大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变

崔巧玉, 赵艳. 大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变[J]. 第四纪研究, 2019, 39(6): 1346-1356. doi: 10.11928/j.issn.1001-7410.2019.06.03
引用本文: 崔巧玉, 赵艳. 大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变[J]. 第四纪研究, 2019, 39(6): 1346-1356. doi: 10.11928/j.issn.1001-7410.2019.06.03
崔巧玉, 赵艳. 大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变[J]. 第四纪研究, 2019, 39(6): 1346-1356. doi: 10.11928/j.issn.1001-7410.2019.06.03 Cui Qiaoyu, Zhao Yan. Climatic abrupt events implied by lacustrine sediments of Arxan Crater Lake, in the central Great Khingan Mountains, NE China during Holocene[J]. Quaternary Sciences, 2019, 39(6): 1346-1356. doi: 10.11928/j.issn.1001-7410.2019.06.03
Citation: Cui Qiaoyu, Zhao Yan. Climatic abrupt events implied by lacustrine sediments of Arxan Crater Lake, in the central Great Khingan Mountains, NE China during Holocene[J]. Quaternary Sciences, 2019, 39(6): 1346-1356. doi: 10.11928/j.issn.1001-7410.2019.06.03

大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变

  • 基金项目:

    国家重点基础研究发展计划项目(批准号:2016YFA0600501)、国家自然科学基金项目(批准号:41572353和41690113)和中国科学院(A类)战略性先导科技专项项目(批准号:XDA20070101)共同资助

详细信息
    作者简介:

    崔巧玉, 女, 39岁, 助理研究员, 古生态学专业, E-mail:qiaoyu.cui@igsnrr.ac.cn

  • 中图分类号: P941.78;P534.63+2;P532

Climatic abrupt events implied by lacustrine sediments of Arxan Crater Lake, in the central Great Khingan Mountains, NE China during Holocene

  • 阿尔山天池是大兴安岭中部一个封闭的火山口湖,地处东亚夏季风尾闾区,是研究区域气候快速变化的良好载体。通过对阿尔山天池岩芯(深度243~100 cm,年代10.0~1.3 cal.ka B.P.)开展连续、高分辨率的XRF元素扫描和粒度分析,选取岩芯中12种含量较高且环境指示意义明确的地球化学元素开展相关分析及因子分析发现:全新世时段阿尔山天池湖泊沉积物中Sr、Rb、Zr、Fe、Ca、K、Ti、Si、S、Mn、Cl等元素变化一致且均与Cr元素变化趋势相反,其中Sr、Rb、Zr、Fe、Ca、K、Ti、Si等8个迁移积累型元素之间相关性较高,且为湖泊元素变化的主控因子,说明阿尔山天池湖泊沉积物中元素来源主要受外源碎屑物质的影响,湖泊沉积物元素变化主要决定于区域气候的干湿状况。基于精确的年代框架,通过阿尔山天池沉积物Ca/Ti,Cr/Ti,Fe/Mn,Rb/Sr和Fe/Ti元素比值、粒度数据,与同一地区的月亮湖TOC和乔木花粉百分比记录对比分析表明:大兴安岭中部地区全新世以来气候-环境和湖泊水位经历了温暖偏干-低湖水位期(10.0~7.3 cal.ka B.P.)、温凉湿润-高湖水位期(7.3~6.1 cal.ka B.P.)、温暖湿润-低湖水位期(6.1~4.3 cal.ka B.P.)、温凉湿润-高湖水位期(4.3~3.0 cal.ka B.P.)、温暖湿润-较高湖水位期(3.0~1.4 cal.ka B.P.)等5个阶段的演变;元素记录15次显著快速干旱气候事件,其中发生在7.8cal.ka B.P.、7.3cal.ka B.P.、6.9cal.ka B.P.、6.5cal.ka B.P.、6.3cal.ka B.P.、6.1cal.ka B.P.、5.5 cal.ka B.P.、4.2 cal.ka B.P.、3.8 cal.ka B.P.、3.6 cal.ka B.P.、3.0 cal.ka B.P.、2.6 cal.ka B.P.及1.8 cal.ka B.P.的13次干旱事件与已有大兴安岭地区其他钻孔记录均有较好的对应。此外,阿尔山天池湖泊记录中Fe/Ti元素比值与粉砂和粘土含量变化趋势基本一致,表明在东北封闭湖泊中Fe/Ti可作为湖泊细颗粒组分的良好代用指标。本研究表明湖泊沉积物高分辨率的XRF元素扫描分析在气候快速变化研究方面具有很大的潜力。

  • 加载中
  • 图 1 

    阿尔山天池和研究区内选取的已有古气候记录的地理位置示意图(a)及阿尔山天池火山口遥感解译图像[25] (b)

    Figure 1. 

    Map of sites location of Arxan Crater Lake(ACL)and former studied sites in Northeast China (a) and the image of ACL interpreted by remote sensing[25](b). In subfigure (a) star represents this study site, points are 1. Moon Lake[13], 2. Sifangshan Crater Lake[26], 3. Huola section[17], and 4. Tianchi Lake[16]

    图 2 

    阿尔山天池ACL17C岩芯深度-年代模型

    Figure 2. 

    Age-depth model of the sediment core ACL17C from Arxan Crater Tianchi Lake

    图 3 

    阿尔山天池ACL17C岩性示意图及XRF元素扫描强度曲线图

    Figure 3. 

    Litho-stratigraphy and the intensities of selected elements of ACL17C from Arxan Crater Tianchi Lake

    图 4 

    阿尔山天池ACL17C岩芯元素因子分析成分载荷图

    Figure 4. 

    Factor loading plot of the first two principle components of elements counts of ACL17C from Arxan Crater Tianchi Lake

    图 5 

    (a) 阿尔山天池全新世湖泊沉积物的粒度、元素比值及CONISS分带结果(元素比值为散点图,折线为元素比值5点滑动平均,虚线为均值)与(b)研究区内月亮湖TOC含量及木本花粉百分含量对比图(月亮湖数据源自文献[55])

    Figure 5. 

    (a)Variations of grain sizes of lake sediment in Arxan Crater Tianchi Lake and changes of element ratios during Holocene with CONISS zonation(elements ratios by scatter chart, 5 point-average by line chart, average by broken line)comparing with (b) the content of total organic carbon(TOC)and tree pollen % recorded by Moon Lake(data derived from reference [55])

    图 6 

    阿尔山天池湖全新世气候代用指标变化特征及与研究区其他气候/植被记录的对比

    Figure 6. 

    Comparison of the climate proxies in Arxan Crater Lake with other climate/vegetation records from Great Khingan Mountain(GKM)for the Holocene. (a)Summer insolation at 50°N[56]; (b)Broadleaf tree pollen % from Huola section[17] in the northern GKM; (c)Broadleaf tree pollen % from Tianchi Lake[16] next to the middle eastern of GKM; (d)Proxies of tree/grass and (e) lake levels from Sifangshan Lake[26] in the middle north GKM; (f)Tree pollen % from Moon Lake[55]; (g)Lake level and (h) regional precipitation indicators from Arxan Crater Lake(this study)in the middle of GKM

    表 1 

    阿尔山天池沉积序列AMS 14C测年结果

    Table 1. 

    Radiocarbon dates and calibrated ages of ACL17C from Arxan Crater Tianchi Lake

    编号 深度(cm) 14C年龄(a B. P.) 日历年龄(cal.a B. P.) 测年材料
    Beta 522390 60~63 1780±30 (95.4%)1813~1616 桦叶片、落叶松针、炭屑
    Beta 515610 129~130 2660±30 (85.6%)2808~2743 全岩样品
    Beta 523028 137~139 2600±30 (95.4%)2776~2711 植物残体
    Beta 523029 155~158 3490±30 (93.4%)3842~3690 莎草叶片
    Beta 515583 169~170 5110±30 (54.6%)5830~5749(40.8%)5924~5855 莎草叶片
    Beta 523030 186~188 7280±30 (95.4%)8169~8020 莎草叶片
    Beta 323031 208~211 7400±30 (95.4%)8321~8173 莎草叶片
    Beta 522389 212~215 7470±40 (95.4%)8373~8196 桦叶片及鳞片状苞片
    Beta 515609 224~225 8710±30 (95.4%)9762~9551 全岩样品
    Beta 494425 278~279 9230±30 (95.4%)10500~10276 全岩样品
    下载: 导出CSV

    表 2 

    阿尔山天池ACL17C沉积物元素间Pearson相关性系数矩阵*

    Table 2. 

    Pearson's correlation matrix of the analysis on elements of ACL17C from Arxan Crater Tianchi Lake

    Sr Rb Zr Fe Ca K Ti Si Cr S Mn Cl
    Sr
    Rb 0.99
    Zr 0.97 0.99
    Fe 0.97 0.98 0.98
    Ca 0.97 0.95 0.95 0.97
    K 0.89 0.91 0.91 0.94 0.96
    Ti 0.95 0.95 0.95 0.98 0.98 0.96
    Si 0.85 0.86 0.85 0.89 0.94 0.97 0.92
    Cr -0.55 -0.53 -0.52 -0.52 -0.49 -0.42 -0.47 -0.42
    S 0.77 0.77 0.75 0.79 0.82 0.74 0.75 0.74 -0.46
    Mn 0.51 0.49 0.49 0.49 0.50 0.37 0.45 0.40 -0.26 0.51
    Cl 0.45 0.41 0.40 0.36 0.32 0.13 0.26 0.18 -0.50 0.52 0.47
    * |相关系数| < 0.85标为斜体
    下载: 导出CSV

    表 3 

    阿尔山天池ACL17C沉积物元素因子分析方差极大因子载荷

    Table 3. 

    Varimax rotation factors loading of factor analysis on elements of ACL17C from Arxan Crater Tianchi Lake

    扫描元素 因子1/Factor 1 因子2/Factor 2
    K 0.99 0.14
    Si 0.96 0.10
    Ti 0.93 0.33
    Ca 0.92 0.34
    Fe 0.88 0.45
    Rb 0.84 0.52
    Zr 0.84 0.53
    Sr 0.82 0.57
    S 0.70 0.36
    Mn 0.33 0.43
    Cl 0.75
    Cr -0.36 -0.45
    方差贡献率 60.0% 20.1%
    方差累计贡献率 60.0% 80.1%
    下载: 导出CSV
  • [1]

    Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ18O climate record of the past 16, 500 years and the role of the sun, ocean, and volcanoes[J]. Quaternary Research, 1995, 44(3):341-354. doi: 10.1006/qres.1995.1079

    [2]

    O'Brien S R, Mayewski P A, Meeker L D, et al. Complexity of Holocene climate as reconstructed from a greenland ice core[J]. Science, 1995, 270(5244):1962-1964. doi: 10.1126/science.270.5244.1962

    [3]

    Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341):1257-1266. doi: 10.1126/science.278.5341.1257

    [4]

    Bianchi G G, Mccave I N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of iceland[J]. Nature, 1999, 397(6719):515-517. doi: 10.1038/17362

    [5]

    Dominik F, Burns S J, Manfred M, et al. Holocene forcing of the indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300(5262):1737-1739.

    [6]

    Duan F, Wang Y, Shen C C, et al. Evidence for solar cycles in a Late Holocene speleothem record from Dongge Cave, China[J]. Scientific Reports, 2014, 4:5159. doi:0.1038/srep05159.

    [7]

    Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3):243-255. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz-e200706006

    [8]

    姜大膀, 富元海. 2℃全球变暖背景下中国未来气候变化预估[J].大气科学, 2012, 36(2):234-246. http://d.old.wanfangdata.com.cn/Periodical/daqikx201202002

    Jiang Dabang, Fu Yuanhai. Climate change over China with a 2℃ global warming[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(2):234-246. http://d.old.wanfangdata.com.cn/Periodical/daqikx201202002

    [9]

    Jiang D B, Zhang Y, Sun J Q. Ensemble projection of 1-3℃ warming in China[J]. Chinese Science Bulletin, 2009, 54(18):3326-3334. doi: 10.1007/s11434-009-0313-1

    [10]

    徐影, 周波涛, 吴婕, 等. 1.5-4℃升温阈值下亚洲地区气候变化预估[J].气候变化研究进展, 2017, 13(4):306-315. http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201704002

    Xu Ying, Zhou Botao, Wu Jie, et al. Asian climate change in response to four global warming targets[J]. Climate Change Research, 2017, 13(4):306-315. http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201704002

    [11]

    刘玉英.晚更新世晚期以来二龙湾玛珥湖植被与环境演化研究[D].长春: 吉林大学博士论文, 2009: 124.http://cdmd.cnki.com.cn/Article/CDMD-10183-2009091297.htm

    Liu Yuying. Vegetation and Environment History of Erlongwan Maar Lake since the Kate Stage of Late Pleistocene[D]. Changchun: The Doctoral Dissertation of Jilin University, 2009: 124.

    [12]

    Li C, Wu Y, Hou X. Holocene vegetation and climate in Northeast China revealed from Jingbo Lake sediment[J]. Quaternary International, 2011, 229(1-2):67-73. doi: 10.1016/j.quaint.2009.12.015

    [13]

    伍婧, 刘强.晚冰期以来月亮湖孢粉记录反映的古植被与古气候演化[J].地球科学——中国地质大学学报, 2012, 37(5):947-954. http://d.old.wanfangdata.com.cn/Periodical/dqkx201205008

    Wu Jing, Liu Qiang. Polen-recorded vegetation and climate changes from Moon Lake since Late Glacial[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(5):947-954. http://d.old.wanfangdata.com.cn/Periodical/dqkx201205008

    [14]

    Stebich M, Mingram J, Han J, et al. Late Pleistocene spread of(cool-)temperate forests in Northeast China and climate changes synchronous with the North Atlantic region[J]. Global and Planetary Change, 2009, 65(1-2):56-70. doi: 10.1016/j.gloplacha.2008.10.010

    [15]

    Stebich M, Rehfeld K, Schlütz F, et al. Holocene vegetation and climate dynamics of NE China based on the pollen record from Sihailongwan Maar Lake[J]. Quaternary Science Reviews, 2015, 124:275-289. doi:10.1016/j.quascirev.2015.07.021.

    [16]

    Zhou X, Sun L, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region[J]. Earth and Planetary Science Letters, 2016, 456:39-46. doi:10.1016/j.epsl.2016.09.052.

    [17]

    赵超, 李小强, 周新郢, 等.北大兴安岭地区全新世植被演替及气候响应[J].中国科学:地球科学, 2016, 46(6):870-880. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201606011

    Zhao Chao, Li Xiaoqiang, Zhou Xinying, et al. Holocene vegetation succession and responses to climate change in the northern sector of Northeast China[J]. Science China:Earth Sciences, 2016, 59(7):1390-1400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201606011

    [18]

    喻春霞, 罗运利, 孙湘君.吉林柳河哈尼湖13.1-4.5 cal.ka B. P.古气候演化的高分辨率孢粉记录[J].第四纪研究, 2008, 28(5):929-938. doi: 10.3321/j.issn:1001-7410.2008.05.016 http://www.dsjyj.com.cn/CN/abstract/abstract8927.shtml

    Yu Chunxia, Luo Yunli, Sun Xiangjun. A high-resolution pollen records from Ha'ni Lake, Jilin, Northeast China shoing climate changes between 13.1 cal.ka B. P. and 4.5 cal.ka B. P.[J]. Quaternary Sciences, 2008, 28(5):929-938. doi: 10.3321/j.issn:1001-7410.2008.05.016 http://www.dsjyj.com.cn/CN/abstract/abstract8927.shtml

    [19]

    Huang T, Cheng S, Mao X, et al. Humification degree of peat and its implications for Holocene climate change in Hani peatland, Northeast China[J]. Chinese Journal of Geochemistry, 2013, 32(4):406-412. doi: 10.1007/s11631-013-0649-8

    [20]

    Li D, Jie D, Yong W, et al. Holocene climate reconstruction based on herbaceous phytolith indices from an AMS14C-dated peat profile in the Changbai Mountains, Northeast China[J]. Quaternary International, 2017, 447:144-157.doi:10.1016/j.quaint.2017.01.015.

    [21]

    Chu G, Sun Q, Xie M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from Northeastern China[J]. Quaternary Science Reviews, 2014, 102:85-95. doi:10.1016/j.quascirev.2014.08.008.

    [22]

    Zhou W, Zheng Y, Meyers P A, et al. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China[J]. Earth and Planetary Science Letters, 2010, 294(1-2):37-46. doi: 10.1016/j.epsl.2010.02.035

    [23]

    Zheng Y, Pancost R D, Naafs B D A, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493:36-46. doi:10.1016/j.epsl.2018.04.019.

    [24]

    马雪云, 魏志福, 王永莉, 等.末次冰盛期以来东北地区霍拉盆地湖泊沉积物记录的C3/C4植被演化[J].第四纪研究, 2018, 38(5):1193-1202. http://www.dsjyj.com.cn/CN/abstract/abstract11533.shtml

    Ma Xueyun, Wei Zhifu, Wang Yongli, et al. C3/C4 vegetation evolution recorded by lake sediments in the Huola basin, Northeast China since the Last Glacial Maximun[J]. Quaternary Sciences, 2018, 38(5):1193-1202. http://www.dsjyj.com.cn/CN/abstract/abstract11533.shtml

    [25]

    马雨轩, 李江海, 陈耀华.大兴安岭中段阿尔山地区第四纪火山地貌特征及其构造意义[J].北京大学学报(自然科学版), 2019, 55(2):289-298. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201902010

    Ma Yuxuan, Li Jianghai, Chen Yaohua. Geomorphological characteristics of the Quaternary volcanoes and their tectonic implications in Aershan region, central Greater Khingan Range[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55(2):289-298. http://d.old.wanfangdata.com.cn/Periodical/bjdxxb201902010

    [26]

    刘嘉丽, 刘强, 伍婧, 等.大兴安岭四方山天池全新世以来沉积物正构烷烃分布、单体碳同位素特征及古环境意义[J].湖泊科学, 2017, 29(2):498-511. http://d.old.wanfangdata.com.cn/Periodical/hpkx201702026

    Liu Jiali, Liu Qiang, Wu Jing, et al. n-alkanes distributions and compound-specific carbon isotope records and their paleoen-viromental significance of sediments from Lake Sifangshan in the Great Khingan Mountain, Northeastern China[J]. Journal of Lake Sciences, 2017, 29(2):498-511. http://d.old.wanfangdata.com.cn/Periodical/hpkx201702026

    [27]

    刘嘉麒.中国东北地区新生代火山岩的年代学研究[J].岩石学报, 1987, 3(4):23-33. http://www.cnki.com.cn/Article/CJFDTotal-YSXB198704002.htm

    Liu Jiaqi. Study on geochronology of the Cenozoic volcanic rocks in Northeast China[J]. Acta Petrologica Sinica, 1987, 3(4):23-33. http://www.cnki.com.cn/Article/CJFDTotal-YSXB198704002.htm

    [28]

    赵勇伟, 樊祺诚, 白志达, 等.大兴安岭哈拉哈河-淖尔河地区第四纪火山活动初步研究[J].岩石学报, 2008, 24(1):2569-2575. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811011

    Zhao Yongwei, Fan Qicheng, Bai Zhida, et al. Preliminary study on Quaternary volcanoes in the Halaha River and Chaoer River area in Daxing'an Mountain range[J]. Acta Petrologica Sinica, 24(1):2569-2575. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200811011

    [29]

    赵勇伟, 樊祺诚.大兴安岭哈拉哈河-绰尔河第四纪火山岩地幔源区与岩浆成因[J].岩石学报, 2012, 28(4):1119-1129. http://d.old.wanfangdata.com.cn/Conference/7667379

    Zhao Yongwei, Fan Qicheng. Mantle sources and magma genesis of Quaternary volcanic rocks in the Halaha River and Chaoer River area, Great Xing'an Range[J]. Acta Petrologica Sinica, 2012, 28(4):1119-1129. http://d.old.wanfangdata.com.cn/Conference/7667379

    [30]

    白志达, 田明中, 武法东, 等.焰山、高山——内蒙古阿尔山火山群中的两座活火山[J].中国地震, 2005, 21(1):113-117. doi: 10.3969/j.issn.1001-4683.2005.01.012

    Bai Zhida, Tian Mingzhong, Wu Fadong, et al. Yanshan, Gaoshan-Two active volcanos of the volcanic cluster in Arshan, Inner Mongolia[J]. Earthquake Research in China, 2005, 21(1):113-117. doi: 10.3969/j.issn.1001-4683.2005.01.012

    [31]

    王义凤, 雍世鹏, 刘钟龄.内蒙古自治区的植被地带特征[J].植物学报, 1979, 21(3):78-88. http://www.cnki.com.cn/Article/CJFDTotal-ZWXB197903012.htm

    Wang Yifeng, Yong Shipeng, Liu Zhongling. Characteristics of the vegetation zones in the Nei Monggol Autonomous Region[J]. Acta Botanica Sinica, 1979, 21(3):78-88. http://www.cnki.com.cn/Article/CJFDTotal-ZWXB197903012.htm

    [32]

    韩杰, 温瑞勇, 迟占颖.浅谈大小兴安岭森林植被分布[J].内蒙古科技与经济, 2004, (16):111-113. doi: 10.3969/j.issn.1007-6921.2004.16.058

    Han Jie, Wen Ruiyong, Chi Zhanying. A brief introduction on forest vegetation distribution in the Greater and Lesser Khingan Mountains[J]. Inner Mongolia Technology and Economy, 2004, (16):111-113. doi: 10.3969/j.issn.1007-6921.2004.16.058

    [33]

    Weltje G J, Tjallingii R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores:Theory and application[J]. Earth and Planetary Science Letters, 2008, 274(34):423-438.

    [34]

    Håkanson L, Jansson M. Principles of Lake Sedimentology[M]. Caldwell:The Blackburn Press, 2002:316

    [35]

    成艾颖, 余俊清, 张丽莎, 等.托素湖岩芯XRF元素扫描分析及多元统计方法的应用[J].盐湖研究, 2011, 19(1):20-25. http://d.old.wanfangdata.com.cn/Periodical/yhyj201101004

    Cheng Aiying, Yu Junqing, Zhang Lisha, et al. Analaysis of Toson Lake XRF core scanning and application of multivariate statistical methods[J]. Jounal of Saltlake Research, 2011, 19(1):20-25. http://d.old.wanfangdata.com.cn/Periodical/yhyj201101004

    [36]

    Lawrence F W, Upchurch S B. Identification of recharge areas using geochemical factor analysis[J]. Groundwater, 2010, 20(6):680-687. http://d.old.wanfangdata.com.cn/NSTLQK/10.1111-j.1745-6584.1982.tb01387.x/

    [37]

    张晓楠, 张灿, 吴铎, 等.基于XRF岩芯扫描的中国西部湖泊沉积物元素地球化学特征[J].海洋地质与第四纪研究, 2015, 35(1):163-174. http://d.old.wanfangdata.com.cn/Conference/8974923

    Zhang Xiaonan, Zhang Can, Wu Duo, et al. Element geochemistry of lake deposits measured by X-ray fluorescencecore scanner in Northwest China[J]. Marine Geology & Quaternary Geology, 2015, 35(1):163-174. http://d.old.wanfangdata.com.cn/Conference/8974923

    [38]

    陈敬安, 万国江, 陈振楼, 等.洱海沉积物化学元素与古气候演化[J].地球化学, 1999, 28(6):562-570. doi: 10.3321/j.issn:0379-1726.1999.06.006

    Chen Jing'an, Wan Guojiang, Chen Zhenlou, et al. Chemical selements in sediments of Lake Erhai and palaeoclimate evolution[J]. Geochimica, 1999, 28(6):562-570. doi: 10.3321/j.issn:0379-1726.1999.06.006

    [39]

    辛首臻, 成艾颖, 余俊清, 等.岱海近400年以来的环境变化:高分辨率XRF岩芯扫描结果的研究[J].盐湖研究, 2015, 23(2):1-6. http://www.cnki.com.cn/Article/CJFDTotal-YHYJ201502003.htm

    Xin Shouzhen, Cheng Aiying, Yu Junqing, et al. Environmental change on Lake Daihai in the past 400 years:Implications from high-resolution element records from XRF core scanning analysis[J]. Journal of Salt Lake Research, 2015, 23(2):1-6. http://www.cnki.com.cn/Article/CJFDTotal-YHYJ201502003.htm

    [40]

    Wang G P, Zhai Z L. Geochemical data as indicators of environmental change and human impact in sediments derived from downstream marshes of an ephemeral river, Northeast China[J]. Environmental Geology, 2008, 53(6):1261-1270. doi: 10.1007/s00254-007-0714-x

    [41]

    阳小兰, 张茹春, 张振, 等.安固里淖湖近5000年来环境变化的孢粉及地球化学沉积记录[J].第四纪研究, 2017, 37(1):130-142. http://www.dsjyj.com.cn/CN/abstract/abstract11297.shtml

    Yang Xiaolan, Zhang Ruchun, Zhang Zhen, et al. Environmental change since 5000 cal.a B. P. in the Anguli-Nuur Lake area based on palynological and geochemical records[J]. Quaternary Sciences, 2017, 37(1):130-142. http://www.dsjyj.com.cn/CN/abstract/abstract11297.shtml

    [42]

    申改慧, 丁国强, 阳小兰, 等.白洋淀地区全新世以来的气候环境变化[J].第四纪研究, 2018, 38(3):756-768. http://www.dsjyj.com.cn/CN/abstract/abstract11493.shtml

    Shen Gaihui, Ding Guoqiang, Yang Xiaolan, et al. Holocene climate and environmental change in the Baiyangdian area[J]. Quaternary Sciences, 2018, 38(3):756-768. http://www.dsjyj.com.cn/CN/abstract/abstract11493.shtml

    [43]

    贾红娟, 汪敬忠, 秦小光, 等.罗布泊地区晚冰期至中全新世气候特征及气候波动事件[J].第四纪研究, 2017, 37(3):510-521. http://www.dsjyj.com.cn/CN/abstract/abstract11331.shtml

    Jia Hongjuan, Wang Jingzhong, Qin Xiaoguang, et al. Climate and abrupt events recorded in the Lop Nur region from Late Glacial to the Middle Holocene[J]. Quaternary Sciences, 2017, 37(3):510-521. http://www.dsjyj.com.cn/CN/abstract/abstract11331.shtml

    [44]

    Gierlowski-Kordesch E. Paleolimnology:The history and evolution of lake systems by Andrew S. Cohen[J]. Palaios, 2004, 19(2):184-186. doi: 10.1669/0883-1351(2004)019<0184:BR>2.0.CO;2

    [45]

    Haberzettl T, Fey M, Lücke A, et al. Climatically induced lake level changes during the last two millennia as reflected in sediments of Laguna Potrok Aike, southern Patagonia(Santa Cruz, Argentina)[J]. Journal of Paleolimnology, 2005, 33(3):283-302. doi: 10.1007/s10933-004-5331-z

    [46]

    Gergana Y, Nowaczyk N R, Jens M, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7127):74-77.

    [47]

    Kienel U, Bowen S W, Byrne R, et al. First lacustrine varve chronologies from Mexico:Impact of droughts, ENSO and human activity since AD 1840 as recorded in maar sediments from Valle de Santiago[J]. Journal of Paleolimnology, 2009, 42(4):587-609. doi: 10.1007/s10933-009-9307-x

    [48]

    金章东, 张恩楼.湖泊沉积物Rb/Sr比值的古气候含义[J].科学技术与工程, 2002, 2(3):20-22. doi: 10.3969/j.issn.1671-1815.2002.03.009

    Jin Zhangdong, Zhang Enlou. Paleoclimate implication of Rb/Sr ratios from lake sediments[J]. Science Technology and Engineering, 2002, 2(3):20-22. doi: 10.3969/j.issn.1671-1815.2002.03.009

    [49]

    Jin Z, Cao J, Wu J, et al. A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia[J]. Earth Surface Processes and Landforms, 2006, 31(3):285-291. doi: 10.1002/esp.1243

    [50]

    伊海生, 张小青, 朱迎堂.青藏高原中部湖泊岩芯记录的第四纪湖平面变化及气候意义[J].地学前缘, 2006, 13(5):300-307. doi: 10.3321/j.issn:1005-2321.2006.05.003

    Yi Haisheng, Zhang Xiaoqing, Zhu Yingtang. Lake level change recorded by core of the Quaternary lacustrine sediment in the central Tibetan Plateau and its climatic implications[J]. Earth Science Frontiers, 2006, 13(5):300-307. doi: 10.3321/j.issn:1005-2321.2006.05.003

    [51]

    吴旭东, 沈吉, 汪勇.全新世低纬地区古环境演化与北大西洋之间的联系——以湖光岩玛珥湖元素和元素比值记录为例[J].沉积学报, 2011, 29(5):926-934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201105011

    Wu Xudong, Shen Ji, Wang Yong. The Holocene climate linkage between low latitude area and North Atlantic:Case study on element and element ratios of Huguangyan Maar Lake[J]. Acta Sedimentologica Sinica, 2011, 29(5):926-934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201105011

    [52]

    宋柳霆, 王中良, 滕彦国, 等.贵州阿哈湖物质循环过程的微量元素地球化学初步研究[J].地球与环境, 2012, 40(1):9-17. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201201002

    Song Liuting, Wang Zhongliang, Teng Yanguo, et al. A primary geochemical study on trace metals during biogeochemical cycling in Aha Lake, Guizhou, China[J]. Earth and Environment, 2012, 40(1):9-17. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201201002

    [53]

    姚政权, 刘焱光, 王昆山, 等.日本海末次冰期千年尺度古环境变化的地球化学记录[J].矿物岩石地球化学通报, 2010, 29(2):119-126. doi: 10.3969/j.issn.1007-2802.2010.02.002

    Yao Zhengquan, Liu Yanguang, Wang Kunshan, et al. Millennial-scale paleoenvironment change during the Last Glacial period recorded by geochemical variations in the Japan Sea[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010, 29(2):119-126. doi: 10.3969/j.issn.1007-2802.2010.02.002

    [54]

    Marshall M H, Lamb H F, Huws D, et al. Late Pleistocene and Holocene drought events at Lake Tana, the source of the Blue Nile[J]. Global and Planetary Change, 2011, 78:147-161. doi:10.1016/j.glopacha.2011.06.004.

    [55]

    刘强, 李倩, 旺罗, 等. 21 ka B. P.以来大兴安岭中段月亮湖沉积物全岩有机碳同位素组成变化及其古气候意义[J].第四纪研究, 2010, 30(6):1069-1077. doi: 10.3969/j.issn.1001-7410.2010.06.01 http://www.dsjyj.com.cn/CN/abstract/abstract8815.shtml

    Liu Qiang, Li Qian, Wang Luo, et al. Stable carbon isotope record of bulk organic matter from a sediment core at Moon Lkae in the middle part of the Daxing'an Mountain Range, Northeast China during the last 21 ka[J]. Quaternary Sciences, 2010, 30(6):1069-1077. doi: 10.3969/j.issn.1001-7410.2010.06.01 http://www.dsjyj.com.cn/CN/abstract/abstract8815.shtml

    [56]

    Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317. doi: 10.1016/0277-3791(91)90033-Q

  • 加载中

(6)

(3)

计量
  • 文章访问数:  3000
  • PDF下载数:  774
  • 施引文献:  0
出版历程
收稿日期:  2019-03-28
修回日期:  2019-07-21
刊出日期:  2019-11-30

目录