 2016, 36(2):405-419. http://www.dsjyj.com.cn/CN/abstract/abstract11180.shtml
Guo Chao, Ma Yuzhen, Liu Jierui, et al. Climatic change recorded by grain size in the past about 2000 years from Yanzhog Yumco Lake, Tibet[J]. Quaternary Sciences, 2016, 36(2):405-419. http://www.dsjyj.com.cn/CN/abstract/abstract11180.shtml
[26] Liu X X, Vandenberghe J, An Z S, et al. Grain size of Lake Qinghai sediments:Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449:41-51. doi:10.1016/j.palaeo.2016.02.005.
[27] Lan J H, Xu H, Sheng E G, et al. Climate changes reconstructed from a glacial lake in High Central Asia over the past two millennia[J]. Quaternary International, 2017, 43-53.doi:10.1016/j.quaint.2017.10.035.
[28] 谭金凤, 肖霞云, 李艳玲.滇西北格贡错那卡湖沉积记录揭示的晚全新世气候变化[J].第四纪研究, 2018, 38(4):900-911. http://www.dsjyj.com.cn/CN/abstract/abstract11506.shtml
Tan Jinfeng, Xiao Xiayun, Li Yanling. Late Holocene climatic change revealed by sediment records in Gegongcuonaka Lake, northwestern Yunnan Province[J]. Quaternary Sciences, 2018, 38(4):900-911. http://www.dsjyj.com.cn/CN/abstract/abstract11506.shtml
[29] 何薇, 汪亘, 王永莉, 等.四川邛海湖泊沉积物记录的过去30 cal. ka B. P.以来的古气候环境特征[J].第四纪研究, 2018, 38(5):1179-1192. http://www.dsjyj.com.cn/CN/abstract/abstract11532.shtml
He Wei, Wang Gen, Wang Yongli, et al. Characteristics of climate and environment over the past 30 cal.ka B. P. recorded in lacustrine deposits of the Qionghai Lake, Sichuan Province[J]. Quaternary Sciences, 2018, 38(5):1179-1192. http://www.dsjyj.com.cn/CN/abstract/abstract11532.shtml
[30] 叶远达, 徐海, 蓝江湖, 等.云南程海沉积物粒度对水深的指示意义[J].第四纪研究, 2018, 38(4):1007-1016. http://www.dsjyj.com.cn/CN/abstract/abstract11515.shtml
Ye Yuanda, Xu Hai, Lan Jianghu, et al. Sedimentary grain size at Lake Chenghai, Yunnan Province:Indicator for water depth[J]. Quaternary Sciences, 2018, 38(4):1007-1016. http://www.dsjyj.com.cn/CN/abstract/abstract11515.shtml
[31] Lan J H, Xu H, Yu K K, et al. Late Holocene hydroclimatic variations and possible forcing mechanisms over the eastern Central Asia[J]. Science China:Earth Sciences, 2019, 62:1288-1301. https://doi.org/10.1007/s11430-018-9240-x. doi: 10.1007/s11430-018-9240-x
[32] Zhou A F, Sun H L, Chen F H, et al. High-resolution climate change in mid-Late Holocene on Tianchi Lake, Liupan Mountain in the Loess Plateau in Central China and its significance[J]. Chinese Science Bulletin, 2010, 55(20):2118-2121. doi: 10.1007/s11434-010-3226-0
[33] 孙惠玲.六盘山天池岩芯记录与中晚全新世气候变化研究[D].兰州: 兰州大学博士学位论文, 2011: 44-45.
Sun Huiling. Paleoenvironment Reconstructions of the Middle to Late Holocene in A High-resolution Sediment Core from Tianchi Lake on Liupan Mountains[D]. Lanzhou: The Ph.D. Thesis of Lanzhou University, 2011: 44-45.
[34] Lu H Y, An Z S. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science in China(Series D), 1998, 41(6):626-631. doi: 10.1007/BF02878745
[35] Xu H, Liu X Y, An Z S, et al. Spatial pattern of modern sedimentation rate of Qinghai Lake and a preliminary estimate of the sediment flux[J]. Chinese Science Bulletin, 2010, 55(7):621-627. doi: 10.1007/s11434-009-0580-x
[36] Lan J H, Wang T L, Chawchai S, et al. Time marker of 137Cs fallout maximum in lake sediments of Northwest China[J]. Quaternary Science Reviews, 2020, 241:106431. https://doi.org/10.1016/j.quascirev.2020.106413. doi: 10.1016/j.quascirev.2020.106431
[37] Wan G J, Chen J A, Wu F C, et al. Coupling between 210Pbex and organic matter in sediments of a nutrient-enriched lake:An example from Lake Chenghai, China[J]. Chemical Geology, 2005, 224(4):223-236. doi: 10.1016/j.chemgeo.2005.07.025
[38] Fang K Y, Frank D, Gou X H, et al. Precipitation over the past four centuries in the Dieshan Mountains as inferred from tree rings:An introduction to an HHT-based method[J]. Global and Planetary Change, 2013, 107:109-118. doi:10.1016/j.gloplacha.2013.04.010.
[39] Ma Y Y, Liu Y, Song H M, et al. A standardized precipitation evapotranspiration index reconstruction in the Taihe Mountains using tree-ring widths for the last 283 years[J]. PLoS One, 2015, 10(7):e0133065. doi: 10.1371/journal.pone.0133065
[40] 中央气象局气象科学研究院.中国近五百年旱涝分布图集[M].北京:地图出版社, 1981.
Academy of Meteorological Science, China Meteorological Adminstration. Yearly Charts of Dryness/Wetness in China for the Last 500 Years[M]. Beijing:China Cartographic Publishing House, 1981.
[41] 张德二, 刘传志.《中国近五百年旱涝分布图集》续补(1980-1992年)[J].气象, 1993, 19(11):41-45.
Zhang De'er, Liu Chuanzhi. Continued complement(1980-1992)of yearly charts of dryness/wetness in China for the last 500 years[J]. Meteorological Monthly, 1993, 19(11):41-45.
[42] 张德二, 李小泉, 梁有叶. 《中国近五百年旱涝分布图集》的再续补(1993~2000年)[J].应用气象学报, 2003, 14(3):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyqxxb200303015
Zhang De'er, Li Xiaoquan, Liang Youye. Continued complement(1993-2000)of yearly charts of dryness/wetness in China for the last 500 years[J]. Journal of Applied Meteorological Science, 2003, 14(3):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyqxxb200303015
[43] 张菀漪, 张静雅, Nusrat Nazir, 等.青藏高原东北缘冬给错纳湖全新世湖面波动[J].第四纪研究, 2019, 39(4):1018-1033. http://www.dsjyj.com.cn/CN/abstract/abstract11660.shtml
Zhang Wanyi, Zhang Jingya, Nusrat Nazir, et al. The records of Donggi Cona lake-level fluctuations since the Holocene in the northeastern Tibetan Plateau[J]. Quaternary Sciences, 2019, 39(4):1018-1033. http://www.dsjyj.com.cn/CN/abstract/abstract11660.shtml
[44] 蒋庆丰, 金典, 郑佳楠, 等.末次冰消期以来赛里木湖沉积记录的气候突变[J].第四纪研究, 2019, 39(4):952-963. http://www.dsjyj.com.cn/CN/abstract/abstract11654.shtml
Jiang Qingfeng, Jin Dian, Zheng Jianan, et al. Abrupt climate events recorded by Sayram Lake sediments since the last deglaciation[J]. Quaternary Sciences, 2019, 39(4):952-963. http://www.dsjyj.com.cn/CN/abstract/abstract11654.shtml
[45] Huang C C, Pang J L, Zha X C, et al. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China[J]. Quaternary Science Reviews, 2011, 30:460-468. doi:101016/j.quascitev. 2010.12.007.
[46] 信忠保, 许炯心, 郑伟.气候变化和人类活动对黄土高原植被覆盖变化的影响[J].中国科学(D辑:地球科学), 2007, 37(11):1504-1514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200711009
Xin Zhongbao, Xu Jiongxin, Zheng Wei. The impact of climate change and human activity on the change of vegetation cover in Loess Plateau[J]. Science in China(Series D:Earth Sciences), 2007, 37(11):1504-1514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd200711009
[47] 刘旻霞, 赵瑞东, 邵鹏, 等.近15 a黄土高原植被覆盖时空变化及驱动力分析[J].干旱区地理, 2018, 41(1):99-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqdl201801013
Liu Minxia, Zhao Ruidong, Shao Peng, et al. Temporal and spatial variation of vegetation coverage and its driving forces in the Loess Plateau from 2001 to 2015[J]. Arid Land Geography, 2018, 41(1):99-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqdl201801013
[48] 刘静, 温仲明, 刚成诚.黄土高原不同植被覆被类型NDVI对气候变化的响应[J].生态学报, 2020, 40(2):678-691. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb202002027
Liu Jing, Wen Zhongming, Gang Chengcheng. Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(2):678-691. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb202002027
[49] 范佳伟, 肖举乐, 温锐林, 等.内蒙古达里湖沉积记录的中晚全新世干旱事件[J].第四纪研究, 2019, 39(3):701-716. http://www.dsjyj.com.cn/CN/abstract/abstract11632.shtml
Fan Jiawei, Xiao Jule, Wen Ruilin, et al. Middle to Late Holocene drought events recorded by the sediments from Dali Lake, Inner Mongolia[J]. Quaternary Sciences, 2019, 39(3):701-716. http://www.dsjyj.com.cn/CN/abstract/abstract11632.shtml
[50] 沈吉, 薛滨, 吴敬禄, 等.湖泊沉积与环境演化[M].北京:科学出版社, 2010:1-162.
Shen Ji, Xue Bin, Wu Jinglu, et al. Lake Sedimentation and Environmental Evolution[M]. Beijing:Science Press, 2010:1-162.
[51] Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions:A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2):261-289. doi: 10.1016/S0146-6380(02)00168-7
[52] Xu H, Ai L, Tan L C, et al. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications[J]. Chemical Geology, 2006, 235(3):262-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3acbd41dd5d5c1c695af2e1d2100ffb9
[53] Xu H, Sheng E G, Lan J H, et al. Decadal/multi-decadal temperature discrepancies along the eastern margin of the Tibetan Plateau[J]. Quaternary Science Reviews, 2014, 89:85-93. doi:10.1016/j.quascirev.2014.02.011.
[54] Yu K K, Xu H, Lan J H, et al. Climate change and soil erosion in a small alpine lake basin on the Loess Plateau, China[J]. Earth Surface Processes and Landforms, 2017, 8(42):1238-1247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/esp.4071
[55] Fan J W, Xiao J L, Wen R L, et al. Organic geochemical investigations of the Dali Lake sediments in Northern China:Implications for environment and climate changes of the last deglaciation in the East Asian summer monsoon margin[J]. Journal of Asian Earth Sciences, 2017, 140:135-146. doi:10.1016/j.jseaes.2017.04.011.
[56] Morellón M, Valero-Garcés B, Vegas-Vilarrúbia T, et al. Lateglacial and Holocene palaeohydrology in the western Mediterranean region:The Lake Estanya record(NE Spain)[J]. Quaternary Science Reviews, 2009, 28(25):2582-2599. http://cn.bing.com/academic/profile?id=67ad691c9fc9fe51022998b06dad516c&encoded=0&v=paper_preview&mkt=zh-cn
[57] Metcalfe S E, Jones M D, Davies S J, et al. Climate variability over the last two millennia in the North American monsoon region, recorded in laminated lake sediments from Laguna de Juanacatlan, Mexico[J]. The Holocene, 2010, 20(8):1195-1206. doi: 10.1177/0959683610371994
[58] Cuven S, Francus P, Lamoureux S F. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic[J]. Journal of Paleolimnology, 2010, 44(3):803-817. doi: 10.1007/s10933-010-9453-1
[59] Kylander M E, Ampel L, Wohlfarth B, et al. High-resolution X-ray fluorescence core scanning analysis of Les Echets(France)sedimentary sequence:New insights from chemical proxies[J]. Journal of Quaternary Science, 2011, 26(1):109-117. doi: 10.1002/jqs.1438