雅鲁藏布江中游及昌果沟遗址古环境分析

李拓宇, 任小林, 廖奕楠, 莫多闻, 鄂崇毅, 鲁鹏, 许俊杰, 伍永秋, 杜世松. 雅鲁藏布江中游及昌果沟遗址古环境分析[J]. 第四纪研究, 2020, 40(2): 547-555. doi: 10.11928/j.issn.1001-7410.2020.02.23
引用本文: 李拓宇, 任小林, 廖奕楠, 莫多闻, 鄂崇毅, 鲁鹏, 许俊杰, 伍永秋, 杜世松. 雅鲁藏布江中游及昌果沟遗址古环境分析[J]. 第四纪研究, 2020, 40(2): 547-555. doi: 10.11928/j.issn.1001-7410.2020.02.23
李拓宇, 任小林, 廖奕楠, 莫多闻, 鄂崇毅, 鲁鹏, 许俊杰, 伍永秋, 杜世松. 雅鲁藏布江中游及昌果沟遗址古环境分析[J]. 第四纪研究, 2020, 40(2): 547-555. doi: 10.11928/j.issn.1001-7410.2020.02.23 Li Tuoyu, Ren Xiaolin, Liao Yinan, Mo Duowen, E Chongyi, Lu Peng, Xu Junjie, Wu Yongqiu, Du Shisong. Paleoenvironment analysis of the middle reaches of Yarlung Zangbo River and Changguogou site[J]. Quaternary Sciences, 2020, 40(2): 547-555. doi: 10.11928/j.issn.1001-7410.2020.02.23
Citation: Li Tuoyu, Ren Xiaolin, Liao Yinan, Mo Duowen, E Chongyi, Lu Peng, Xu Junjie, Wu Yongqiu, Du Shisong. Paleoenvironment analysis of the middle reaches of Yarlung Zangbo River and Changguogou site[J]. Quaternary Sciences, 2020, 40(2): 547-555. doi: 10.11928/j.issn.1001-7410.2020.02.23

雅鲁藏布江中游及昌果沟遗址古环境分析

  • 基金项目:

    国家自然科学基金项目(批准号:41601191)、国家重点基础研究发展计划项目(批准号:2013CB956001)、国家社科基金重大项目(批准号:11 & ZD183)和河南省特聘研究员项目共同资助

详细信息
    作者简介:

    李拓宇, 女, 35岁, 副编审, 环境考古研究, E-mail:lituoyu@cnu.edu.cn

  • 中图分类号: P92;K872

Paleoenvironment analysis of the middle reaches of Yarlung Zangbo River and Changguogou site

  • 西藏拉萨昌果沟遗址位于雅鲁藏布江中游支流的阶地上,是重要的新石器时代遗址。为探讨昌果沟遗址附近的古环境,对遗址附近开展地貌调查,在遗址北面约1 km处选取1个全新世风成沉积剖面进行光释光测年和环境指标分析,在雅鲁藏布江中游选2个阶地剖面进行光释光测年分析;此外,还总结了雅鲁藏布江中游23个全新世古土壤/泥炭的测年数据,进行概率密度分析,试图揭示区域的环境演化特征。研究表明:全新世古土壤/泥炭年代的概率密度可以较好地反映区域气候变化,9.0~6.0 ka古土壤/泥炭发育在波动中增强,气候由冷干向暖湿转换;6.0~2.9 ka古土壤/泥炭发育最强,气候相对温干;2.9 ka后鲜有古土壤/泥炭发育,气候变得冷干,史前人类活动受限。4.5 ka之后雅鲁藏布江中游及其支流一级阶地的形成为新石器时期先民提供农业耕作的场所,古土壤的发育为农作物提供了丰富的营养。1.4~1.1 ka期间(吐蕃王朝时期)局部地区有古土壤发育,气候好转。

  • 加载中
  • 图 1 

    采样剖面位置示意图(a)和昌果沟沟谷(b)

    Figure 1. 

    Location of the sampling profile(a) and valley of Changguogou site(b)

    图 2 

    剖面示意图

    Figure 2. 

    The sampling profiles

    图 3 

    CGG剖面样品的粒度频率曲线

    Figure 3. 

    Grain frequency curves of CGG profile samples

    图 4 

    CGG剖面各项环境指标变化曲线的对比

    Figure 4. 

    Environmental index curves of CGG profile

    图 5 

    雅江中游全新世剖面古土壤/泥炭年代及其概率密度图

    Figure 5. 

    The paleosol/peat ages and their probability density plot in the middle reaches of the Yarlung Zangbo River

    表 1 

    雅鲁藏布江中游全新世剖面古土壤/泥炭年代汇总

    Table 1. 

    Paleosol/peat ages of Holocene profiles in the middle reaches of the Yarlung Zangbo River

    剖面岩性(数量) 剖面简称 位置(经纬度) 测试材料 年代测试方法 年代 参考文献
    风成剖面(13个) JB 29°23′49″N,89°21′E 砂质古土壤 14C 5.748±0.160 cal.ka B.P. [11]
    砂质古土壤 14C 6.221±0.217 cal.ka B.P.
    NX 定日县尼辖-定结公路旁 砂质古土壤 14C 4.625±0.202 cal.ka B.P.
    QS 29°23′24″N,90°45′28″E 砂质古土壤 14C 4.565±0.265 cal.ka B.P.
    砂质古土壤 14C 5.079±0.217 cal.ka B.P.
    ZN 29°12′49″N,91°25′43″E 砂质古土壤 TL 5.4±0.34 ka
    Cha'er 29°23′22.3″N,89°16′56.4″E 砂质古土壤 14C 3.578±0.128 cal.ka B.P. [23]
    砂质古土壤 14C 5.692±0.084 cal.ka B.P.
    JIN2 29°25′37.8″N,90°54′27.3″E 砂质古土壤 OSL 7.7±0.8 ka [24]
    STA1 29°37′59.4″N,91°05′52.0″E 炭屑 14C 2.817±0.034 cal.ka B.P.
    BRI1 29°21′58.1″N,90°51′17.8″E 炭屑 14C 1.803±0.061 cal.ka B.P.
    CGG 29°21′55.2″N,91°08′56.7″E 砂质古土壤 OSL 表 2 自测
    JDX 29°17′08.8″N,91°09′13.1″E 砂质古土壤 OSL 表 2 自测
    ZXT 28°59′38.3″N,93°16′29.8″E 砂质古土壤 OSL 表 2 自测
    GJ 29°5′33.79″N,93°24′15.57″E 砂质古土壤 OSL 表 2 自测
    RM 29°21′10.0″N,88°27′41.5″E 粉砂质古土壤 OSL 表 2 自测
    泥炭剖面(4个) QNG 30°05′38.7″N,90°35′04.4″E 泥炭 14C 3.505±0.060 cal.ka B.P. [25]
    泥炭 14C 5.260±0.050 cal.ka B.P.
    泥炭 14C 9.150±0.120 cal.ka B.P.
    WMQ 当雄盆地支沟谷底 泥炭 14C 3.893±0.250 cal.ka B.P. [26]
    泥炭 14C 6.111±0.178 cal.ka B.P.
    WD 当雄县西南5 km的山间盆地 泥炭 14C 7.948±0.232 cal.ka B.P.
    LS 拉萨西郊河流阶地 泥炭 14C 0.238±0.191 cal.ka B.P.
    下载: 导出CSV

    表 2 

    雅江中游风成沉积剖面光释光测年结果

    Table 2. 

    Optical stimulated luminescence dating results of aeolian sedimentary profiles in the middle reaches of the Yarlung Zangbo River

    样品编号 深度(cm) 沉积类型 U(ppm) Th(ppm) K(%) 有效年剂量(Gy/ka) 等效剂量(Gy) 光释光年龄(ka)
    CGG-OSL-1 168 细砂 2.73±0.4 29.1±0.8 2.68±0.04 5.20±0.38 9.48±0.36 1.82±0.16
    CGG-OSL-2 209 砂质古土壤 3.05±0.4 33.2±0.9 2.53±0.04 5.37±0.39 34.48±1.48 6.43±0.56
    CGG-OSL-3 287 细砂 2.33±0.4 25.1±0.8 2.58±0.04 4.73±0.35 39.83±0.78 8.43±0.66
    JDX-OSL 96 砂质古土壤 1.83±0.3 13.52±0.7 2.22±0.04 3.61±0.16 16.27±0.70 4.51±0.29
    ZXT-OSL-1 62 砂质古土壤 1.29±0.3 11.85±0.7 1.83±0.04 3.03±0.13 14.63±1.23 4.82±0.47
    GJ-OSL 195 砂质古土壤 1.39±0.3 10.95±0.7 1.63±0.03 2.74±0.12 22.12±1.09 8.06±0.56
    RM-OSL-2 90 粉砂质古土壤 3.70±0.035 20.0±0.024 2.20±0.029 4.29 18.32 4.27±0.37
    下载: 导出CSV
  • [1]

    Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B. P.[J]. Science, 2015, 347(6219):248-250. doi: 10.1126/science.1259172

    [2]

    张东菊, 董广辉, 王辉, 等.史前人类向青藏高原扩散的历史过程和可能驱动机制[J].中国科学:地球科学, 2016, 46(8):1007-1023. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201608001.htm

    Zhang Dongju, Dong Guanghui, Wang Hui, et al. Historical process and possible driving mechanism of prehistoric human diffusion to the Qinghai-Tibet Plateau[J]. Science China:Earth Sciences, 2016, 46(8):1007-1023. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201608001.htm

    [3]

    侯光良, 许长军, 曹广超, 等.青藏高原末次冰消期-全新世中期人类扩张的时空模拟[J].第四纪研究, 2017, 37(4):709-720. http://www.dsjyj.com.cn/CN/abstract/abstract11349.shtml

    Hou Guangliang, Xu Changjun, Cao Guangchao, et al. The spatial-temporal simulation of mankind's expansion on the Tibetan Plateau during Last Deglaciation-Middle Holocene[J]. Quaternary Sciences, 2017, 37(4):709-720. http://www.dsjyj.com.cn/CN/abstract/abstract11349.shtml

    [4]

    侯光良, 魏海成, 鄂崇毅, 等.青藏高原东北缘全新世人类活动与环境变化——以青海湖江西沟2号遗迹为例[J].地理学报, 2013, 68(3):380-388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201303009

    Hou Guangliang, Wei Haicheng, E Chongyi, et al. Human activities and environmental change in Holocene in the northeastern margin of Qinghai-Tibet Plateau:A case study of JXG 2 relic site in Qinghai Lake[J]. Acta Geographica Sinica, 2013, 68(3):380-388. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxb201303009

    [5]

    Li G, Dong G, Wen L, et al. Overbank flooding and human occupation of the Shalongka site in the upper Yellow River valley, northeast Tibet Plateau in relation to climate change since the last deglaciation[J]. Quaternary Research, 2014, 82(2):354-365. doi: 10.1016/j.yqres.2014.07.005

    [6]

    陈亭亭, 贾鑫, 黎海明, 等.甘青地区齐家文化时期农业结构的时空变化及其影响因素分析[J].第四纪研究, 2019, 39(1):132-143. http://www.dsjyj.com.cn/CN/abstract/abstract11580.shtml

    Chen Tingting, Jia Xin, Li Haiming, et al. The analysis of spatiotemporal transformations of agricultural and its influence factors during Qijia culture period in Gansu-Qinghai region[J]. Quaternary Sciences, 2019, 39(1):132-143. http://www.dsjyj.com.cn/CN/abstract/abstract11580.shtml

    [7]

    Zhang D, Li S. Optical dating of Tibetan human hand-and footprints:An implication for the palaeoenvironment of the last glaciation of the Tibetan Plateau[J]. Geophysical Research Letters, 2002, 29(5):11-16. doi: 10.1029/2001GL013968

    [8]

    中国国家文物局.中国文物地图集:西藏自治区分册[M].北京:文物出版社, 2010:1-407.

    National Cultural Heritage Administration. Atlas of Chinese Cultural Relics:Tibet Autonomous Region[M]. Beijing:Cultural Relics Publishing House, 2010:1-407.

    [9]

    西藏自治区统计局.西藏自治区2010年第六次全国人口普查主要数据公报[EB/OL].(2012-02-28)[2019-11-22]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/dfrkpcgb/201202/t20120228_30406.html.

    Bureau of Statistics of Tibet Autonomous Region. Key data bulletin of the sixth national population census of Tibet Autonomous Region in 2010[EB/OL]. (2012-02-28)[2019-11-22]. http://www.stats.gov.cn/tjsj/tjgb/rkpcgb/dfrkpcgb/201202/t20120228-30406.html.

    [10]

    杨勤业, 郑度.西藏地理:自然卷[M].北京:五洲传播出版社, 2004:105.

    Yang Qinye, Zheng Du. Geography of Tibet:Nature Volume[M]. Beijing:China Intercontinental Press, 2004:105.

    [11]

    李森, 杨萍, 董玉祥, 等.西藏土地沙漠化及其防治[M].北京:科学出版社, 2010:1-501.

    Li Sen, Yang Ping, Dong Yuxiang, et al. Desertification in Tibet and Its Prevention and Control[M]. Beijing:Science Press, 2010:1-501.

    [12]

    中国社会科学院考古研究所考古科技实验研究中心.放射性碳素测定年代报告(二三)[J].考古, 1996, (7):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kg200607009

    Research Center of Archaeological Science and Technology Experiment, Institute of Archaeology, Chinese Academy of Social Sciences. Radiocarbon dating report(23)[J]. Archaeology, 1996, (7):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kg200607009

    [13]

    童艳, 凌智永, 杨晓燕.西藏昌果沟遗址发现火烧遗迹[EB/OL](2019-04-01)[2019-09-23]. http://kaogu.cssn.cn/zwb/xccz/201904/t20190401_4858663.shtml.

    Tong Yan, Ling Zhiyong, Yang Xiaoyan. Fire remains were found at Changgugou site in Tibet[EB/OL]. (2019-04-01)[2019-09-23]. http://kaogu.cssn.cn/zwb/xccz/201904/t20190401_4858663.shtml.

    [14]

    傅大雄.西藏昌果沟遗址新石器时代农作物遗存的发现、鉴定与研究[J].考古, 2001, (3):66-74. doi: 10.3969/j.issn.1001-0327.2001.03.014

    Fu Daxiong. Discovery, identification and research on the remains of crops in the Neolithic age in Changguogou site (Tibet)[J]. Archaeology, 2001, (3):66-74. doi: 10.3969/j.issn.1001-0327.2001.03.014

    [15]

    杜军, 杨志刚.西藏自治区县级气候区划[M].北京:气象出版社, 2011:1-176.

    Du Jun, Yang Zhigang. Climate Regionalization at County Level in Tibet Autonomous Region[M]. Beijing:China Meteorological Press, 2011:1-176.

    [16]

    Guérin G, Mercier N, Nathan R, et al. On the use of the infinite matrix assumption and associated concepts:A critical review[J]. Radiation Measurements, 2012, 47(9):778-785. doi: 10.1016/j.radmeas.2012.04.004

    [17]

    Prescott J R, Hutton J T. Cosmic ray contributions to dose rates for luminescence and ESR dating:Large depths and long-term time variations[J]. Radiation Measurements, 1994, 23(2):497-500. https://www.sciencedirect.com/science/article/pii/1350448794900868

    [18]

    周亮, 黄春长, 周亚利, 等.汉江上游郧西郧县段古洪水事件光释光测年及其对气候变化的响应[J].地理研究, 2014, 33(6):1178-1192. http://d.old.wanfangdata.com.cn/Periodical/dlyj201406017

    Zhou Liang, Huang Chunchang, Zhou Yali. Palaeoflood OSL chronology and its response to climate change in the Yunxi-Yunxian reach in the upper Hanjiang River valley[J]. Geographical Research, 2014, 33(6):1178-1192. http://d.old.wanfangdata.com.cn/Periodical/dlyj201406017

    [19]

    Lai Z, Kaiser K, Brückner H. Luminescence-dated aeolian deposits of Late Quaternary age in the southern Tibetan Plateau and their implications for landscape history[J]. Quaternary Research, 2009, 72(3):421-430. doi: 10.1016/j.yqres.2009.07.005

    [20]

    Qiang M, Chen F, Song L, et al. Late Quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China[J]. Quaternary Research, 2013, 79(3):403-412. doi: 10.1016/j.yqres.2013.03.003

    [21]

    杜世松, 伍永秋, 李拓宇, 等.基于年代数据的青藏高原东北部全新世风沙活动研究[J].北京师范大学学报(自然科学版), 2016, 52(1):97-104. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb201601019

    Du Shisong, Wu Yongqiu, Li Tuoyu, et al. Holocene aeolian activity in the northeastern Qinghai-Tibetan Plateau as revealed by dating data[J]. Journal of Beijing Normal University (Natural Science), 2016, 52(1):97-104. http://d.old.wanfangdata.com.cn/Periodical/bjsfdxxb201601019

    [22]

    Telfer M W, Thomas D S G. Late Quaternary linear dune accumulation and chronostratigraphy of the southwestern Kalahari:Implications for aeolian palaeoclimatic reconstructions and predictions of future dynamics[J]. Quaternary Science Reviews, 2007, 26(19):2617-2630. https://www.sciencedirect.com/science/article/abs/pii/S027737910700193X

    [23]

    Zheng Y, Wu Y, Li S, et al. Grain-size characteristics of sediments formed since 8600 yr B. P. in middle reaches of Yarlung Zangbo River in Tibet and their paleoenvironmental significance[J]. Chinese Geographical Science, 2009, 19(2):113-119. doi: 10.1007/s11769-009-0113-1

    [24]

    Kaiser K, Lai Z, Schneider B, et al. Stratigraphy and palaeoenvironmental implications of Pleistocene and Holocene aeolian sediments in the Lhasa area, southern Tibet (China)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3-4):329-342. doi: 10.1016/j.palaeo.2008.11.004

    [25]

    孟庆浩, 牛蕊, 郑祥民, 等.西藏羊八井七弄沟泥炭剖面地球化学特征及环境意义[J].华东师范大学学报(自然科学版), 2018, (2):151-159. doi: 10.3969/j.issn.1000-5641.2018.02.016

    Meng Qinghao, Niu Rui, Zheng Xiangmin, et al. Geochemical characteristics of the peat profile in the Yangbajing basin, Tibetan, China and its paleoenvironmental implications[J]. Journal of East China Normal University(Natural Science), 2018, (2):151-159. doi: 10.3969/j.issn.1000-5641.2018.02.016

    [26]

    汪佩芳, 夏玉梅, 王曼华.西藏南部全新世泥炭袍粉组合及自然环境演化的探讨[J].地理科学, 1981, 1(2):144-152. http://www.cnki.com.cn/Article/CJFD1981-DLKX198102006.htm

    Wang Peifang, Xia Yumei, Wang Manhua. The study on the spore-pollen groups and the evolution of the natural environment of south Xizang Plateau in the peat of the Holocene[J]. Scientia Geographica Sinica, 1981, 1(2):144-152. http://www.cnki.com.cn/Article/CJFD1981-DLKX198102006.htm

    [27]

    成都地质学院陕北队.沉积岩(物)粒度分析及其应用[M].北京:地质出版社, 1978:1-147.

    The Northern Shaanxi Team of Chengdu College of Geology. Particle Size Analysis of Sedimentary Rocks and Its Application[M]. Beijing:Geological Publishing House, 1978:1-147.

    [28]

    陈殿宝, 陈进军, 胡小飞, 等.祁连山北麓梨园河沉积物粒径的变化特征与分析[J].第四纪研究, 2018, 38(6):1336-1347. http://www.dsjyj.com.cn/CN/abstract/abstract11546.shtml

    Chen Dianbao, Chen Jinjun, Hu Xiaofei, et al. Characteristics and analysis on the sediment grain size along the Liyuan River on the north piedmont of the Qilian Shan[J]. Quaternary Sciences, 2018, 38(6):1336-1347. http://www.dsjyj.com.cn/CN/abstract/abstract11546.shtml

    [29]

    魏东岚, 李新瑞, 张智群, 等.大连长兴岛砂质沉积物粒度分布与石英表面结构特征研究[J].第四纪研究, 2019, 39(6):1404-1413. http://www.dsjyj.com.cn/CN/abstract/abstract11697.shtml

    Wei Donglan, Li Xinrui, Zhang Zhiqun, et al. Study on grain size distribution and quartz surface structure of sandy sediments in Changxing Island, Dalian[J]. Quaternary Sciences, 2019, 39(6):1404-1413. http://www.dsjyj.com.cn/CN/abstract/abstract11697.shtml

    [30]

    李保生, 靳鹤龄, 祝一志, 等. "河套东南角理想剖面"的新近研究[J].中国沙漠, 2001, 21(4):31-38. http://d.old.wanfangdata.com.cn/Periodical/zgsm200104006

    Li Baosheng, Jin Heling, Zhu Yizhi, et al. Recent study on the "ideal section in the southeast corner of Ordos"[J]. Journal of Desert Research, 2001, 21(4):31-38. http://d.old.wanfangdata.com.cn/Periodical/zgsm200104006

    [31]

    孙继敏, 丁仲礼, 刘东生, 等.末次间冰期以来沙漠-黄土边界带的环境演变[J].第四纪研究, 1995, (2):117-122. doi: 10.3321/j.issn:1001-7410.1995.02.003 http://www.dsjyj.com.cn/CN/abstract/abstract9749.shtml

    Sun Jimin, Ding Zhongli, Liu Tungsheng, et al. Environmental changes in the desert-loess transitional zone of North China since beginning of the last interglacial[J]. Quaternary Sciences, 1995, (2):117-122. doi: 10.3321/j.issn:1001-7410.1995.02.003 http://www.dsjyj.com.cn/CN/abstract/abstract9749.shtml

    [32]

    楚纯洁, 赵景波, 周金风.毛乌素沙地中部黄土-古土壤剖面沉积特征与地层划分[J].第四纪研究, 2018, 38(3):623-635. http://www.dsjyj.com.cn/CN/abstract/abstract11480.shtml

    Chu Chunjie, Zhao Jingbo, Zhou Jinfeng. Sedimentary characteristics and stratigraphic division of the loess-paleosol section in Wushen County, the central Mu Us Dune Field in North China[J]. Quaternary Sciences, 2018, 38(3):623-635. http://www.dsjyj.com.cn/CN/abstract/abstract11480.shtml

    [33]

    马兴悦, 吕镔, 赵国永, 等.川西高原理县黄土磁学特征及其影响因素[J].第四纪研究, 2019, 39(5):1307-1319. http://www.dsjyj.com.cn/CN/abstract/abstract11687.shtml

    Ma Xingyue, Lü Bin, Zhao Guoyong, et al. Magnetic properties and their influence factors of Lixian loess in western Sichuan Plateau[J]. Quaternary Sciences, 2019, 39(5):1307-1319. http://www.dsjyj.com.cn/CN/abstract/abstract11687.shtml

    [34]

    龚子同.中国土壤系统分类:理论·方法·实践[M].北京:科学出版社, 1999:1-903.

    Gong Zitong. Theory-Method-Practice of Soil System Classification in China[M]. Beijing:Science Press, 1999:1-903.

    [35]

    欧阳慧子.青藏高原南部全新世早-中期气候变化: 墨竹工卡钙华碳氧同位素记录[D].成都: 成都理工大学硕士学位论文, 2018: 1-45.http://cdmd.cnki.com.cn/Article/CDMD-10616-1018265196.htm

    Ouyang Huizi. The Climate Change of the Southern Tibetan Plateau during the Early-Middle Holocene: Records of Stable Carbon and Oxygen Isotopic Compositions of the Mozhugongka Travertine, NE Lhasa[D]. Chengdu: The Master's Thesis of Chengdu University of Technology, 2018: 1-45.

    [36]

    Tang L, Shen C, Liu K, et al. Changes in South Asian monsoon:New high-resolution paleoclimatic records from Tibet, China[J]. Chinese Science Bulletin, 2000, 45(1):87-91. doi: 10.1007/BF02884911

    [37]

    Zhu L, Zhen X, Wang J, et al. A~30, 000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet[J]. Journal of Paleolimnology, 2009, 42(3):343-358. doi: 10.1007/s10933-008-9280-9

    [38]

    孙诚诚, 周立旻, 郑祥民, 等.青藏高原羊八井盆地全新世以来气候变化的泥炭记录[J].海洋地质与第四纪地质, 2016, 36(5):149-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201605017

    Sun Chengcheng, Zhou Limin, Zheng Xiangmin, et al. Peat record of Holocene climate change in the Yangbajing Basin, Tibet Plateau[J]. Marine Geology & Quaternary Geology, 2016, 36(5):149-155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201605017

    [39]

    王琳, 牛蕊, 孟庆浩, 等.西藏羊八井七弄沟地区全新世温度变化的泥炭汞记录[J].海洋地质与第四纪地质, 2017, 37(2):169-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702019

    Wang Lin, Niu Rui, Meng Qinghao, et al. Holocene climate changes recorded by mercury concentration in peat:A case from Qinonggou of Yangbajing, Tibetan Plateau[J]. Marine Geology & Quaternary Geology, 2017, 37(2):169-176. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201702019

    [40]

    郭超, 马玉贞, 刘杰瑞, 等.过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化[J].第四纪研究, 2016, 36(2):405-419. http://www.dsjyj.com.cn/CN/abstract/abstract11180.shtml

    Guo Chao, Ma Yuzhen, Liu Jierui, et al. Climatic change recorded by grain-size in the past about 2000 years from Yamzhog Yumco Lake, Tibet[J]. Quaternary Sciences, 2016, 36(2):405-419. http://www.dsjyj.com.cn/CN/abstract/abstract11180.shtml

    [41]

    郭超, 蒙红卫, 马玉贞, 等.藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化[J].地理学报, 2019, 74(7):1345-1362. http://d.old.wanfangdata.com.cn/Periodical/dlxb201907007

    Guo Chao, Meng Hongwei, Ma Yuzhen, et al. Environmental variations recorded by chemical element in the sediments of Lake Yamzhog Yumco on the southern Tibetan Plateau over the past 2000 years[J]. Acta Geographica Sinica, 2019, 74(7):1345-1362. http://d.old.wanfangdata.com.cn/Periodical/dlxb201907007

    [42]

    夏正楷.黄土高原第四纪期间水土流失的地质记录和基本规律[J].水土保持研究, 1999, 6(4):49-53. doi: 10.3969/j.issn.1005-3409.1999.04.010

    Xia Zhengkai. The records of Quaternary soil erosion in the Loess Plateau[J]. Research of Soil and Water Conservation, 1999, (4):49-53. doi: 10.3969/j.issn.1005-3409.1999.04.010

    [43]

    彭补拙, 杨逸畴, 中国科学院登山科学考察队.南迦巴瓦峰地区自然地理与自然资源[M].北京:科学出版社, 1996:1-387.

    Peng Buzhu, Yang Yichou, Mountaineering Scientific Expedition Team of Chinese Academy of Sciences. Natural Geography and Natural Resources of Mount Namjagbarwa Area[M]. Beijing:Science Press, 1996:1-387.

  • 加载中

(5)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-10-17
修回日期:  2019-12-29
刊出日期:  2020-03-30

目录