岩芯沉积物化学元素及重矿物含量变化对腾格里地区碎屑物源的指示

张青松, 范育新, 杨光亮, 李振军. 岩芯沉积物化学元素及重矿物含量变化对腾格里地区碎屑物源的指示[J]. 第四纪研究, 2020, 40(1): 69-78. doi: 10.11928/j.issn.1001-7410.2020.01.07
引用本文: 张青松, 范育新, 杨光亮, 李振军. 岩芯沉积物化学元素及重矿物含量变化对腾格里地区碎屑物源的指示[J]. 第四纪研究, 2020, 40(1): 69-78. doi: 10.11928/j.issn.1001-7410.2020.01.07
张青松, 范育新, 杨光亮, 李振军. 岩芯沉积物化学元素及重矿物含量变化对腾格里地区碎屑物源的指示[J]. 第四纪研究, 2020, 40(1): 69-78. doi: 10.11928/j.issn.1001-7410.2020.01.07 Zhang Qingsong, Fan Yuxin, Yang Guangliang, Li Zhenjun. Provenance shift during Quaternary period evidenced by changes in geochemical elements and heavy mineral contents in core sediments in Tengger area[J]. Quaternary Sciences, 2020, 40(1): 69-78. doi: 10.11928/j.issn.1001-7410.2020.01.07
Citation: Zhang Qingsong, Fan Yuxin, Yang Guangliang, Li Zhenjun. Provenance shift during Quaternary period evidenced by changes in geochemical elements and heavy mineral contents in core sediments in Tengger area[J]. Quaternary Sciences, 2020, 40(1): 69-78. doi: 10.11928/j.issn.1001-7410.2020.01.07

岩芯沉积物化学元素及重矿物含量变化对腾格里地区碎屑物源的指示

  • 基金项目:

    国家自然科学基金项目(批准号:41772169)和中央高校基本科研业务费项目(批准号:Lzujbky-2018-it21)共同资助

详细信息
    作者简介:

    张青松, 男, 22岁, 硕士研究生, 构造地质学专业, E-mail:zhangqs18@lzu.edu.cn

    通讯作者: 范育新, E-mail:yxfan@lzu.edu.cn
  • 中图分类号: P578;P595

Provenance shift during Quaternary period evidenced by changes in geochemical elements and heavy mineral contents in core sediments in Tengger area

More Information
  • 腾格里地区地处青藏高原与戈壁阿尔泰山之间的山间盆地的西南隅,该地区的沉积物对构造及气候变化非常敏感。BJ14钻孔位于腾格里沙漠腹地白碱湖一带,钻孔岩芯长度为104 m,覆盖了整个第四纪以来的沉积。分别采用高分辨率的X射线衍射(XRD)及X射线荧光光谱(XRF)岩芯扫描技术系统地分析了第四纪BJ14钻孔岩芯沉积物中的重矿物及化学元素组成,并通过部分样品的重矿物镜下鉴定检验了利用XRD获得的重矿物分析结果。结果显示,沉积物中多种化学元素(如Si、Al、Cl和S)的相对强度同步变化,且与多种重矿物(如锆石、金红石、白钛石、石榴石、绿帘石、电气石)的含量在约1.8 Ma、1.2~0.6 Ma时段同步变化。这种变化与根据碎屑锆石U-Pb年龄谱获得的源区变化信息基本一致,共同指示在约1.8 Ma、1.2~0.6 Ma时段腾格里地区源自青藏高原东北缘的碎屑物质增加。同时,腾格里地区的ZTR指数在1.8 Ma及0.7 Ma前后明显降低,指示腾格里碎屑物源区在该时段构造活动加强。因此,腾格里地区钻孔岩芯沉积物物源的变化敏感地响应了青藏高原在第四纪期间的阶段性隆升。

  • 加载中
  • 图 1 

    腾格里沙漠地理位置及BJ14钻孔位置

    Figure 1. 

    Geographic setting of the Tengger Desert and location of drill core BJ14

    图 2 

    BJ14钻孔的地层岩性和年代框架[28, 32]

    Figure 2. 

    Lithostratigraphy and chronological framework of the drill core BJ14[28, 32]

    图 3 

    BJ14钻孔沉积物中地球化学元素相对强度变化(a)、青藏高原北缘(NTP)对腾格里地区沉积物的相对贡献(b)与青藏高原北缘及邻近地区构造事件[9] (c)的对应关系

    Figure 3. 

    Variation of geochemical elements intensity in sediments of core BJ14 (a), variation of relative contribution of northern Tibetan Plateau(NTP)to sediments in Tengger area (b) and tectonic events in the northern Tibetan Plateau and its vicinity[9] (c)

    图 4 

    BJ14钻孔沉积物中重矿物含量变化曲线(a)及ZTR指数(b)

    Figure 4. 

    Variation of heavy mineral content (a) and ZTR index (b) in sediments of core BJ14

    图 5 

    腾格里地区沉积物中重矿物(a)和化学元素(b)主成分分析图

    Figure 5. 

    PCA of heavy minerals (a) and chemical elements (b) in sediments of the Tengger area

    表 1 

    用于XRD矿物分析的样品信息表(据文献[28])

    Table 1. 

    Information of samples which mineral composition were analyzed through XRD(from reference[28])

    样品号 实验室编号 采样深度(m) 年龄(Ma) 岩性
    BJ14-1 BJ14KW-1 0.5 0.009
    BJ14-2 BJ14KW-2 5 0.087
    BJ14-3 BJ14KW-3 10 0.173
    BJ14-4 BJ14KW-4 15 0.260
    BJ14-5 BJ14KW-5 17.5 0.300
    BJ14-6 BJ14KW-6 20 0.347
    BJ14-7 BJ14KW-7 25 0.434
    BJ14-8 BJ14KW-8 30 0.520
    BJ14-9 BJ14KW-9 35 0.607
    BJ14-10 BJ14KW-10 40 0.700
    BJ14-11 BJ14KW-11 42 0.728
    BJ14-12 BJ14KW-12 42.5 0.737
    BJ14-13 BJ14KW-13 43 0.746
    BJ14-14 BJ14KW-14 43.5 0.754
    BJ14-15 BJ14KW-15 44 0.763
    BJ14-16 BJ14KW-16 44.5 0.772
    BJ14-17 BJ14KW-17 45.5 0.780
    BJ14-18 BJ14KW-18 46.5 0.787
    BJ14-19 BJ14KW-19 48 0.800
    BJ14-20 BJ14KW-20 49 0.806
    BJ14-21 BJ14KW-21 50 0.813
    BJ14-22 BJ14KW-22 51 0.821
    BJ14-23 BJ14KW-23 52 0.828
    BJ14-24 BJ14KW-24 53 0.836
    BJ14-25 BJ14KW-25 54 0.843
    BJ14-26 BJ14KW-26 55 0.850
    BJ14-27 BJ14KW-27 55.5 0.854
    BJ14-28 BJ14KW-28 56 0.858
    BJ14-29 BJ14KW-29 56.75 0.864
    BJ14-30 BJ14KW-30 57.25 0.867
    BJ14-31 BJ14KW-31 58.25 0.875
    BJ14-32 BJ14KW-32 59 0.880
    BJ14-33 BJ14KW-33 62.5 0.906
    BJ14-34 BJ14KW-34 67.5 0.943
    BJ14-35 BJ14KW-35 72.5 0.981
    BJ14-36 BJ14KW-36 77.5 1.260
    BJ14-37 BJ14KW-37 82.5 1.800
    BJ14-38 BJ14KW-38 87.5 1.900
    BJ14-39 BJ14KW-39 92.5 2.349
    BJ14-40 BJ14KW-40 95 >2.600
    下载: 导出CSV

    表 2 

    主要重矿物在不同时段的均值

    Table 2. 

    Mean value of main heavy minerals in different periods

    年龄(Ma) 锆石 金红石 白钛石 石榴子石 角闪石 辉石 电气石 绿帘石
    0.6至今 5.85 1.76 11.00 3.54 10.34 6.27 9.41 10.11
    1.2~0.6 7.35 4.26 8.29 3.64 11.42 7.90 8.79 11.26
    1.9~1.8 16.23 4.28 8.89 2.72 7.62 10.09 6.08 6.79
    >1.9 7.11 2.12 11.78 3.83 8.15 5.64 7.58 9.37
    下载: 导出CSV
  • [1]

    崔之久, 伍永秋, 刘耕年, 等.关于"昆仑-黄河"运动[J].中国科学(D辑), 1998, 28(1):53-59. doi: 10.3321/j.issn:1006-9267.1998.01.007

    Cui Zhijiu, Wu Yongqiu, Liu Gengnian, et al. On Kunlun-Yellow River tectonic movement[J]. Science in China(Series D), 1998, 28(1):53-59. doi: 10.3321/j.issn:1006-9267.1998.01.007

    [2]

    方小敏.青藏高原隆升阶段性[J].科技导报, 2017, 35(6):42-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201706009

    Fang Xiaomin. Phased uplift of the Tibetan Plateau[J]. Science & Technology Review, 2017, 35(6):42-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjdb201706009

    [3]

    李吉均, 方小敏.青藏高原隆起与环境变化研究[J].科学通报, 1998, 43(15):1568-1574. http://d.old.wanfangdata.com.cn/Conference/237299

    Li Jijun, Fang Xiaomin. Study on uplift and environmental change of Tibetan Plateau[J]. Chinese Science Bulletin, 1998, 43(15):1568-1574. http://d.old.wanfangdata.com.cn/Conference/237299

    [4]

    Coleman M, Hodges K. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension[J]. Nature, 1995, 374(6517):49-52. doi: 10.1038/374049a0

    [5]

    Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet[J]. Science, 1992, 255(5052):1663-1670. doi: 10.1126/science.255.5052.1663

    [6]

    Li J J, Fang X M, Song C H, et al. Late Miocene-Quaternary rapid stepwise uplift of the NE Tibetan Plateau and its effects on climatic and environmental changes[J]. Quaternary Research, 2014, 81(3):400-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14199839214b73a9633efe4db49b02aa

    [7]

    李吉均, 方小敏, 马海洲, 等.晚新生代黄河上游地貌演化与青藏高原隆起[J].中国科学(D辑), 1996, 26(4):316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005

    Li Jijun, Fang Xiaomin, Ma Haizhou, et al. The evolution of the upper reaches of the Yellow River and the uplift of the Qinghai Tibet Plateau in the Late Cenozoic[J]. Science in China(Series D), 1996, 26(4):316-322. doi: 10.3321/j.issn:1006-9267.1996.04.005

    [8]

    钟大赉, 丁林.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑), 1996, 26(4):289-295. doi: 10.3321/j.issn:1006-9267.1996.04.001

    Zhong Dalai, Ding Lin. Rising process of the Qinghai-Xizang(Tibet)Plateau and its mechanism[J]. Science in China(Series D), 1996, 26(4):289-295. doi: 10.3321/j.issn:1006-9267.1996.04.001

    [9]

    Fan Y X, Li Z J, Wang F, et al. Provenance variations of the Tengger Desert since 2.35 Ma and its linkage with the northern Tibetan Plateau:Evidence from U-Pb age spectra of detrital zircons[J]. Quaternary Science Reviews, 2019, 223:105916. https://doi.org/10.1016/j.quascirev.2019.105916. doi: 10.1016/j.quascirev.2019.105916

    [10]

    Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15):3904-3914. doi: 10.1016/j.gca.2007.04.033

    [11]

    Licht A, Pullen A, Kapp P, et al. Eolian cannibalism:Reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau[J]. Geological Society of America Bulletin, 2016, 128(5-6):944-956. doi: 10.1130/B31375.1

    [12]

    Stevens T, Palk C, Carter A, et al. Assessing the provenance of loess and desert sediments in Northern China using U-Pb dating and morphology of detrital zircons[J]. Bulletin, 2010, 122(7-8):1331-1344. http://d.old.wanfangdata.com.cn/NSTLQK/10.1130-B30102.1/

    [13]

    Zhang H Z, Lu H Y, Xu X S, et al. Quantitative estimation of the contribution of dust sources to Chinese loess using detrital zircon U-Pb age patterns[J]. Journal of Geophysical Research:Earth Surface, 2016, 121(11):2085-2099. doi: 10.1002/2016JF003936

    [14]

    张瀚之, 鹿化煜, 弋双文, 等.中国北方沙漠/沙地锆石形态特征及其对物源的指示[J].第四纪研究, 2013, 33(2):334-344. doi: 10.3969/j.issn.1001-7410.2013.02.15 http://www.dsjyj.com.cn/CN/abstract/abstract10742.shtml

    Zhang Hanzhi, Lu Huayu, Yi Shuangwen, et al. Zircon typological analyses of the major deserts/sand fields in Northern China and its implication for identifying sediment source[J]. Quaternary Sciences, 2013, 33(2):334-344. doi: 10.3969/j.issn.1001-7410.2013.02.15 http://www.dsjyj.com.cn/CN/abstract/abstract10742.shtml

    [15]

    杨利荣, 邹宁, 岳乐平, 等.库布齐沙漠碎屑锆石U-Pb年龄组成及其物源分析[J].第四纪研究, 2017, 37(3):560-569. http://www.dsjyj.com.cn/CN/abstract/abstract11335.shtml

    Yang Lirong, Zou Ning, Yue Leping, et al. Distribution of U-Pb ages of detrital zircon from the Hobq Desert and its implications for provenance[J]. Quaternary Sciences, 2017, 37(3):560-569. http://www.dsjyj.com.cn/CN/abstract/abstract11335.shtml

    [16]

    颜茂都, 陈毅.晚始新世古红河流域变化:来自思茅盆地早新生代地层碎屑锆石U-Pb年代学证据[J].第四纪研究, 2018, 38(1):130-144. http://www.dsjyj.com.cn/CN/abstract/abstract11436.shtml

    Yan Maodu, Chen Yi. Detrital zircon U-Pb age analyses of the Early Cenozoic sediments from the Simao Basin and evolution of the paleo-Red River drainage system[J]. Quaternary Sciences, 2018, 38(1):130-144. http://www.dsjyj.com.cn/CN/abstract/abstract11436.shtml

    [17]

    Bird A, Stevens T, Rittner M, et al. Quaternary dust source variation across the Chinese Loess Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435:254-264. https://doi.org/10.1016/j.palaeo.2015.06.024. doi: 10.1016/j.palaeo.2015.06.024

    [18]

    Nie J S, Horton B K, Saylor J E, et al. Integrated provenance analysis of a convergent retroarc foreland system:U-Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the middle Magdalena Valley basin, northern Andes, Colombia[J]. Earth-Science Reviews, 2012, 110(1-4):111-126. doi: 10.1016/j.earscirev.2011.11.002

    [19]

    杜世松, 伍永秋, 黄文敏, 等.风成沉积物源分析方法及其应用研究进展[J].干旱区研究, 2015, 32(1):184-191. http://d.old.wanfangdata.com.cn/Periodical/hgsjtx201708118

    Du Shisong, Wu Yongqiu, Huang Wenmin, et al. Research progress on analysis methods and their application of aeolian sediment sources[J]. Arid Zone Research, 2015, 32(1):184-191. http://d.old.wanfangdata.com.cn/Periodical/hgsjtx201708118

    [20]

    Hu F, Yang X P. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, Northwestern China[J]. Quaternary Science Reviews, 2016, 131:179-192. https://doi.org/10.1016/j.quascirev.2015.10.039. doi: 10.1016/j.quascirev.2015.10.039

    [21]

    Jian X, Guan P, Zhang D W, et al. Provenance of Tertiary sandstone in the northern Qaidam Basin, northeastern Tibetan Plateau:Integration of framework petrography, heavy mineral analysis and mineral chemistry[J]. Sedimentary Geology, 2013, 290:109-125. https://doi.org/10.1016/j.sedgeo.2013.03.010. doi: 10.1016/j.sedgeo.2013.03.010

    [22]

    Sun J M. Source regions and formation of the loess sediments on the high mountain regions of Northwestern China[J]. Quaternary Research, 2002, 58(3):341-351. doi: 10.1006/qres.2002.2381

    [23]

    Wang X M, Hua T, Zhu B Q, et al. Geochemical characteristics of the fine-grained component of surficial deposits from dust source areas in Northwestern China[J]. Aeolian Research, 2018, 34:18-26. https://doi.org/10.1016/j.aeolia.2018.07.004. doi: 10.1016/j.aeolia.2018.07.004

    [24]

    Yang X C, Cai M T, Ye P S, et al. Provenance of aeolian sands in the Hetao Plain, Northwestern China[J]. Aeolian Research, 2018, 32:92-101. https://doi.org/10.1016/j.aeolia.2018.02.002. doi: 10.1016/j.aeolia.2018.02.002

    [25]

    Zhao W C, Liu L W, Chen J, et al. Geochemical characterization of major elements in desert sediments and implications for the Chinese loess source[J]. Science China:Earth Sciences, 2019, 62(9):1428-1440. doi: 10.1007/s11430-018-9354-y

    [26]

    谢静, 丁仲礼.中国东北部沙地重矿物组成及沙源分析[J].中国科学(D辑), 2007, 37(8):1065-1072. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200708010

    Xie Jing, Ding Zhongli. Compositions of heavy minerals in Northeastern China sandlands and provenance analysis[J]. Science in China(Series D), 2007, 37(8):1065-1072. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200708010

    [27]

    Zhang H C, Peng J L, Ma Y Z, et al. Late Quaternary palaeolake levels in Tengger Desert, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(1-2):45-58. doi: 10.1016/j.palaeo.2004.04.006

    [28]

    Fan Y X, Mou X S, Wang Y D, et al. Quaternary paleoenvironmental evolution of the Tengger Desert and its implications for the provenance of the loess of the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2018, 197:21-34. https://doi.org/10.1016/j.quascirev.2018.08.002. doi: 10.1016/j.quascirev.2018.08.002

    [29]

    Li Z J, Sun D H, Chen F H, et al. Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J]. Quaternary Science Reviews, 2014, 85(1):85-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=15b24be88f08e0ced8a9683abe3fce26

    [30]

    宁夏回族自治区自治区地质矿产局.区域地质调查报告——西柯布呼都格幅和查汗布鲁格幅[Z]. 1983.

    Administration Bureau of Geology and Mineral Resources of Ningxia Province. Areal Geological Survey Report for Xikebuhuduge and Chahanbuluge Area[Z]. 1983.

    [31]

    Long H, Lai Z P, Fuchs M, et al. Timing of Late Quaternary palaeolake evolution in Tengger Desert of Northern China and its possible forcing mechanisms[J]. Global and Planetary Change, 2012, 92-93:119-129. https://doi.org/10.1016/j.gloplacha.2012.05.014. doi: 10.1016/j.gloplacha.2012.05.014

    [32]

    李振军, 牟雪松, 范育新.石英Al心和Ti-Li心电子自旋共振信号测年结果对比:以腾格里沙漠白碱湖地区BJ14钻孔中沉积物为例[J].地球环境学报, 2018, 9(6):589-598. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201806007

    Li Zhenjun, Mu Xuesong, Fan Yuxin. Comparison of the electron spin resonance(ESR)dating results between Al signals and Ti-Li signals in quartz grains:A case from sediments of BJ14 core drilled from the Baijian Lake in the Tengger Desert[J]. Journal of Earth Environment, 2018, 9(6):589-598. http://d.old.wanfangdata.com.cn/Periodical/dqhjxb201806007

    [33]

    Kido Y, Koshikawa T, Tada R. Rapid and quantitative major element analysis method for wet fine-grained sediments using an XRF micro scanner[J]. Marine Geology, 2006, 229(3-4):209-225. doi: 10.1016/j.margeo.2006.03.002

    [34]

    雷国良, 张虎才, 常凤琴, 等.湖泊沉积物XRF元素连续扫描与常规ICP-OES分析结果的对比及校正——以兹格塘错为例[J].湖泊科学, 2011, 23(2):287-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx201102020

    Lei Guoliang, Zhang Hucai, Chang Fengqin, et al. Comparison and correction of element measurements in lacustrine sediments using X-ray fluorescence core-scanning with ICP-OES Method:A case study of Zigetang Co[J]. Journal of Lake Sciences, 2011, 23(2):287-294. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hpkx201102020

    [35]

    魏菊英.无机化学丛书:地球化学[M].北京:科学出版社, 1986:119-276.

    Wei Juying. Inorganic Chemistry Series:Geochemistry[M]. Beijing:Science Press, 1986:119-276.

    [36]

    成艾颖, 余俊清, 张丽莎, 等.托素湖岩芯XRF元素扫描分析及多元统计方法的应用[J].盐湖研究, 2011, 19(1):20-25. http://d.old.wanfangdata.com.cn/Periodical/yhyj201101004

    Cheng Aiying, Yu Junqing, Zhang Lisha, et al. Analysis of Toson Lake XRF core scanning and application of multivariate statistical methods[J]. Journal of Salt Lake Research, 2011, 19(1):20-25. http://d.old.wanfangdata.com.cn/Periodical/yhyj201101004

    [37]

    马雪洋, 陈豆, 阳亚平, 等.哈拉湖岩芯XRF扫描元素统计分析及其环境意义[J].盐湖研究, 2014, 22(4):1-10. http://d.old.wanfangdata.com.cn/Conference/8974921

    Ma Xueyang, Chen Dou, Yang Yaping, et al. Statistical analysis of XRF scanned elements and their environmental significance in Hala Lake, Qinghai, China[J]. Journal of Salt Lake Research, 2014, 22(4):1-10. http://d.old.wanfangdata.com.cn/Conference/8974921

    [38]

    Bush M, Saylor J, Horton B, et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau:Inferences from depositional patterns and multiproxy detrital provenance signatures[J]. Lithosphere, 2016, 8(1):58-82. doi: 10.1130/L449.1

    [39]

    Zhou H, Chen L, Diwu C R, et al. Cenozoic uplift of the Qimantage Mountains, northeastern Tibet:Contraints from provenance analysis of Cenozoic sediments in Qaidam Basin[J]. Geological Journal, 2018, 53(6):2613-2632. doi: 10.1002/gj.3095

    [40]

    Zhu W, Wu C D, Wang J L, et al. Heavy mineral compositions and zircon U-Pb ages of Cenozoic sandstones in the SW Qaidam Basin, northern Tibetan Plateau:Implications for provenance and tectonic setting[J]. Journal of Asian Earth Sciences, 2017, 146:233-250. https://doi.org/10.1016/j.jseaes.2017.05.023. doi: 10.1016/j.jseaes.2017.05.023

    [41]

    Badarch G, Dickson Cunningham W, Windley B F. A new terrane subdivision for Mongolia:Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87-110. doi: 10.1016/S1367-9120(02)00017-2

    [42]

    Şengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364(6435):299-307. doi: 10.1038/364299a0

    [43]

    葛肖虹, 马文璞.中国区域大地构造学教程[M].北京:地质出版社, 2014:327-330.

    Ge Xiaohong, Ma Wenpu. Chinese Regional Geotectonics Tutorial[M]. Beijing:Geological Publishing House, 2014:327-330.

    [44]

    Song B W, Zhang K X, Chen R M, et al. The sedimentary record in northern Qaidam Basin and its response to the uplift of the south Qilian Mountain at around 30 Ma[J]. Acta Geologica Sinica, 2013, 87(2):528-539. doi: 10.1111/1755-6724.12066

    [45]

    方小敏, 赵志军, 李吉均, 等.祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J].中国科学(D辑), 2004, 34(2):97-106. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200402001

    Fang Xiaomin, Zhao Zhijun, Li Jijun, et al. Magnetostratigraphy of the Late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift[J]. Science in China(Series D), 2004, 34(2):97-106. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200402001

    [46]

    Liu D, M Yan, X Fang, et al. Magnetostratigraphy of sediments from the Yumu Shan, Hexi Corridor and its implications regarding the Late Cenozoic uplift of the NE Tibetan Plateau[J]. Quaternary International, 2011, 236(1-2):13-20. doi: 10.1016/j.quaint.2010.12.007

    [47]

    Pan B T, Burbank D, Wang Y X, et al. A 900 k.y. record of strath terrace formation during glacial-interglacial transition in Northwest China[J]. Geology, 2003, 31(11):957-960. doi: 10.1130/G19685.1

    [48]

    Sun J M. Long-term fluvial archives in the Fen Wei Graben, Central China, and their bearing on the tectonic history of the India-Asia collision system during the Quaternary[J]. Quaternary Science Reviews, 2005, 24(10-11):1279-1286. doi: 10.1016/j.quascirev.2004.08.018

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1933
  • PDF下载数:  458
  • 施引文献:  0
出版历程
收稿日期:  2019-09-18
修回日期:  2019-11-20
刊出日期:  2020-01-30

目录