晚第四纪青海湖高湖面研究

刘向军, 赖忠平, DavidB. Madsen, 李国强, 于禄鹏, 黄昶, 陈发虎. 晚第四纪青海湖高湖面研究[J]. 第四纪研究, 2018, 38(5): 1166-1178. doi: 10.11928/j.issn.1001-7410.2018.05.11
引用本文: 刘向军, 赖忠平, DavidB. Madsen, 李国强, 于禄鹏, 黄昶, 陈发虎. 晚第四纪青海湖高湖面研究[J]. 第四纪研究, 2018, 38(5): 1166-1178. doi: 10.11928/j.issn.1001-7410.2018.05.11
刘向军, 赖忠平, DavidB. Madsen, 李国强, 于禄鹏, 黄昶, 陈发虎. 晚第四纪青海湖高湖面研究[J]. 第四纪研究, 2018, 38(5): 1166-1178. doi: 10.11928/j.issn.1001-7410.2018.05.11 Liu Xiangjun, Lai Zhongping, David B. Madsen, Li Guoqiang, Yu Lupeng, Huang Chang, Chen Fahu. Late Quaternary highstands of Qinghai Lake, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2018, 38(5): 1166-1178. doi: 10.11928/j.issn.1001-7410.2018.05.11
Citation: Liu Xiangjun, Lai Zhongping, David B. Madsen, Li Guoqiang, Yu Lupeng, Huang Chang, Chen Fahu. Late Quaternary highstands of Qinghai Lake, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2018, 38(5): 1166-1178. doi: 10.11928/j.issn.1001-7410.2018.05.11

晚第四纪青海湖高湖面研究

  • 基金项目:

    国家自然科学基金项目(批准号:41671006和41290252)和中国科学院青年创新促进会项目(批准号:2015350)共同资助

详细信息

Late Quaternary highstands of Qinghai Lake, Qinghai-Tibetan Plateau

More Information
  • 中国西北地区众多封闭湖泊湖岸堤的光释光(OSL)测年结果表明,"大湖"存在于深海氧同位素第5阶段(MIS 5)或者更早,而不是MIS 3阶段。由于高湖面测年结果的变化,我们对中国西北以及青藏高原地区湖泊对晚第四纪冰期-间冰期旋回气候变化响应的认识也随之改变。本研究对青海湖周边的湖岸堤、湖相沉积物、冲积和风成沉积物进行光释光测年,重建了青海湖末次间冰期以来的高湖面演化历史,得到以下结论:1)最高湖面(拔湖26~66 m)出现在MIS 5时期;2)MIS 3c时期湖面高出现在约13~17 m,但是在MIS 3a阶段湖面下降至接近于中全新世湖面高度;3)全新世最高湖面出现在距今约5.1 ka,湖面至少高出现在9.1 m,之后在约2 ka前再一次出现高湖面,高出现在湖面约8 m。青海湖高湖面的拔湖高度从MIS 5a到MIS 3时期,再到全新世是依次降低的,使得早期的湖岸堤没有被后期高湖面破坏而较好的保存了下来。

  • 加载中
  • 图 1 

    青海湖位置概图

    Figure 1. 

    Location of Qinghai Lake

    图 2 

    青海湖卫星影像(a)以及从遥感影像识别出的湖岸堤(b~f)

    Figure 2. 

    Remnant high-level shoreline features surround the Qinghai Lake identified from satellite images, and the Qinghai Lake (a) and the locations of satellite images of(b~f)

    图 3 

    青海湖洱海东侧倒淌河入湖口处沙坝的卫星影像图

    Figure 3. 

    Satellite image of barrier bars at the mouth of the Daotang River on the eastern margin of Qinghai Lake: (1)Holocene-modern shoreline features; (2)EH2 and EH3 sampling locality; (3)Area of Holocene-modern storm surge reworking of MIS 3 shoreline features; (4)MIS 3 barrier bars

    图 4 

    倒淌河入湖口处障壁沙坝/潟湖复合沉积

    Figure 4. 

    Barrier bar/back bay lagoon complexes in the mouth of the Daotang "River". Green:Holocene complex at 3194~3205 m; Blue:MIS 3 complex at 3210~3213 m; Red:MIS 5 complex at 3230~3260 m. The MIS 5 and MIS 3 shoreline elevations are estimated from the elevations of relatively few exposures not buried under Late Quaternary alluvium

    图 5 

    (a) 二郎剑采样点ELJ1剖面上部正视图

    Figure 5. 

    (a)Front view of the upper part of ELJ1 section.

    图 6 

    青海湖MIS 3时期的湖岸堤和近岸沉积物

    Figure 6. 

    Qinghai Lake localities with shoreline or nearshore sediments dating to MIS 3: (a)and (b) Shoreline sandy gravels underlying surface loess at locality ELJ5; (c)Bedded sands and gravels underlying Holocene-modern shoreline coarse sands at locality ELJ7; (d)Shoreline gravels and sandy gravels underlying surface loess at locality EH2; (e)Ripple-laminated sands underlying surface loess and bajada alluvium at locality QHHH3

    图 7 

    HK采样剖面出露的湖滨前积砂层

    Figure 7. 

    Foreset bedded sands in the ca. 3255 m spit exposed at locality Hongkou. The person is ca. 1.7 m in height

    图 8 

    青海湖东岸HK17 (a)和QGHE2 (b)采样剖面照片

    Figure 8. 

    The photos of sampling sections of HK17 (a)and QGHE2 (b)at the eastern margin of the Qinghai Lake

    图 9 

    晚第四纪13万年(130 ka)以来青海湖湖面水位变化曲线,数据来源于本文和文献[2, 4, 31~36]

    Figure 9. 

    Qinghai Lake water level fluctuation curve for the last ca.130 ka based on data reported here and in papers[2, 4, 31~36]. Dots represent mean quartz OSL ages/elevations for shoreline samples reported here. Open rhombus represent K-feldspar post-IR IRSL ages/elevations. Solid lines indicate increased confidence in lake surface reconstructions; dotted lines represent tentative reconstructions. Black dotted line represent modern lake level at 3194 m a.s.l.

    表 1 

    放射性剂量测量及石英光释光测年结果

    Table 1. 

    Quartz optically stimulated luminescence(OSL)ages and associated dosimetry data

    样品编号 海拔
    (m)
    测试粒径
    (μm)
    K
    (%)
    Th
    (μg/g)
    U
    (μg/g)
    含水量
    (%)
    剂量率
    (Gy/ka)
    等效剂量
    (Gy)
    年代结果
    (ka)
    QHHH1 3198 38~63 1.820±0.093 8.763±0.219 2.057±0.154 15±5 2.75±0.21 92.4±3.8 33.6±2.9
    QHHH3-A 3198 38~63 2.286±0.064 13.310±0.306 3.026±0.170 15±5 3.66±0.26 141.40±14.0 38.6±4.7
    QHHH3-B 3197 38~63 2.029±0.061 13.010±0.299 3.120±.0178 15±5 3.45±0.25 146.9±11.1 42.5±4.4
    EH2-B 3208.9 38~63 1.718±0.056 6.535±0.176 1.630±0.122 10±5 2.68±0.19 113.0±3.5 42.1±3.2
    EH3-A 3209.3 38~63 2.098±0.069 6.102±0.317 0.869±0.149 10±5 2.80±0.21 113.7±1.7 40.6±3.0
    ELJ5-B 3206.2 38~63 2.040±0.100 6.268±0.182 1.450±0.141 10±5 2.95±0.22 112.1±2.2 38.0±2.9
    ELJ6 3199.6 38~63 1.693±0.103 7.316±0.190 1.707±0.121 15±5 2.61±0.19 97.8±3.2 37.5±3.0
    ELJ7 3196.8 38~63 2.086±0.077 6.073±0.261 1.265±0.195 15±5 2.76±0.20 110.4±3.1 40.0±3.1
    ELJ1-C 3203.9 38~63 1.500±0.056 10.794±0.281 2.540±0.119 10±5 2.82±0.21 192.6±14.5 68.4±7.2
    ELJ1-D 3203 38~63 1.440±0.051 10.564±0.111 2.318±0.110 20±5 2.52±0.17 177.6±10.0 70.3±6.2
    ELJ1-E 3202.2 38~63 1.766±0.046 10.720±0.358 1.683±0.222 20±5 2.62±0.19 197.3±5.6 75.3±5.8
    ELJ1-F 3201.8 38~63 1.664±0.057 9.902±0.416 2.885±0.263 20±5 2.75±0.20 195.4±8.3 71.0±6.0
    ELJ1-G 3200.9 38~63 1.540±0.057 11.254±0.226 1.883±0.105 20±5 2.49±0.18 184.1±4.6 73.8±5.5
    ELJ1-H 3200.2 38~63 1.603±0.042 11.700±0.400 2.844±0.282 20±5 2.78±0.20 209.9±7.5 75.6±6.1
    ELJ1-I 3196.9 38~63 1.420±0.054 10.361±0.345 2.946±0.129 20±5 2.34±0.18 210.6±7.0 90.2±7.5
    ELJ1-J 3196.8 38~63 1.427±0.040 10.560±0.412 2.508±0.256 20±5 2.45±0.18 226.4±5.63 92.6±7.2
    下载: 导出CSV

    表 2 

    长石post-IR IRSL290测年样品放射性剂量测量及测年结果

    Table 2. 

    The feldspar post-IR IRSL290 dosimetry and dating results

    样品编号 测试粒径
    (μm)
    温度
    (℃)
    等效剂量
    (Gy)
    残余剂量
    (Gy)
    U
    (μg/g)
    Th
    (μg/g)
    K
    (%)
    含水率
    (%)
    宇宙射线剂量率
    (Gy/ka)
    总剂量率
    (Gy/ka)
    年代结果
    (ka)
    QH14-1 90~125 290 308.21±9.71 22.24±0.53 1.46±0.07 8.73±0.26 2.86±0.07 20±5 0.14 3.83±0.17 74.71±4.38
    QH14-2 90~125 290 327.08±8.65 24.44±0.59 1.30±0.07 6.08±0.19 2.42±0.07 20±5 0.14 3.27±0.14 92.63±5.05
    HK17 150~180 290 180.0±9.70 10.0±0.50 1.10±0.20 5.13±0.32 1.30±0.04 20±5 0.14 2.46±0.10 76.1±4.2
    QGHE2-17 150~180 290 262.6±8.70 20.0±0.50 1.04±0.10 4.56±0.13 1.63±0.05 20±5 0.14 2.56±0.10 94.4±4.5
    下载: 导出CSV
  • [1]

    Benn D I, Owen L A. The role of the Indian summer monsoon and the mid-latitude westerlies in Himalayan glaciation:Review and speculative discussion[J]. Journal of the Geological Society, London, 1998, 155(2):353-363. doi: 10.1144/gsjgs.155.2.0353

    [2]

    Madsen D B, Ma H Z, Rhode D, et al. Age constraints on the Late Quaternary evolution of Qinghai Lake, Tibetan Plateau[J]. Quaternary Research, 2008, 69(2):316-325. doi: 10.1016/j.yqres.2007.10.013

    [3]

    An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2015, 2(8):619. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3431539

    [4]

    Liu X J, Lai Z P, Madsen D B, et al. Last deglacial and Holocene lake level variations of Qinghai Lake, northeastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30(3):245-257. doi: 10.1002/jqs.v30.3

    [5]

    Fan Q S, Ma H Z, Hou G L. Late Pleistocene lake and glaciation evolution on the northeastern Qinghai-Tibetan Plateau:A review[J]. Environmental Earth Sciences, 2012, 66(2):625-634. doi: 10.1007/s12665-011-1271-x

    [6]

    Lai Z P, Mischke S, Madsen D B. Paleoenvironmental implications of new OSL dates on the formation of the "Shell Bar" in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau[J]. Journal of Paleolimnology, 2014, 51(2):197-210. doi: 10.1007/s10933-013-9710-1

    [7]

    Long H, Shen J. Underestimated 14C-based chronology of Late Pleistocene high lake-level events over the Tibetan Plateau and adjacent areas:Evidence from the Qaidam Basin and Tengger Desert[J]. Science China:Earth Sciences, 2014, 58(2):183-194.

    [8]

    Mischke S, Madsen D B, Zhang C, et al. Reply to comment by Zhang(2014):The Shell Bar in the Qaidam Basin:Fluvial or lake deposit, and OSL versus 14C age data[J]. Journal of Paleolimnology, 2015, 53(3):335-344. doi: 10.1007/s10933-014-9817-z

    [9]

    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):1-16. doi:10.1029/2004PA00107.

    [10]

    Long H, Shen J, Wang Y, et al. High-resolution OSL dating of a Late Quaternary sequence from Xingkai Lake(NE Asia):Chronological challenge of the "MIS 3a Mega-paleolake" hypothesis in China[J]. Earth and Planetary Science Letters, 2015, 428:281-292. doi: 10.1016/j.epsl.2015.07.003

    [11]

    Shi X H, Furlong K P, Kirby E, et al. Evaluating the size and extent of paleolakes in central Tibet during the Late Pleistocene[J]. Geophysical Research Letters, 2017, 44(11):5476-5485. doi: 10.1002/2017GL072686

    [12]

    Li G Q, Madsen D B, Jin M, et al. Orbital scale lake evolution in the Ejina Basin, central Gobi Desert, China revealed by K-feldspar luminescence dating of paleolake shoreline features[J]. Quaternary International, 2018, 482:109-121. doi: 10.1016/j.quaint.2018.03.040

    [13]

    Herzschuh U, Kürschner H, Mischke S. Temperature variability and vertical vegetation belt shifts during the last~50, 000 yr in the Qilian Mountains(NE margin of the Tibetan Plateau, China)[J]. Quaternary Research, 2006, 66(1):133-146. doi: 10.1016/j.yqres.2006.03.001

    [14]

    Ning Y F, Liu W G, An Z S. A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1):59-63. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.palaeo.2008.08.015/

    [15]

    Jiang H, Mao X, Xu H, et al. Last glacial pollen record from Lanzhou(Northwestern China) and possible forcing mechanisms for the MIS 3 climate change in Middle to East Asia[J]. Quaternary Science Reviews, 2011, 30(5):769-781. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0220901652

    [16]

    Long H, Lai Z P, Fuchs M, et al. Palaeodunes intercalcated in loess strata from the western Chinese Loess Plateau:Timing and palaeoclimatic implications[J]. Quaternary International, 2012, 263:37-45. doi: 10.1016/j.quaint.2010.12.030

    [17]

    Long H, Fuchs M, Yang L, et al. Abrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS 3a inferred from numerous lake-highstands[J]. Scientific Reports, 2016, 6:25820. doi: 10.1038/srep25820

    [18]

    张彭熹, 张保珍, 钱桂敏, 等.青海湖全新世以来古环境参数研究[J].第四纪研究, 1994, (3):226-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400803652

    Zhang Pengxi, Zhang Baozhen, Qian Guimin, et al. The study of paleoclimatic parameter of Qinghai Lake since Holocene[J]. Quaternary Sciences, 1994, (3):226-237. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400803652

    [19]

    余俊清, Kelts K.末次冰消期晚期青藏高原东北部气候变化[J].第四纪研究, 2002, 22(3), 413-423. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200205003

    Yu Junqing, Kelts K. Climatic change in the northeastern Qinghai-Tibet Plateau during the late glacial/Holocene transition[J]. Quaternary Sciences, 2002, 22(3), 413-423. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200205003

    [20]

    柳中晖, 周爱锋, 刘卫国.近千年来青海湖水热变化再重建[J].第四纪研究, 2017, 37(5):974-981. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11378.shtml

    Liu Zhonghui, Zhou Aifeng, Liu Weiguo. Further reconstruction of temperature and salinity changes in Lake Qinghai over the past millennium[J]. Quaternary Sciences, 2017, 37(5):974-981. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11378.shtml

    [21]

    陈克造, 黄第藩, 梁狄刚.青海湖的形成和发展[J].地理学报, 1964, 30(3):34-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000240858

    Chen Kezao, Huang Dipan, Liang Digang. The formation and evolution of Qinghai Lake[J]. Acta Geographica Sinica, 1964, 30(3):34-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000240858

    [22]

    陈克造, Bowler J M, Kelts K.四万年来青藏高原的气候变迁[J].第四纪研究, 1990, (1):21-31. doi: 10.3321/j.issn:1001-7410.1990.01.003 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ199001002&dbname=CJFD&dbcode=CJFQ

    Chen Kezao, Bowler J M, Kelts K. Palaeoclimatic evolution within the Qinghai-Xizang(Tibet) Plateau in the last 40, 000 years[J]. Quaternary Sciences, 1990, (1):21-32. doi: 10.3321/j.issn:1001-7410.1990.01.003 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ199001002&dbname=CJFD&dbcode=CJFQ

    [23]

    袁宝印, 陈克造, Bowler J M, 等.青海湖的形成与演化趋势[J].第四纪研究, 1990, (3):233-243. doi: 10.3321/j.issn:1001-7410.1990.03.005 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ199003004&dbname=CJFD&dbcode=CJFQ

    Yuan Baoyin, Chen Kezao, Bowler J M, et al. The formation and evolution of the Qinghai Lake[J]. Quaternary Sciences, 1990, (3):233-243. doi: 10.3321/j.issn:1001-7410.1990.03.005 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ199003004&dbname=CJFD&dbcode=CJFQ

    [24]

    王苏民, 施雅风.晚第四纪青海湖演化研究析视与讨论[J].湖泊科学, 1992, 4(3):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000468212

    Wang Sumin, Shi Yafeng. Review and discussion on the Late Quaternary evolution of Qinghai Lake[J]. Journal of Lake Sciences, 1992, 4(3):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000468212

    [25]

    Zhang H C, Peng J L, Ma Y Z, et al. Late Quaternary palaeolake levels in Tengger Desert, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(1-2):45-58. doi: 10.1016/j.palaeo.2004.04.006

    [26]

    陈发虎, 汪世兰, 张维信, 等.青海湖南岸全新世黄土剖面、气候信息及湖面升降探讨[J].地理科学, 1991, 11(1):76-85. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLKX199101008&dbname=CJFD&dbcode=CJFQ

    Chen Fahu, Wang Shilan, Zhang Weixin, et al. The loess profile at south bank, climatic information and lake-level fluctuations of Qinghai Lake during the Holocene[J]. Scientia Geographica Sinica, 1991, 11(1):76-85. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DLKX199101008&dbname=CJFD&dbcode=CJFQ

    [27]

    刘卫国, 王政, 李祥忠.内源贡献对青海湖碳同位素指标量化的影响[J].第四纪研究, 2016, 36(3):623-629. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201603012

    Liu Weiguo, Wang Zheng, Li Xiangzhong. The contribution of aquatic plants to sedimentary n-alkanes δ13C values using to qualify compositions of terrigenous plants in Lake Qinghai on the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(3):623-629. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201603012

    [28]

    王欢业, 刘卫国, 张传伦, 等.青海湖钻孔沉积物中的羟基甘油二烷基甘油四醚类化合物及其环境意义[J].第四纪研究, 2017, 37(5):1151-1160. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11395.shtml

    Wang Huanye, Liu Weiguo, Zhang Chuanlun, et al. Hydroxylated glycerol dialkyl glycerol tetraethers in Lake Qinghai sediments and their paleoclimate implications[J]. Quaternary Sciences, 2017, 37(5):1151-1160. http://manu66.magtech.com.cn/dsjyj/CN/abstract/abstract11395.shtml

    [29]

    陶涛, 王超群, 戚帮申, 等.青海湖鸟岛北原生砂楔的发现及其古气候意义[J].第四纪研究, 2016, 36(5):1246-1252. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201605019

    Tao Tao, Wang Chaoqun, Qi Bangshen, et al. Fossil sand wedges of north Niaodao in Qinghai Lake:Discovery and paleoclimatic implications[J]. Quaternary Sciences, 2016, 36(5):1246-1252. http://d.old.wanfangdata.com.cn/Periodical/dsjyj201605019

    [30]

    Jin Z D, An Z S, Yu J M, et al. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial[J]. Quaternary Science Reviews, 2015, 122:63-73. doi: 10.1016/j.quascirev.2015.05.015

    [31]

    刘向军.晚第四纪青海湖湖面变化光释光年代学[D].西宁: 中国科学院青海盐湖研究所博士论文, 2011: 110-150.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2166673

    Liu Xiangjun. The Late Quaternary Lake Level History of Qinghai Lake Based on Quartz Optically Stimulated Luminescence[D]. Xining: The Doctoral Dissertation of Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2011: 110-150.

    [32]

    Liu X J, Lai Z P. Optical dating of sand wedges and ice-wedge casts from Qinghai Lake area on the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications[J]. Boreas, 2013, 42(2):333-341. doi: 10.1111/bor.2013.42.issue-2

    [33]

    Liu X J, Lai Z P, Fan Q S, et al. Timing for high lake levels of Qinghai Lake in the Qinghai-Tibetan Plateau since the last interglaciation based on quartz OSL dating[J]. Quaternary Geochronolgy, 2010, 5(2):218-222.

    [34]

    Liu X J, Lai Z P, Madsen D B, et al. Lake level variations of Qinghai Lake in northeastern Qinghai-Tibetan Plateau since 3.7 ka based on OSL dating[J]. Quaternary International, 2011, 236(1):57-64.

    [35]

    Liu X J, Lai Z P, Yu L P, et al. Luminescence chronology of aeolian deposits from the Qinghai Lake area in the northeastern Qinghai-Tibetan Plateau and its palaeoenvironmental implications[J]. Quaternary Geochronology, 2012, 10:37-43. doi: 10.1016/j.quageo.2012.01.016

    [36]

    Rhode D, Ma H Z, Madsen D B, et al. Paleoenvironmental and archaeological investigation at Qinghai Lake, Western China:Geomorphic and chronometric evidence of lake level history[J]. Quaternary International, 2010, 218(1):29-44. http://d.old.wanfangdata.com.cn/NSTLQK/10.1016-j.quaint.2009.03.004/

    [37]

    马万里.青海省志——青海湖志[M].青海:青海人民出版社, 1998:10-50.

    Ma Wanli. The History of Qinghai Province-Qinghai Lake Chronicles[M]. Qinghai:Qinghai People's Press, 1998:10-50.

    [38]

    Li X Y, Ma Y J, Huang Y M, et al. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(18):10470-10485. doi: 10.1002/jgrd.v121.18

    [39]

    潘保田.贵德盆地地貌演化与黄河上游发育研究[J].干旱区地理, 1994, 17(3):43-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400096095

    Pan Baotian. Research upon the geomorphologic evolution of the Guide Basin and the development of the Yellow River[J]. Arid Land Geography, 1994, 17(3), 43-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400096095

    [40]

    Wang Y J, Jin Z D, Zhou L, et al. Stratigraphy and otolith microchemistry of the naked carp Gymnocypris przewalskii(Kessler) and their indication for water level of Lake Qinghai during the Ming Dynasty of China[J]. Science China:Earth Sciences, 2014, 57(10):2512-2521. doi: 10.1007/s11430-014-4836-1

    [41]

    Colman S M, Yu S Y, An Z S, et al. Late Cenozoic climate changes in China's western interior:A review of research on Lake Qinghai and comparison with other records[J]. Quaternary Science Reviews, 2007, 26(17):2281-2300. https://www.sciencedirect.com/science/article/pii/S027737910700128X

    [42]

    Reheis M C, Adams K D, Oviatt C G, et al. Pluvial lakes in the Great Basin of the western United States-A view from the outcrop[J]. Quaternary Science Reviews, 2014, 97:33-57. doi: 10.1016/j.quascirev.2014.04.012

    [43]

    Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 2000, 32(1):57-73. doi: 10.1016/S1350-4487(99)00253-X

    [44]

    Buylaert J P, Murray A S, Vandenberghe D, et al. Optical dating of Chinese loess using sand-sized quartz:Establishing a time frame for Late Pleistocene climate changes in the western part of the Chinese Loess Plateau[J]. Quaternary Geochronology, 2008, 3(1-2):99-113. doi: 10.1016/j.quageo.2007.05.003

    [45]

    Buylaert J P, Vandenberghe D, Murray A S. Luminescence dating of old(> 70 ka) Chinese loess:A comparison of single-aliquot OSL and IRSL techniques[J]. Quaternary Geochronology, 2007, 2(1):9-14. https://www.sciencedirect.com/science/article/pii/S1871101406000574

    [46]

    Chapot M S, Roberts H M, Duller G A T, et al. A comparison of natural-and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese loess[J]. Radiation Measurements, 2012, 47(11-12):1045-1052. doi: 10.1016/j.radmeas.2012.09.001

    [47]

    Lai Z P. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol[J]. Journal of Asian Earth Sciences, 2010, 37(2):176-185. doi: 10.1016/j.jseaes.2009.08.003

    [48]

    覃金堂, 周力平.沙漠边缘厚层黄土上部光释光测年的初步研究[J].第四纪研究, 2007, 27(4):546-552. doi: 10.3321/j.issn:1001-7410.2007.04.010 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200704009&dbname=CJFD&dbcode=CJFQ

    Qin Jintang, Zhou Liping. Optically stimulated luminescence dating of upper part of a thick loess section at Caoxian near the northern desert of China[J]. Quaternary Sciences, 2007, 27(4):546-552. doi: 10.3321/j.issn:1001-7410.2007.04.010 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200704009&dbname=CJFD&dbcode=CJFQ

    [49]

    Buylaert J P, Murray A S, Thomsen K J, et al. Testing the potential of an elevated temperature IRSL signal from K-feldspar[J]. Radiation Measurements, 2009, 44(5):560-565. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0211460303

    [50]

    Li B, Li S H. Luminescence dating of K-feldspar from sediments:A protocol without anomalous fading correction[J]. Quaternary Geochronology, 2011, 6(5):468-479. doi: 10.1016/j.quageo.2011.05.001

    [51]

    Thiel C, Buylaert J P, Murray A, et al. Luminescence dating of the Stratzing loess profile(Austria)-Testing the potential of an elevated temperature post-IR IRSL protocol[J]. Quaternary International, 2011, 234(1):23-31. https://www.researchgate.net/publication/258724822_Reconstructing_fluvial_lacustrine_and_aeolian_process_dynamics_in_Western_Mongolia

    [52]

    Buylaert J P, Jain M, Murray A S, et al. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments[J]. Boreas, 2012, 35(3):435-451. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0227132074

    [53]

    Chen Y W, Li S H, Li B, et al. Maximum age limitation in luminescence dating of Chinese loess using the multiple-aliquot MET-pIRIR signals from K-feldspar[J]. Quaternary Geochronology, 2015, 30:207-212. doi: 10.1016/j.quageo.2015.01.002

    [54]

    Roberts H M. Testing post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control[J]. Radiation Measurements, 2012, 47(9):716-724. doi: 10.1016/j.radmeas.2012.03.022

    [55]

    Guérin G, Mercier N, Nathan R, et al. On the use of the infinite matrix assumption and associated concepts:A critical review[J]. Radiation Measurements, 2012, 47(9):778-785. doi: 10.1016/j.radmeas.2012.04.004

    [56]

    Huntley D J, Baril M R. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating[J]. Ancient TL, 1997, 15(1):11-13. http://d.old.wanfangdata.com.cn/NSTLQK/10.1144-gsjgs.154.6.1001/

    [57]

    Liu X J, Xiao G Q, E C Y, et al. Accumulation and erosion of aeolian sediments in the northeastern Qinghai-Tibetan Plateau and implications for provenance to the Chinese Loess Plateau[J]. Journal of Asian Earth Sciences, 2017, 135:166-174. doi: 10.1016/j.jseaes.2016.12.034

    [58]

    Li X Z, Liu W G. Lake evolution and hydroclimate variation at Lake Qinghai(China) over the past 32 ka inferred from ostracods and their stable isotope composition[J]. Journal of Paleolimnology, 2017, 58(3):299-316. doi: 10.1007/s10933-017-9979-6

    [59]

    Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years[J]. Quaternary International, 2005, 136(1):131-140. doi: 10.1016/j.quaint.2004.11.014

    [60]

    Yu Junqing. Lake Qinghai, China: A Multi-proxy Investigation on Sediment Cores for the Reconstructions of Paleoclimate and Paleoenvironment since the Marine Isotope Stage 3[D]. Darmstadt: The Dissertation of Faculty of Materials and Geoscience, Technical University of Darmstadt, 2005: 63-101.

    [61]

    Porter S C, Singhvi A, An Z S, et al. Luminescence age and palaeoenvironmental implications of a Late Pleistocene ground wedge on the northeastern Tibetan Plateau[J]. Permafrost and Periglacial Processes, 2001, 12(2):203-210. doi: 10.1002/(ISSN)1099-1530

    [62]

    Long H, Tsukamoto S, Buylaert J P, et al. Late Quaternary OSL chronologies from the Qinghai Lake(NE Tibetan Plateau):Inter-comparison of quartz and K-feldspar ages to assess the pre-depositional bleaching[J]. Quaternary Geochronology, 2018, https://doi.org/10.1016/j.quageo.2018.05.003. doi: 10.1016/j.quageo.2018.05.003

    [63]

    Johnson K R, Ingram B L, Sharp W D, et al. East Asian summer monsoon variability during Marine Isotope Stage 5 based on speleothem δ18O records from Wanxiang cave, Central China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1):5-19. https://www.sciencedirect.com/science/article/pii/S0031018206001295

    [64]

    Wang H Y, Dong H L, Zhang C L, et al. Deglacial and Holocene archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, northeastern Qinghai-Tibetan Plateau[J]. Quaternary Research, 2015, 83(1):116-126. doi: 10.1016/j.yqres.2014.10.003

    [65]

    Liu X J, Colman S M, Brown E T, et al. Abrupt deglaciation on the northeastern Tibetan Plateau:Evidence from Lake Qinghai[J]. Journal of Paleolimnology, 2014, 51(2):223-240. doi: 10.1007/s10933-013-9721-y

    [66]

    Liu W, Li X, An Z S, et al. Total organic carbon isotopes:A novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China[J]. Chemical Geology, 2013, 347:153-160. doi: 10.1016/j.chemgeo.2013.04.009

    [67]

    陈兆恩, 林秋雁.青藏高原湖泊涨缩的新构造运动意义[J].地震, 1993, 2(1):31-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000214186

    Chen Zhaoen, Lin Qiuyan. Significance of neotectonic movement of lake extension and shrinkage in Qinghai-Tibet Plateau[J]. Earthquake, 1993, 2(1):31-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000214186

    [68]

    李炳元.青藏高原大湖期[J].地理学报, 2000, 55(2):174-182. doi: 10.3321/j.issn:0375-5444.2000.02.005

    Li Bingyuan. The last greatest lakes on the Xizang(Tibetan) Plateau[J]. Acta Geographica Sinica, 2000, 55(2):174-182. doi: 10.3321/j.issn:0375-5444.2000.02.005

    [69]

    施雅风, 刘晓东, 李炳元, 等.距今40-30 ka青藏高原特强夏季风事件及其与岁差周期关系[J].科学通报, 1999, 44(4):1475-1480. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB199914002&dbname=CJFD&dbcode=CJFQ

    Shi Yafeng, Liu Xiaodong, Li Bingyuan, et al. A very strong summer monsoon event during 30-40 ka BP in the Qinghai-Xizang(Tibet) Plateau and its relation to processional cycle[J]. Chinese Science Bulletin, 1999, 44(20):1851-1858. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB199914002&dbname=CJFD&dbcode=CJFQ

    [70]

    郑绵平, 袁鹤然, 赵希涛, 等.青藏高原第四纪泛湖期与古气候[J].地质学报, 2006, 80(2):169-180. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200602001

    Zheng Mianping, Yuan Heran, Zhao Xitao, et al. The Quaternary Pan-lake(overflow) period and paleoclimate on the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2006, 80(2):169-180. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200602001

    [71]

    李世杰, 张宏亮, 施雅风, 等.青藏高原甜水海盆地MIS 3阶段湖泊沉积与环境变化[J].第四纪研究, 2008, 28(1):122-131. doi: 10.3321/j.issn:1001-7410.2008.01.013 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200801014&dbname=CJFD&dbcode=CJFQ

    Li Shijie, Zhang Hongliang, Shi Yafeng, et al. A high resolution MIS 3 environmental change record derived from lacustrine deposit of Tianshuihai Lake, Qinghai-Tibet Plateau[J]. Quaternary Sciences, 2008, 28(1):122-131. doi: 10.3321/j.issn:1001-7410.2008.01.013 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200801014&dbname=CJFD&dbcode=CJFQ

    [72]

    周厚云.最近135 ka甜水海碳酸盐元素指标变化与湖泊环境演化[D].广州: 中国科学院广州地球化学研究所博士论文, 2004: 77-94.http://cdmd.cnki.com.cn/Article/CDMD-80165-2004108883.htm

    Zhou Houyun. Elemental Geochemistry of Carbonate Cement from Core TS95 and Environmental Evolution of Lake Tianshuihai since 135 ka B.P.[D]. Guangzhou: The Doctoral Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2004: 77-94.

    [73]

    杨俊峰, 崔霄峰, 卢书炜, 等.藏西北结则茶卡湖晚更新世以来演化及气候环境[J].新疆地质, 2005, 23(1):59-63. doi: 10.3969/j.issn.1000-8845.2005.01.013

    Yang Junfeng, Cui Xiaofeng, Lu Shuwei, et al. Evolution of Jiezechaka Lake and the climatic environment of the Late Pleistocene in northwestern Tibet[J]. Xinjiang Geology, 2005, 23(1):59-63. doi: 10.3969/j.issn.1000-8845.2005.01.013

    [74]

    刘俊英, 郑绵平, 袁鹤然, 等.西藏扎布耶湖区128-1.4 ka BP的微体古生物与环境气候变化[J].地质学报, 2007, 81(12):1618-1635. doi: 10.3321/j.issn:0001-5717.2007.12.003

    Liu Junying, Zheng Mianping, Yuan Heran, et al. Microfossils and climatic and environmental changes in the Zabuye Lake area, Tibet, From 128 to 1.4 ka BP[J]. Acta Geologica Sinica, 2007, 81(12):1618-1635. doi: 10.3321/j.issn:0001-5717.2007.12.003

    [75]

    Alivernini M, Lai Z P, Frenzel P, et al. Late Quaternary lake level changes of Taro Co and neighbouring lakes, southwestern Tibetan Plateau, based on OSL dating and ostracod analysis[J]. Global and Planetary Change, 2018, 166:1-18. doi: 10.1016/j.gloplacha.2018.03.016

    [76]

    朱大岗, 孟宪刚, 赵希涛, 等.纳木错湖相沉积与藏北高原古大湖[J].地球学报, 2001, 22(2):150-155. http://d.old.wanfangdata.com.cn/Periodical/dqxb200102011

    Zhu Dagang, Meng Xiangang, Zhao Xitao, et al. Nam Tso lacustrine sediments and the ancient big lake in northern Tibet Plateau[J]. Acta Geoscientia Sinica, 2001, 22(2):150-155. http://d.old.wanfangdata.com.cn/Periodical/dqxb200102011

    [77]

    赵希涛, 朱大岗, 严富华, 等.西藏纳木错末次间冰期以来的气候变迁与湖面变化[J].第四纪研究, 2003, 23(1):41-52. doi: 10.3321/j.issn:1001-7410.2003.01.005 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200301004&dbname=CJFD&dbcode=CJFQ

    Zhao Xitao, Zhu Dagang, Yan Fuhua, et al. Climatic change and lake-level variation of Nam Co, Xizang since the last interglacial stage[J]. Quaternary Sciences, 2003, 23(1):41-52. doi: 10.3321/j.issn:1001-7410.2003.01.005 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DSJJ200301004&dbname=CJFD&dbcode=CJFQ

    [78]

    Fan Q S, Ma H Z, Cao G C, et al. Geomorphic and chronometric evidence for high lake level history in Gahai Lake and Toson Lake of north-eastern Qaidam Basin, north-eastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2012, 27(8):819-827. doi: 10.1002/jqs.v27.8

    [79]

    Zhu L P, Lv X M, Wang J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015, 5:13318. doi: 10.1038/srep13318

    [80]

    Li G Q, Jin M, Duan Y W, et al. Quartz and K-feldspar luminescence dating revealed Marine Isotope Stage 5 megalake in Juyanze Basin, central Gobi-desert, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440:96-109. doi: 10.1016/j.palaeo.2015.08.033

    [81]

    Long H, Lai Z P, Fuchs M, et al. Timing of Late Quaternary palaeolake evolution in Tengger Desert of Northern China and its possible forcing mechanisms[J]. Global and Planetary Change, 2012, 92-93:119-129. doi: 10.1016/j.gloplacha.2012.05.014

    [82]

    Jin M, Li G, Li F, et al. Holocene shorelines and lake evolution in Juyanze Basin, southern Mongolian Plateau, revealed by luminescence dating[J]. The Holocene, 2015, 25(12):1898-1911. doi: 10.1177/0959683615591349

  • 加载中

(9)

(2)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2018-05-15
修回日期:  2018-07-22
刊出日期:  2018-09-30

目录