Study about influence of the Holocene volcanic eruptions on temperature variation trend by simulation
Wan Lingfeng1,2,3,4, Liu Jian1,2,4, Gao Chaochao5, Sun Weiyi1, Ning Liang1,4,6, Yan Mi1,4,6
1. Key Laboratory for Virtual Geographic Environment of Ministry of Education, State Key Laboratory Cultivation Base of Geographical Environment Evolution of Jiangsu Province, Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing 210023, Jiangsu;
2. Jiangsu Provincial Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Mathematical Science, Nanjing Normal University, Nanjing 210023, Jiangsu;
3. The Institute for Advanced Ocean Study of Ocean University of China, Qingdao 266100, Shandong;
4. Open Studio for the Simulation of Ocean-Climate-Isotope, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, Shandong;
5. Department of Environmental Science, Zhejiang University, Hangzhou 310058, Zhejiang;
6. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Science, Xi'an 710061, Shaanxi
摘要 全新世气候变化模拟对了解气候变化的特征和驱动机制具有重要意义。而利用地球系统模式CESM对全新世气候进行瞬变模拟的研究至今还是空白。同时前人只考虑地球轨道参数、温室气体、大陆冰盖、融水这4种外强迫因子作用的模拟结果和集成重建的全新世全球年平均温度的变化呈相反的趋势,尤其是在5.00~0.15 ka B.P.时段差异最为显著,被称为全新世"温度悖论",至于其原因至今尚无定论。因此,文章利用CESM1.0.3,并考虑更全面的外强迫(地球轨道参数、太阳辐射、火山喷发、温室气体、土地利用/土地覆被)对全新世气候变化进行瞬变模拟。基于本文模拟结果分析发现全强迫试验模拟的全球范围合成年平均温度与Marcott等(2013)集成重建的全球年平均温度在5.00~0.15 ka B.P.时段的变化趋势基本一致,均下降0.50℃左右,有效地化解了5.00~0.15 ka B.P.时段的"温度悖论"。研究还发现,此降温趋势主要是由火山喷发外强迫作用导致的,在此时段火山喷发外强迫导致了0.86℃的降温效应,温室气体强迫作用导致0.38℃的升温趋势,而其他外强迫的贡献较小,合计约为-0.02℃。5.00~0.15 ka B.P.时段火山喷发导致降温趋势的原因在于连续增强的火山气溶胶改变了地表辐射平衡,使得地表接收的太阳辐射减少和射出长波辐射增加。
Abstract:The climate simulation is vital for understanding the characteristic and driving mechanism of the Holocene climate change. The Community Earth System Model(CESM) is the state-of-the-art earth system model for climate simulation. But it has not been used in previous Holocene climate simulation. There are opposite trend of global annual mean surface temperature between simulated and reconstructed in previous Holocene study. The most significant trend difference have been shown during 5.00~0.15 ka B.P. This phenomenon has been called the Holocene temperature conundrum. However, the reason of it remains controversial. In previous transient simulations, only four kinds of external forcing factors(namely, the Earth's orbital parameters, greenhouse gas, meltwater flux, continental ice sheets) have been considered. However, the Holocene climate change have also been influenced by other external forcing factors, such as the total solar insolation, land use/land cover, volcanic eruptions. Therefore, in this study, the CESM and the new external forcing factors have been used to do the Holocene transient simulation. Seven simulation experiments, which are ORB, TSI_ORB, GHG_ORB, LUCC_ORB, VOL_ORB, CTRL and AF respectively for the Holocene climate change have been designed in this study. The external forcings in the CTRL experiment are all constants. Only the Earth's orbital parameters have been changed in the ORB experiment. In the TSI_ORB experiment, the VOL_ORB experiment, the GHG_ORB experiment, and the LUCC_ORB experiment have changed the total solar insolation, volcanic eruptions, greenhouse gases, and land use/land cover, respectively, at the same time, the Earth's orbital parameters also have been changed. So they are all double forcing experiments. The five external forcing factors above-mentioned all have been changed in the AF experiment.Then, the temperature evolution has been analyzed. It shows that the trend of global annual mean surface temperature in the AF run is nearly the same as the reconstruction during 5.00~0.15 ka B.P. Both of them have cooling about 0.50℃. Thus the temperature conundrum have been reconciled successfully. The cooling trend is mainly attributed to the volcanic forcing. It has cooling about 0.86℃ in the VOL_ORB run. The greenhouse gases forcing can induce about 0.38℃ warming. The contributions of other external forcing factors are relatively small(total is about -0.02℃). The radiation balance at surface have been changed(the received solar flux reducing and emitted longwave flux increasing) by the volcanic eruptions during 5.00~0.15 ka B.P.
万凌峰, 刘健, 高超超, 孙炜毅, 宁亮, 严蜜. 全新世火山喷发对温度变化趋势影响的模拟研究[J]. 第四纪研究, 2020, 40(6): 1597-1610.
Wan Lingfeng, Liu Jian, Gao Chaochao, Sun Weiyi, Ning Liang, Yan Mi. Study about influence of the Holocene volcanic eruptions on temperature variation trend by simulation. Quaternary Sciences, 2020, 40(6): 1597-1610.
Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3):243-255.
[2]
Walker M, Johnsen S, Rasmussen S O, et al. Formal definition and dating of the GSSP(Global Stratotype Section and Point)for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records[J]. Journal of Quaternary Science, 2009, 24(1):3-17.
[3]
靳立亚, 陈发虎. 千百年尺度气候快速变化及其数值模拟研究进展[J]. 地球科学进展, 2007, 22(10):1054-1065. Jin Liya, Chen Fahu. Progress in rapid climate changes and their modeling study in millennial and centennial scales[J]. Advances in Earth Science, 2007, 22(10):1054-1065.
[4]
靳立亚, Otto-Bliesner B L. 近10年来"国际古气候模拟比较计划(PMIP)"回顾和未来古气候模拟研究热点[J]. 第四纪研究, 2009, 29(6):1015-1024. Jin Liya, Otto-Bliesner B L. Advances of PMIP in the last 10 years and its key themes of future research plan[J]. Quaternary Sciences, 2009, 29(6):1015-1024.
[5]
王绍武, 黄建斌, 闻新宇, 等. 全新世中国夏季降水量变化的两种模态[J]. 第四纪研究, 2009, 29(6):1086-1094. Wang Shaowu, Huang Jianbin, Wen Xinyu, et al. Two modes of summer precipitation variation of Holocene in China[J]. Quaternary Sciences, 2009, 29(6):1086-1094.
[6]
Kutzbach J E, Guetter P J. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years[J]. Journal of the Atmospheric Sciences, 1986, 43(16):1726-1759.
[7]
Schneider B, Leduc G, Park W. Disentangling seasonal signals in Holocene climate trends by satellite-model-proxy integration[J]. Paleoceanography, 2010, 25(PA4217):1-13. doi:10.1029/2009PA001893.
[8]
Notaro M, Wang Y, Liu Z, et al. Combined statistical and dynamical assessment of simulated vegetation-rainfall interactions in North Africa during the mid-Holocene[J]. Global Change Biology, 2008, 14(2):347-368.
[9]
Wagner S, Widmann M, Jones J, et al. Transient simulations, empirical reconstructions and forcing mechanisms for the mid-Holocene hydrological climate in Southern Patagonia[J]. Climate Dynamics, 2007, 29(4):333-355.
[10]
Haberkorn K. Reconstruction of the Holocene Climate Using An Atmosphere-Ocean-Biosphere Model and Proxy Data[D]. Hamburg:The Ph.D Dissertation of Hamburg University, 2013:1-188.
[11]
Fischer N, Jungclaus J H. Evolution of the seasonal temperature cycle in a transient Holocene simulation:Orbital forcing and sea-ice[J]. Climate of the Past, 2011, 7:1139-1148. https://doi.org/10.5194/cp-7-1139-2011.
[12]
Timm O, Timmermann A. Simulation of the last 21,000 years using accelerated transient boundary conditions[J]. Journal of Climate, 2007, 20:4377-4401. doi:10.1175/JCLI4237.1.
[13]
Timmermann A, Friedrich T, Timm O E, et al. Modeling obliquity and CO2 effects on southern hemisphere climate during the past 408 ka[J]. Journal of Climate, 2014, 27(5):1863-1875. doi:10.1175/JCLI-D-13-00311.1.
[14]
Claussen M, Mysak L A, Weaver A J, et al. Earth system models of intermediate complexity:Closing the gap in the spectrum of climate system models[J]. Climate Dynamics, 2002, 18:579-586. doi:https://doi.org/10.1007/s00382-001-0200-1.
[15]
Lorenz S J, Kim J H, Rimbu N, et al. Orbitally driven insolation forcing on Holocene climate trends:Evidence from alkenone data and climate modeling[J]. Paleoceanography, 2006, 21(PA1002):1-14. doi:10.1029/2005PA001152.
[16]
Lorenz S J, Lohmann G. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model:Method and application for the Holocene[J]. Climate Dynamic, 2004, 23:727-743. doi:10.1007/s00382-004-0469.
[17]
Ganopolski A, Calov R, Claussen M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity[J]. Climate of the Past, 2010, 6:229-244. https://doi.org/10.5194/cp-6-229-2010,2010.
[18]
Kutzbach J E, Liu X, Liu Z, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years[J]. Climate Dynamics, 2008, 30:567-579. https://doi.org/10.1007/s00382-007-0308-z.
[19]
Varma V, Prange M, Merkel U, et al. Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models[J]. Climate of the Past, 2012, 8:391-402. https://doi.org/10.5194/cp-8-391-2012.
[20]
Jin L, Schneider B, Park W, et al. The spatial-temporal patterns of Asian summer monsoon precipitation in response to Holocene insolation change:A model-data synthesis[J]. Quaternary Science Reviews, 2014, 85:47-62. doi:10.1016/j.quascirev.2013.11.004.
[21]
Dallmeyer A, Claussen M, Fischer N, et al. The evolution of sub-monsoon systems in the Afro-Asian monsoon region during the Holocene-Comparison of different transient climate model simulations[J]. Climate of the Past, 2015, 11:305-326. https://doi.org/10.5194/cp-11-305-2015.
[22]
Smith R S, Gregory J. The last glacial cycle:Transient simulations with an AOGCM[J]. Climate Dynamics, 2012, 38(7-8):1545-1559.
[23]
Pfeiffer M, Lohmann G. The last interglacial as simulated by an atmosphere-ocean general circulation model:Sensitivity studies on the influence of the greenland ice sheet[M]//Lohmann G, Grosfeld K, Wolf-Gladrow D, et al. Earth System Science:Bridging the Gaps between Disciplines Perspectives from A Multi-disciplinary Helmholtz Research School. Heidelberg:Springer, 2013:57-64.
[24]
Liu Z, Otto-Bliesner B L, He F, et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming[J]. Science, 2009, 325(5938):310-314. doi:10.1126/science.1171041.
[25]
He F. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3[D]. Madison:The Ph.D Dissertation of University of Wisconsin-Madison, 2011:1-177.
[26]
Dong B, Valdes P J. Simulations of the Last Glacial Maximum climates using a general circulation model:Prescribed versus computed sea surface temperatures[J]. Climate Dynamics, 1998, 14:571-591. https://doi.org/10.1007/s003820050242.
[27]
Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11,300 years[J]. Science, 2013, 339(6124):1198-1201.
[28]
Liu Z, Zhu J, Rosenthal Y, et al. The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34):3501-3505.
[29]
Wan L, Liu Z, Liu J, et al. Holocene temperature response to external forcing:Assessing the linear response and its spatial and temporal dependence[J]. Climate of the Past, 2019, 15:1411-1425. doi:10.5194/cp-15-1411-2019.
[30]
Robock A. Volcanic eruptions and climate[J]. Reviews of Geophysics, 2000, 38(2):191-219.
[31]
Luke O, Robock A, Stenchikov G, et al. Climatic response to high-latitude volcanic eruptions[J]. Journal of Geophysical Research, 2005, 110(D13103):1-13. doi:10.1029/2004JD005487.
[32]
Sato M, Hansen J E, McCormick M P, et al. Stratospheric aerosol optical depths, 1850-1990[J]. Journal of Geophysical Research, 1993, 98(D12):22987-22994. https://doi.org/10.1029/93JD02553.
[33]
Ramaswamy V, Schwarzkopf M D, Randel W J, et al. Anthropogenic and natural influences in the evolution of lower stratospheric cooling[J]. Science, 2006, 311(5764):1138-1141.
[34]
Wigley T M L, Ammann C M, Santer B D, et al. Effect of climate sensitivity on the response to volcanic forcing[J]. Journal of Geophysical Research, 2005, 110(D09107):1-8. https://doi.org/10.1029/2004JD005557.
[35]
Santer B D, Wigley T M L, Doutriaux C, et al. Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends[J]. Journal of Geophysical Research, 2001, 106(D22):28033-28059. https://doi.org/10.1029/2000JD000189.
[36]
McGregor H V, Evans M N, Goosse H, et al. Robust global ocean cooling trend for the Pre-industrial Common Era[J]. Nature Geoscience, 2015, 8(9):671-677.
[37]
Schmidt G A, Jungclaus J H, Ammann C M, et al. Climate forcing reconstructions for use in PMIP simulations of the last millennium(v1.1)[J]. Geoscientific Model Development, 2012, 5:185-191. https://doi.org/10.5194/gmd-5-185-2012.
[38]
Stenchikov G, Delworth T L, Ramaswamy V, et al. Volcanic signals in oceans[J]. Journal of Geophysical Research, 2009, 114(D16104):1-13. doi:10.1029/2008JD011673.
[39]
Miller G H, Geirsdóttir Á, Zhong Y, et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks[J]. Geophysical Research Letters, 2012, 39(L02708):1-5. https://doi.org/10.1029/2011GL050168.
[40]
Plummer C T, Curran M A J, Ommen T D V, et al. An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu[J]. Climate of the Past, 2012, 8:1929-1940. doi:10.5194/cp-8-1929-2012.
[41]
Crowley T J. Causes of climate change over the past 1000 years[J]. Science, 2000, 289(5477):270-277.
[42]
Ammann C M, Joos F, Schimel D S, et al. Solar influence on climate during the past millennium:Results from transient simulations with the NCAR Climate System Model[J]. Proceeding of the National Academy Sciences of the United States of America, 2007, 104(10):3713-3718.
[43]
Solomon S, Daniel J S, Neely R R, et al. The persistently variable "Background" stratospheric aerosol layer and global climate change[J]. Science, 2011, 333(6044):866-870.
[44]
Fyfe J C, Salzen K V, Cole J N S, et al. Surface response to stratospheric aerosol changes in a coupled atmosphere-ocean model[J]. Geophysical Research Letters, 2013, 40(3):584-588.
[45]
Fyfe J C, Gillett N P, Zwiers F W. Overestimated global warming over the past 20 years[J]. Nature Climate Change, 2013, 3:767-769. doi:10.1038/nclimate1972.
[46]
Haywood J M, Jones A, Jones G S. The impact of volcanic eruptions in the period 2000-2013 on global mean temperature trends evaluated in the HadGEM2-ES climate model[J]. Atmospheric Science Letters, 2014, 15(2):92-96.
[47]
Santer B D, Bonfils C, Painter J F, et al. Volcanic contribution to decadal changes in tropospheric temperature[J]. Nature Geoscience, 2014, 7:185-189. https://doi.org/10.1038/ngeo2098.
[48]
Mignot J, Khodri M, Frankignoul C, et al. Volcanic impact on the Atlantic Ocean over the last millennium[J]. Climate of the Past Discussions, 2011, 7:2511-2554. https://doi.org/10.5194/cp-7-1439-2011.
[49]
Zhong Y, Miller G H, Otto-Bliesner B L, et al. Centennial-scale climate change from decadally-paced explosive volcanism:A coupled sea ice-ocean mechanism[J]. Climate Dynamics, 2011, 37:2373-2387. https://doi.org/10.1007/s00382-010-0967-z.
[50]
王斌, 周天军, 俞永强, 等. 地球系统模式发展展望[J]. 气象学报, 2008, 66(6):857-869. Wang Bin, Zhou Tianjun, Yu Yongqiang, et al. A perspective on Earth system model development[J]. Acta Meteorologica Sinica, 2008, 66(6):857-869.
[51]
郑沛楠, 宋军, 张芳苒, 等. 常用海洋数值模式简介[J]. 海洋预报, 2008, 25(4):108-120. Zheng Peinan, Song Jun, Zhang Fangran, et al. Common instruction of some OGCM[J]. Marine Forecasts, 2008, 25(4):108-120.
[52]
王志远, 刘健, 王晓青, 等. 地球系统模式CESM1.0对太阳辐射和温室气体的敏感性差异研究[J]. 第四纪研究, 2016, 36(3):758-767. Wang Zhiyuan, Liu Jian, Wang Xiaoqing, et al. Divergent sensitivity of Earth System Model CESM1.0 to solar radiation versus greenhouse gases[J]. Quaternary Sciences, 2016, 36(3):758-767.
[53]
王志远, 王江林, 张诗茄, 等. 不同时间尺度影响下的北半球夏季风空间特征及其可能影响机制[J]. 第四纪研究, 2018, 38(6):1494-1506. Wang Zhiyuan, Wang Jianglin, Zhang Sijia, et al. Impact of different timescales on the characteristics and mechanisms of the Northern Hemisphere Summer Monsoon:Based on the CESM results[J]. Quaternary Sciences, 2018, 38(6):1494-1506.
[54]
Laskara J, Correia A C M, Gastineau M, et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars[J]. Icarus, 2004, 170(2):343-364.
[55]
Berger A. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12):2362-2367.
[56]
Vieira L E A, Solanki S K, Krivova N A, et al. Evolution of the solar irradiance during the Holocene[J]. Astronomy & Astrophysics, 2011, 531(A6):1-20. doi:10.1051/0004-6361/201015843.
[57]
Kopp G, Lean J L. A new, lower value of total solar irradiance:Evidence and climate significance[J]. Geophysical Research Letters, 2011, 38(1):541-551.
[58]
Gao C, Liu J, Gao Y, et al. Reconstruction of the Holocene volcanic forcing index using bipolar ice core records[J]. 2021, in Preparation.
[59]
Sigl M, Winstrup M, Mcconnell J R, et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years[J]. Nature, 2015, 523(7562):543-549.
[60]
Gao C, Robock A, Ammann C. Volcanic forcing of climate over the past 1500 years:An improved ice core-based index for climate models[J]. Journal of Geophysical Research, 2008, 113(D23111):1-15. doi:10.1029/2008JD010239.
[61]
Grieser J, Schönwiese C. Parameterization of spatiotemporal patterns of volcanic aerosol induced stratospheric optical depth and its climate radiative forcing[J]. Atmósfera, 1999, 12(2):111-133.
[62]
Holton J R, Haynes P H, McIntyre M E, et al. Stratosphere-troposphere exchange[J]. Reviews of Geophysics, 1995, 33(4):403-439.
[63]
Joos F, Spahni R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5):1425-1430.
[64]
Goldewijk K K, Beusen A, Doelman J, et al. Anthropogenic land use estimates for the Holocene-HYDE 3.2[J]. Earth System Science Data, 2017, 9:927-953. doi:10.5194/essd-9-927-2017.
[65]
Sarfraz M, Hussain M Z, Hussain M. Shape-preserving curve interpolation[J]. International Journal of Computer Mathematics. 2012, 89(1):35-53.
[66]
Fritsch F N, Carlson R E. Monotone piecewise cubic interpolation[J]. Society for Industrial and Applied Mathematics Journal on Numerical Analysis, 1980, 17(2):238-246.
[67]
Kahaner D, Moler C B, Nash S. Numerical methods and software[J]. Society for Industrial and Applied Mathematics Review, 1988, 33(1):144-147.
[68]
赵亮, 刘健, 刘斌, 等. 全新世暖期鼎盛期与未来变暖情景下东亚夏季降水和气温变化对比[J]. 第四纪研究, 2019, 39(3):731-741. Zhao Liang, Liu Jian, Liu Bin, et al. Comparison of the summer surface air temperature and precipitation over East Asia between the Holocene Thermal Maximum and the RCP4.5 scenario[J]. Quaternary Sciences, 2019, 39(3):731-741.
[69]
何鹏, 刘健, 刘斌, 等. 全新世两次典型突变事件下北半球季风降水的变化对比[J]. 第四纪研究, 2019, 39(6):1372-1383. He Peng, Liu Jian, Liu Bin, et al. Comparison of changes of Northern Hemisphere monsoon precipitation between two typical abrupt climate events in Holocene[J]. Quaternary Sciences, 2019, 39(6):1372-1383.