全新世两次典型突变事件下北半球季风降水的变化对比

何鹏, 刘健, 刘斌, 宁亮, 严蜜. 全新世两次典型突变事件下北半球季风降水的变化对比[J]. 第四纪研究, 2019, 39(6): 1372-1383. doi: 10.11928/j.issn.1001-7410.2019.06.05
引用本文: 何鹏, 刘健, 刘斌, 宁亮, 严蜜. 全新世两次典型突变事件下北半球季风降水的变化对比[J]. 第四纪研究, 2019, 39(6): 1372-1383. doi: 10.11928/j.issn.1001-7410.2019.06.05
何鹏, 刘健, 刘斌, 宁亮, 严蜜. 全新世两次典型突变事件下北半球季风降水的变化对比[J]. 第四纪研究, 2019, 39(6): 1372-1383. doi: 10.11928/j.issn.1001-7410.2019.06.05 He Peng, Liu Jian, Liu Bin, Ning Liang, Yan Mi. Comparison of changes of Northern Hemisphere monsoon precipitation between two typical abrupt climate events in Holocene[J]. Quaternary Sciences, 2019, 39(6): 1372-1383. doi: 10.11928/j.issn.1001-7410.2019.06.05
Citation: He Peng, Liu Jian, Liu Bin, Ning Liang, Yan Mi. Comparison of changes of Northern Hemisphere monsoon precipitation between two typical abrupt climate events in Holocene[J]. Quaternary Sciences, 2019, 39(6): 1372-1383. doi: 10.11928/j.issn.1001-7410.2019.06.05

全新世两次典型突变事件下北半球季风降水的变化对比

  • 基金项目:

    国家重点基础研究发展计划项目(批准号:2016YFA0600401)、国家自然科学基金项目(批准号:41420104002、41671197和41631175)、江苏省高校优势学科建设工程项目(批准号:164320H116)和中国科学院地球环境研究所黄土与第四纪地质国家重点实验室开放基金专项项目(批准号:SKLLQG1820)共同资助

详细信息
    作者简介:

    何鹏, 男, 30岁, 博士研究生, 古气候模拟研究, E-mail:hepeng8812@163.com

    通讯作者: 刘健, E-mail:jliu@njnu.edu.cn
  • 中图分类号: P467;P534.63+2;P532

Comparison of changes of Northern Hemisphere monsoon precipitation between two typical abrupt climate events in Holocene

More Information
  • 利用通用气候系统模式(Community Climate System Model version 3,简称CCSM3)模拟的TraCE-21ka全新世以来的试验数据,分析了全新世两次突变事件(8.2 ka B.P.和4.2 ka B.P.)前后(分别为9200~8800 a B.P.、8800~8000 a B.P.和4800~4500 a B.P.、4500~4000 a B.P.)北半球夏季(6~8月)气温和季风降水的时空变化特征,并通过对比4个单因子(地球轨道参数、温室气体浓度、大陆冰盖和淡水注入)敏感性试验结果来分析北半球季风降水变化的成因。结果表明:1)两次典型突变事件前后欧亚大陆中高纬大范围的地表气温均明显下降,但是8.2 ka B.P.事件的降温程度大于4.2 ka B.P.事件,此外,在8.2 ka B.P.事件下北美中部有明显的增温,而在4.2 ka B.P.事件下该地区为降温;2)两次典型突变事件前后的北半球季风降水变化的空间分布类似,主要表现为北美季风区、北非季风区西部和印度季风降水一致减少,而东亚季风降水呈现"南涝北旱"的分布型;3)两次典型突变事件前后环流场变化的空间型相似,但是4.2 ka B.P.事件的环流强度变化明显弱于8.2 ka B.P.事件;4)8.2 ka B.P.事件下北半球季风降水变化主要是淡水注入所导致,而4.2 ka B.P.事件主要由于地球轨道参数和气候系统内部变率的共同影响。

  • 加载中
  • 图 1 

    TraCE-AF模拟的北半球夏季(6~8月)地表气温标准化距平时间序列

    Figure 1. 

    Time series of normalized anomalies of summer(JJA)mean surface temperature in the Northern Hemisphere derived from TraCE-AF outputs. The black line represents 101-year running mean, the hatched represents the episode before abrupt climate event, and the stippled represents the episode after abrupt climate event. (a)8.2 ka B. P. anomalies(relative to 9200~8000 a B. P.), (b)4.2 ka B. P. anomalies(relative to 5000~3600 a B. P.)

    图 2 

    北半球季风区及北非子季风区(N1)、亚洲子季风区(N2)和北美子季风区(N3)的范围(阴影所示)

    Figure 2. 

    Northern Hemisphere monsoon domain, the North African sub-monsoon domain(N1), the Asian sub-monsoon domain(N2), and the North American sub-monsoon domain (N3)(shown in the shaded area)

    图 3 

    1979~1990年TraCE-AF模拟(a,c)和观测/再分析资料(b,d;为CMAP-GPCP集成降水数据)夏季降水气候态的对比

    Figure 3. 

    Comparison of summer mean precipitation climatology(1979~1990 A.D.)between TraCE-AF simulation(a, c)and observation(Merged CMAP-GPCP; b, d). (a, b)Annual mean precipitation rate(mm/day); (c, d)Annual precipitation range(mm/day)and the Northern Hemisphere monsoon domain(red line)

    图 4 

    TraCE-AF模拟的8.2 ka B. P. (a)和4.2 ka B. P. (b)这两次典型突变事件前后(突变后的时段减去突变前的时段)北半球夏季地表气温(℃)变化的空间分布

    Figure 4. 

    Spatial distribution of changes(episode after abrupt climate event minus episode before abrupt climate event)of summer mean surface temperature(℃)in the Northern Hemisphere for two typical abrupt climate events(8.2 ka B. P. (a)and 4.2 ka B. P. (b)) derived from TraCE-AF outputs

    图 5 

    TraCE-AF模拟的8.2 ka B. P. (a)和4.2 ka B. P. (b)这两次典型突变事件前后(突变后的时段减去突变前的时段)北半球夏季降水(mm/天)变化的空间分布,红线为季风区

    Figure 5. 

    Spatial distribution of changes(episode after abrupt climate event minus episode before abrupt climate event)of summer mean precipitation(mm/day)in the Northern Hemisphere after two typical abrupt climate events(8.2 ka B. P. (a)and 4.2 ka B. P. (b)) derived from TraCE-AF outputs. The red line represents monsoon domain

    图 6 

    TraCE-AF模拟的9200~8000 a B. P.(a,b)和4800~4000 a B. P.(c,d)这两次典型突变事件前后北半球季风降水EOF分解的第一模态及其时间序列

    Figure 6. 

    The leading EOF mode and the corresponding principal component of NHMP during two typical abrupt climate events(9200~ 8000 a B.P. (a,b) and 4800~4000 a B. P. (c,d))derived from TraCE-AF outputs

    图 7 

    TraCE-AF模拟的8.2 ka B. P. (a)和4.2 ka B. P. (b)这两次典型突变事件前后(突变后的时段减去突变前的时段)北半球夏季海平面气压场(填色,hPa)和850hPa风场(箭头,m/s)变化的空间分布

    Figure 7. 

    Spatial distribution of changes(episode after abrupt climate event minus episode before abrupt climate event)of summer mean sea level pressure(shaded, hPa)and 850 hPa wind field(vector, m/s)in the Northern Hemisphere after two typical abrupt climate events(8.2 ka B. P. (a)and 4.2 ka B. P. (b))derived from TraCE-AF outputs

    图 8 

    8.2 ka B. P.事件(9200~8000 a B. P.)TraCE单因子试验模拟的北半球季风降水EOF分解的第一模态及其时间序列

    Figure 8. 

    The leading EOF mode and the corresponding principal component of NHMP during 8. 2 ka B. P. event(9200~8000 a B. P.) from TraCE single forcing experiment

    图 9 

    4.2 ka B. P.事件(4800~4000 a B. P.)TraCE单因子试验模拟的北半球季风降水EOF分解的第一模态和时间序列

    Figure 9. 

    The leading EOF mode and the corresponding principal component of NHMP during 4.2 ka B. P. event(4800~4000 a B. P.) from TraCE single forcing experiment

    表 1 

    本研究所采用的5个TraCE-21ka气候模拟试验

    Table 1. 

    Five TraCE-21ka climatic modeling experiments used in this study

    序号 名称 简称 时间分辨率 使用时段(年)
    1 全强迫试验 TraCE-AF 月平均 12040
    2 温室气体敏感性试验 TraCE-GHG 10年平均 12040
    3 地球轨道参数敏感性试验 TraCE-ORB 10年平均 12040
    4 大陆冰盖敏感性试验 TraCE-ICE 10年平均 12040
    5 淡水注入敏感性试验 TraCE-MWF 10年平均 12040
    下载: 导出CSV

    表 2 

    用于验证的观测/再分析资料

    Table 2. 

    Observed/reanalyzed datasets used in comparison

    序号 名称 简称 空间分辨率 使用时段(年)
    1 美国气候预测中心降水集合分析资料[44] GPCP 2.5°×2.5° 1979~1990
    2 全球降水气候项目的降水资料2.3版[45] CMAP 2.5°×2.5° 1979~1990
    下载: 导出CSV
  • [1]

    An Z S, Wu G X, Li J P, et al. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):29-77. https://doi.org/10.1146/annurev-earth-060313-054623. doi: 10.1146/annurev-earth-060313-054623

    [2]

    Wang B, Liu J, Kim H J, et al. Recent change of the global monsoon precipitation(1979-2008)[J]. Climate Dynamics, 2012, 39(5):1123-1135. https://doi.org/10.1007/s00382-011-1266-z. doi: 10.1007/s00382-011-1266-z

    [3]

    O'Brien S R, Mayewski P A, Meeker L D, et al. Complexity of Holocene climate as reconstructed from a Greenland ice core[J]. Science, 1995, 270(5244):1962-1964. https://doi.org/10.1126/science.270.5244.1962. doi: 10.1126/science.270.5244.1962

    [4]

    Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341):1257-1266. https://doi.org/10.1126/science.278.5341.1257. doi: 10.1126/science.278.5341.1257

    [5]

    Alley R B, and Agustsdottir A M. The 8 k event:Cause and consequences of a major Holocene abrupt climate change[J]. Quaternary Science Reviews, 2005, 24(10):1123-1149. https://doi.org/10.1016/j.quascirev.2004.12.004. doi: 10.1016/j.quascirev.2004.12.004

    [6]

    Beget J E. Radiocarbon-dated evidence of worldwide Early Holocene climate change[J]. Geology, 1983, 11(7):389-393. https://doi.org/10.1130/0091-7613(1983)11<389:REOWEH>2.0.CO;2. doi: 10.1130/0091-7613(1983)11<389:REOWEH>2.0.CO;2

    [7]

    deMenocal P B. Cultural responses to climate change during the Late Holocene[J]. Science, 2001, 292(5517):667-673. https://doi.org/10.1126/science.1059827. doi: 10.1126/science.1059827

    [8]

    董进国, 吉云松, 钱鹏.黄土高原洞穴石笋记录的8.2 ka B. P.气候突变事件[J].第四纪研究, 2013, 33(5):1034-1036. doi: 10.3969/j.issn.1001-7410.2013.05.20 http://www.dsjyj.com.cn/CN/abstract/abstract10818.shtml

    Dong Jinguo, Ji Yunsong, Qian Peng."8.2 ka B. P. Event" of Asian monsoon in a stalagmite record[J]. Quaternary Sciences, 2013, 33(5):1034-1036. doi: 10.3969/j.issn.1001-7410.2013.05.20 http://www.dsjyj.com.cn/CN/abstract/abstract10818.shtml

    [9]

    Staubwasser M, Sirocko F, Grootes P M, et al. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene South Asian monsoon variability[J]. Geophysical Research Letters, 2003, 30(8):1425. https://doi.org/10.1029/2002GL016822. doi: 10.1029/2002GL016822

    [10]

    吴文祥, 刘东生. 4000 a B. P.前后降温事件与中华文明的诞生[J].第四纪研究, 2001, 21(5):443-451. doi: 10.3321/j.issn:1001-7410.2001.05.008 http://www.dsjyj.com.cn/CN/abstract/abstract9421.shtml

    Wu Wenxiang, Liu Tungsheng. 4000 a B. P. event and its implications for the origin of ancient Chinese civilization[J]. Quaternary Sciences, 2001, 21(5):443-451. doi: 10.3321/j.issn:1001-7410.2001.05.008 http://www.dsjyj.com.cn/CN/abstract/abstract9421.shtml

    [11]

    王绍武.全新世北大西洋冷事件:年代学和气候影响[J].第四纪研究, 2009, 29(6):1146-1153. http://www.dsjyj.com.cn/CN/abstract/abstract8484.shtml

    Wang Shaowu. Holocene cold events in the North Atlantic:Chronology and climatic impact[J]. Quaternary Sciences, 2009, 29(6):1146-1153. http://www.dsjyj.com.cn/CN/abstract/abstract8484.shtml

    [12]

    Dixit Y, Hodell D A, Sinha R, et al. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B. P.[J]. Earth and Planetary Science Letters, 2014, 391:16-23. https://doi.org/10.1016/j.epsl.2014.01.026. doi: 10.1016/j.epsl.2014.01.026

    [13]

    Dixit Y, Hodell D A, Petrie C A. Abrupt weakening of the summer monsoon in Northwest India 4100 yr ago[J]. Geology, 2014, 42(4):339-342. https://doi.org/10.1130/G35236.1. doi: 10.1130/G35236.1

    [14]

    Morrill C, Overpeck J T, Cole J E. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation[J]. The Holocene, 2003, 13(4):465-476. https://doi.org/10.1191/0959683603hl639ft. doi: 10.1191/0959683603hl639ft

    [15]

    Lamb H F, Gasse F, Benkaddour A, et al. Relation between century-scale Holocene arid intervals in tropical and temperate zones[J]. Nature, 1995, 373(6510):134-137. https://doi.org/10.1038/373134a0. doi: 10.1038/373134a0

    [16]

    Haug G H, Hughen K A, Sigman D M. Southward migration of the Intertropical Convergence Zone through the Holocene[J]. Science, 2001, 293(5533):1304-1308. https://doi.org/10.1126/science.1059725. doi: 10.1126/science.1059725

    [17]

    Renssen H, Goosse H, Fichefet T, et al. The 8.2 kyr BP event simulated by a Global Atmosphere-Sea-Ice-Ocean Model[J]. Geophysical Research Letters, 2001, 28(8):1567-1570. https://doi.org/10.1029/2000GL012602. doi: 10.1029/2000GL012602

    [18]

    Bauer E, Ganopolski A, Montoya M. Simulation of the cold climate event 8200 years ago by meltwater outburst from Lake Agassiz[J]. Paleoceanography, 2004, 19(3):PA3014. https://doi.org/10.1029/2004PA001030. doi: 10.1029/2004PA001030

    [19]

    Matero I S O, Gregoire L J, Ivanovic R F, et al. The 8.2 ka cooling event caused by Laurentide ice saddle collapse[J]. Earth and Planetary Science Letters, 2017, 473:205-214. https://doi.org/10.1016/j.epsl.2017.06.011. doi: 10.1016/j.epsl.2017.06.011

    [20]

    Booth R K, Jackson S T, Forman S L, et al. A severe centennial-scale drought in mid-continental North America 4200 years ago and apparent global linkages[J]. The Holocene, 2005, 15(3):321-328. https://doi.org/10.1191/0959683605hl825ft. doi: 10.1191/0959683605hl825ft

    [21]

    Ning L, Liu J, Bradley R S, et al. Comparing the spatial patterns of climate change in the 9th and 5th millennia BP from TRACE-21 model simulations[J]. Climate of Past, 2019, 15(1):41-52. https://doi.org/10.5194/cp-15-41-2019. doi: 10.5194/cp-15-41-2019

    [22]

    Yan M, Liu J, Ning L. Physical processes of cooling and megadrought in 4.2 ka BP event:results from TraCE-21ka simulations[J]. Climate of Past, 2019, 15(1):265-277. https://doi.org/10.5194/cp-15-265-2019. doi: 10.5194/cp-15-265-2019

    [23]

    张肖剑, 靳立亚.全新世南亚高压南北移动及其与亚洲夏季风降水的关系[J].第四纪研究, 2018, 38(5):1244-1254. http://www.dsjyj.com.cn/CN/abstract/abstract11538.shtml

    Zhang Xiaojian, Jin Liya. Meridional migration of the South Asian High and its association with Asian summer monsoon precipitation during the Holocene[J]. Quaternary Sciences, 2018, 38(5):1244-1254. http://www.dsjyj.com.cn/CN/abstract/abstract11538.shtml

    [24]

    王志远, 王江林, 张诗茄, 等.不同时间尺度影响下的北半球夏季风空间特征及其可能影响机制[J].第四纪研究, 2018, 38(6):1494-1506. http://www.dsjyj.com.cn/CN/abstract/abstract11560.shtml

    Wang Zhiyuan, Wang Jianglin, Zhang Shijia, et al. Impact of different timescales on the characteristics and mechanisms of the Northern Hemisphere Summer Monsoon:Based on the CESM results[J]. Quaternary Sciences, 2018, 38(6):1494-1506. http://www.dsjyj.com.cn/CN/abstract/abstract11560.shtml

    [25]

    焦腾腾, 李佳瑞, 陈婕, 等.全新世北大西洋海面温度变化趋势:观测-模拟对比研究[J].第四纪研究, 2016, 36(3):747-757. http://www.dsjyj.com.cn/CN/abstract/abstract11212.shtml

    Jiao Tengteng, Li Jiarui, Chen Jie, et al. Changing trends of sea surface temperatures in the North Atlantic during the Holocene:A study of model-data comparison[J]. Quaternary Sciences, 2016, 36(3):747-757. http://www.dsjyj.com.cn/CN/abstract/abstract11212.shtml

    [26]

    张志平, 黄伟, 陈建徽, 等.全新世东亚夏季风演化的多尺度周期变化及其可能机制探讨[J].第四纪研究, 2017, 37(3):498-509. http://www.dsjyj.com.cn/CN/abstract/abstract11330.shtml

    Zhang Zhiping, Huang Wei, Chen Jianhui, et al. Multi-time scale analysis of East Asian summer monsoon and its possible mechanism during Holocene[J]. Quaternary Sciences, 2017, 37(3):498-509. http://www.dsjyj.com.cn/CN/abstract/abstract11330.shtml

    [27]

    吴海斌, 李琴, 于严严, 等.全新世中期中国气候格局定量重建[J].第四纪研究, 2017, 37(5):982-998. http://www.dsjyj.com.cn/CN/abstract/abstract11379.shtml

    Wu Haibin, Li Qin, Yu Yanyan, et al. Quantitative climate reconstruction in China during the mid-Holocene[J]. Quaternary Sciences, 2017, 37(5):982-998. http://www.dsjyj.com.cn/CN/abstract/abstract11379.shtml

    [28]

    张仲石, 燕青, 张冉, 等.第四纪北半球冰盖发育与东亚气候的遥相关[J].第四纪研究, 2017, 37(5):1009-1016. http://www.dsjyj.com.cn/CN/abstract/abstract11381.shtml

    Zhang Zhongshi, Yan Qing, Zhang Ran, et al. Teleconnection between Northern Hemisphere ice sheets and East Asian climate during Quaternary[J]. Quaternary Sciences, 2017, 37(5):1009-1016. http://www.dsjyj.com.cn/CN/abstract/abstract11381.shtml

    [29]

    燕青, 张仲石, 张冉, 等.过去千年北大西洋热带气旋生成潜势的模拟研究:基于PMIP3气候模式[J].第四纪研究, 2017, 37(5):1141-1150. http://www.dsjyj.com.cn/CN/abstract/abstract11394.shtml

    Yan Qing, Zhang Zhongshi, Zhang Ran, et al. Simulation of tropical cyclone genesis potential over the North Atlantic in the last millennium based on PMIP3 models[J]. Quaternary Sciences, 2017, 37(5):1141-1150. http://www.dsjyj.com.cn/CN/abstract/abstract11394.shtml

    [30]

    韩春凤, 刘健, 王志远.过去2000年亚洲夏季风降水百年尺度变化及其区域差异的模拟分析[J].第四纪研究, 2016, 36(3):732-746. http://www.dsjyj.com.cn/CN/abstract/abstract11211.shtml

    Han Chunfeng, Liu Jian, Wang Zhiyuan. Simulated analysis of Asian summer monsoon precipitation on centennial time scale and its regional differences over the past 2000 years[J]. Quaternary Sciences, 2016, 36(3):732-746. http://www.dsjyj.com.cn/CN/abstract/abstract11211.shtml

    [31]

    Wang Y, Cheng H, Edwards L R, et al. The Holocene Asian monsoon:Links to solar changes and north Atlantic climate[J]. Science, 2005, 308(5723):854-857. https://doi.org/10.1126/science.1106296. doi: 10.1126/science.1106296

    [32]

    Tan L, Cai Y, Cheng H, et al. Centennial to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482:580-590. https://doi.org/10.1016/j.epsl.2017.11.044. doi: 10.1016/j.epsl.2017.11.044

    [33]

    吴文祥, 刘东生. 4000 a B. P.前后东亚季风变迁与中原周围地区新石器文化的衰落[J].第四纪研究, 2004, 24(3):278-284. doi: 10.3321/j.issn:1001-7410.2004.03.006 http://www.dsjyj.com.cn/CN/abstract/abstract9096.shtml

    Wu Wenxiang, Liu Tungsheng. Variation in East Asia monsoon around 4000 a B. P. and the collapse of Neolithic culture around central plain[J]. Quaternary Sciences, 2004, 24(3):278-284. doi: 10.3321/j.issn:1001-7410.2004.03.006 http://www.dsjyj.com.cn/CN/abstract/abstract9096.shtml

    [34]

    Metcalfe S E, Barron J A, Davies S J. The Holocene history of the North American Monsoon:'known knowns' and 'known unknowns' in understanding its spatial and temporal complexity[J]. Quaternary Science Reviews, 2015, 120:1-27. https://doi.org/10.1016/j.quascirev.2015.04.004. doi: 10.1016/j.quascirev.2015.04.004

    [35]

    He F. Simulation Transient Climate Evolution of the Last Deglaciation with CCSM 3[D]. Wisconsin: The PhD Dissertation of University of Wisconsin-Madison, 2011: 1-185.

    [36]

    Liu Z, Otto-Bliesner B, He F, et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming[J]. Science, 2009, 325(5938):310-314. https://doi.org/10.1126/science.1171041. doi: 10.1126/science.1171041

    [37]

    He F, Shakun J D, Clark P U, et al. Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation[J]. Nature, 2013, 494(7435):81-85. https://doi.org/10.1038/nature11822. doi: 10.1038/nature11822

    [38]

    Collins W D, Rasch P J, Boville B A, et al. Description of the NCAR Community Atmosphere Model(CAM3.0)[R]. Technical Report NCAR/TN-464+STR, 2004. http://www.cesm.ucar.edu/models/atm-cam/docs/description.

    [39]

    Collins W D, Rasch P J, Boville B A, et al. The formulation and atmospheric simulation of the Community Atmosphere Model Version 3(CAM3)[J]. Journal of Climate, 2006, 19(11):2144-2161. https://doi.org/10.1175/JCLI3760.1. doi: 10.1175/JCLI3760.1

    [40]

    Smith R D, Gent P R. Reference Manual for the Parallel Ocean Program(POP), Ocean Component of the Community Climate System Model(CCSM2.0 and 3.0)[R]. Technical Report LA-UR-02-2484, 2002. http://www.ccsm.ucar.edu/models/ccsm3.0/pop.

    [41]

    Berger A L. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of Meteorology, 1978, 35(12):2362-2367. https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2. doi: 10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2

    [42]

    Joos F, Spahni R. Rates of change in natural and anthropogenic radiative forcing over the past 20, 000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5):1425-1430. https://doi.org/1073/pnas.0707386105. doi: 10.1073/pnas.0707386105

    [43]

    Peltier W R. Global glacial isostasy and the surface of the ice-age Earth:The ICE-5G(VM2)Model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 20(32):111-149. https://doi.org/10.1146/annurev.earth.32.082503.144359. doi: 10.1146/annurev.earth.32.082503.144359

    [44]

    Xie P, Arkin P A. Global precipitation:A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs[J]. Bulletin of the American Meteorological Society, 1997, 78(11):2539-2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2

    [45]

    Huffman G J, Adler R F, Bolvin D T, et al. Improving the global precipitation record:GPCP Version 2.1[J]. Geophysical Research Letters, 2009, 36(17):L17808. https://doi.org/10.1029/2009GL040000. doi: 10.1029/2009GL040000

    [46]

    Lee J Y, Wang B. Future change of global monsoon in the CMIP 5[J]. Climate Dynamics, 2014, 42(1):101-119. https://doi.org/10.1007/s00382-012-1564-0. doi: 10.1007/s00382-012-1564-0

    [47]

    Wang B, Ding Q. Changes in global monsoon precipitation over the past 56 years[J]. Geophysical Research Letters, 2006, 33(6):272-288. https://doi.org/10.1029/2005GL025347. doi: 10.1029/2005GL025347

    [48]

    Wang B, Ding Q. Global monsoon:Dominant mode of annual variation in the tropics[J]. Dynamics of Atmospheres and Oceans, 2008, 44(3):165-183. https://doi.org/10.1016/j.dynatmoce.2007.05.002. doi: 10.1016/j.dynatmoce.2007.05.002

    [49]

    North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of Empirical Orthogonal Functions[J]. Monthly Weather Review, 1982, 110(7):699-706. https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2

  • 加载中

(9)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-03-19
修回日期:  2019-07-13
刊出日期:  2019-11-30

目录