摘要 地表干湿变化是气候研究的热点问题。本研究利用一个古气候瞬变模拟试验的数据,采用降水与潜在蒸散量(PET)之比所定义的干湿指数(AI),研究了过去21 ka中国地表干湿状况演变特征。就中国区域平均而言,气候在10 ka B.P.以前总体偏湿,之后则逐渐变干。决定干湿变化的外强迫因子随时间而变。22~19 ka B.P.,AI受低温室气体浓度和大陆冰盖影响,比目前高22%;19~10 ka B.P.,AI随温室气体浓度增加和大陆冰盖融化而逐渐降低,同时随着北半球高纬夏季日照量增大而升高,总体上维持在末次冰盛期的水平;10 ka B.P.之后,AI受控于轨道强迫,逐步降低至目前水平。在过去21 ka,AI变化总体上由PET主导:温室气体浓度、轨道参数分别通过影响近地面气温和相对湿度来改变PET大小;而在冰盖强迫下,PET变化源自气温和相对湿度的联合作用。与轨道尺度变化不同,气候在千年尺度冷事件期间总体偏干,变化主因是降水减少。空间上,AI变化有明显地域差异,不同地区AI变化的主导因子、对相同外强迫的响应形式各不相同。
Abstract:The terrestrial moisture change is one of the hot issues in climate change researches. This study investigates the dry-wet changes over China through the last 21 ka and associated main climatic drivers using data from a transient simulation, which is forced by realistic climatic drivers consisting of orbital parameters, greenhouse gas(GHG) concentrations, continental ice sheets, and meltwater fluxes. The aridity index(AI), as defined by the ratio of annual precipitation to potential evapotranspiration(PET), is used to measure the moisture conditions, where PET is calculated according to the Penman-Monteith equation. Main conclusions are as follows.
(1) At the orbital scale, the dominant external forcing exerting on AI varies with time. On average, the China climate is relatively humid before 10 ka B.P., and then has a drying trend. To be specific, during the period 22~19 ka B.P., AI is 22% higher than present as induced by the lower GHG concentration and ice sheet expansion; in the following 9 ka, the GHG concentration increase and ice sheet melting favor a rise of AI, but in the meantime the increased summer insolation in the northern high-latitudes leads to AI reduction, and thus the AI is overall little changed; thereafter, AI varies under the domination of transient orbital parameters and gradually decreases to the current level. (2) Further diagnostic is conducted to examine main variables responsible for AI changes through decompositions of AI and PET functions. The diagnostic reveals that the aforementioned orbital-scale changes in AI are determined by the altered PET:the GHG concentration and orbital parameters affect PET mainly through altering near-surface air temperature and relative humidity, respectively; under the control of the ice sheet, PET changes are due to the combined effect of air temperature and relative humidity changes. (3) The millennium-scale change is different from that at the orbital scale, and the climate is drier during abrupt cold events due to lower precipitation. (4) Spatially, the changes are regionally different across China, with the external forcing dominating AI changes and the AI responses to the same forcing varying among regions.
刘珊珊, 姜大膀. 过去21 ka中国干湿变化的瞬变模拟分析[J]. 第四纪研究, 2020, 40(6): 1550-1561.
Liu Shanshan, Jiang Dabang. A transient simulation analysis of terrestrial moisture changes over China during the past 21000 years. Quaternary Sciences, 2020, 40(6): 1550-1561.
Berdugo M, Delgado-Baquerizo M Soliveres S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020, 367(6479):787-790.
[2]
Williams A P, Seager R, Abatzoglou J T, et al. Contribution of anthropogenic warming to California drought during 2012-2014[J]. Geophysical Research Letters, 2015, 42(16):6819-6828.
[3]
Zhao S, Zhang H, Wang Z, et al. Simulating the effects of anthropogenic aerosols on terrestrial aridity using an aerosol-climate coupled model[J]. Journal of Climate, 2017, 30(18):7451-7463.
[4]
Lin L, Gettelman A, Fu Q, et al. Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols[J]. Climatic Change, 2017, 146(3):407-422.
[5]
Fu Q, Lin L, Huang J, et al. Changes in terrestrial aridity for the period 850-2080 from the Community Earth System Model[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(6):2857-2873.
[6]
Zuo M, Zhou T, Man W. Wetter global arid regions driven by volcanic eruptions[J]. Journal of Geophysical Research:Atmospheres, 2019, 124(24):13648-13662.
[7]
Feng S, Fu Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19):10081-10094.
[8]
刘珂, 姜大膀. RCP4.5情景下中国未来干湿变化预估[J]. 大气科学, 2015, 39(3):489-502. Liu Ke, Jiang Dabang. Projected changes in the dry/wet climate of China under the RCP4.5 scenario[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(3):489-502.
[9]
Huang J, Yu H, Guan X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016, 6(2):166-171.
[10]
姜江, 姜大膀, 林一骅. 中国干湿区变化与预估[J]. 大气科学, 2017, 41(1):43-56. Jiang Jiang, Jiang Dabang, Lin Yihua. Changes and projection of dry/wet areas over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(1):43-56.
[11]
Greve R. On the response of the Greenland ice sheet to greenhouse climate change[J]. Climatic Change, 2000, 46(3):289-303.
[12]
Huybrechts P, Goelzer H, Janssens I, et al. Response of the Greenland and Antarctic ice sheets to multi-millennial greenhouse warming in the Earth system model of intermediate complexity LOVECLIM[J]. Surveys in Geophysics, 2011, 32(4):397-416.
[13]
Berger A L. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12):2362-2367.
[14]
Braconnot P, Otto-Bliesner B L, Harrison S P, et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum-Part 2:Feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget[J]. Climate of the Past, 2007, 3(2):279-296.
[15]
Hu A, Meehl G A, Han W, et al. Transient response of the MOC and climate to potential melting of the Greenland ice sheet in the 21st century[J]. Geophysical Research Letters, 2009, 36(10):L10707. doi:10710.11029/12009gl037998.
[16]
Peltier W R. Global glacial isostasy and the surface of the ice-age Earth:The ICE-5G(VM2)model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1):111-149.
[17]
Joos F, Spahni R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5):1425-1430.
[18]
Broecker W S, Peteet D M, Rind D. Does the ocean-atmosphere system have more than one stable mode of operation?[J]. Nature, 1985, 315(6014):21-26.
[19]
McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985):834-837.
[20]
Liu S, Jiang D, Lang X. A multi-model analysis of moisture changes during the Last Glacial Maximum[J]. Quaternary Science Reviews, 2018, 191:363-377. doi:10.1016/j.quascirev.2018.05.029.
[21]
Liu S, Jiang D, Lang X. Mid-Holocene drylands:A multi-model analysis using Paleoclimate Modelling Intercomparison Project Phase Ⅲ(PMIP3)simulations[J]. The Holocene, 2019, 29(9):1425-1438.
[22]
姜大膀, 田芝平. 末次冰盛期和全新世中期东亚地区水汽输送的模拟研究[J]. 第四纪研究, 2017, 37(5):999-1008. Jiang Dabang, Tian Zhiping. Last Glacial Maximum and mid-Holocone water vapor transport over East Asia:A modeling study[J]. Quaternary Sciences, 2017, 37(5):999-1008.
[23]
Liu Z, Otto-Bliesner B L, He F, et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming[J]. Science, 2009, 325(5938):310-314.
[24]
He F. Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3[D]. Madison:The Ph.D Thesis of University of Wisconsin-Madison, 2011:171.
[25]
Liu Z, Lu Z, Wen X, et al. Evolution and forcing mechanisms of El Niño over the past 21,000 years[J]. Nature, 2014, 515(7528):550-553.
[26]
Wen X, Liu Z, Wang S, et al. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years[J]. Nature Communications, 2016, 7(1):11999. doi:11910.11038/ncomms11999.
[27]
Lu F, Ma C, Zhu C, et al. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms[J]. Climate Dynamics, 2019, 52(1):969-989.
[28]
Shi J, Yan Q. Evolution of the Asian-African monsoonal precipitation over the last 21 kyr and the associated dynamic mechanisms[J]. Journal of Climate, 2019, 32(19):6551-6569.
[29]
王菁菁, 程军, 鹿化煜. 21 ka以来东亚夏季风区南部和北部气候变化的模拟与重建对比[J]. 第四纪研究, 2019, 39(3):589-601. Wang Jingjing, Cheng Jun, Lu Huayu. Comparative analysis of simulation and reconstruction of climate change in the south and north of the East Asian summer monsoon region over the last 21 ka[J]. Quaternary Sciences, 2019, 39(3):589-601.
[30]
Shanahan T M, McKay N P, Hughen K A, et al. The time-transgressive termination of the African humid period[J]. Nature Geoscience, 2015, 8(2):140-144.
[31]
Yan Q, Zhang Z. Dominating roles of ice sheets and insolation in variation of tropical cyclone genesis potential over the North Alantic during the 21,000 years[J]. Geophysical Research Letters, 2017, 44(20):10624-10632.
[32]
何鹏, 刘健, 刘斌, 等. 全新世两次典型突变事件下北半球季风降水的变化对比[J]. 第四纪研究, 2019, 39(6):1373-1383. He Peng, Liu Jian, Liu Bin, et al. Comparison of changes of Northern Hemisphere monsoon precipitation between two typical abrupt climate events in Holocene[J]. Quaternary Sciences, 2019, 39(6):1373-1383.
[33]
Oliver J E. Encyclopedia of World Climatology[M]. Dordrecht:Springer, 2005:854.
[34]
Robert M, Thomas M. Arid Lands Water Evaluation and Management[M]. Dordrecht:Springer, 2012:1076.
[35]
Middleton N J, Thomas D S G. World atlas of Desertification[M]. 2nd ed. London:Arnold-A Member of the Hodder Headline Group, 1997:182.
[36]
Gao X, Giorgi F. Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model[J]. Global and Planetary Change, 2008, 62:195-209. doi:10.1016/j.gloplacha.2008.02.002.
[37]
Sherwood S, Fu Q. A drier future?[J]. Science, 2014, 343(6172):737-739.
[38]
Pisias N G, Shackleton N J. Modelling the global climate response to orbital forcing and atmospheric carbon dioxide changes[J]. Nature, 1984, 310(5980):757-759.
[39]
Genthon G, Barnola J M, Raynaud D, et al. Vostok ice core:Climatic response to CO2 and orbital forcing changes over the last climatic cycle[J]. Nature, 1987, 329(6138):414-418.
[40]
Allen R G, Pereira L S, Raes D, et al. Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements[M]. Rome:FAO Irrigation and Drainage Paper 56, Food and Agricultural Organization of the United Nations, 1998:300.
[41]
Fu Q, Feng S. Responses of terrestrial aridity to global warming[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(13):7863-7875.
[42]
Chen M, Xie P, Janowiak J E, et al. Global land precipitation:A 50-yr monthly analysis based on gauge observations[J]. Journal of Hydrometeorology, 2002, 3(3):249-266.
[43]
Kanamitsu M, Ebisuzaki W, Woollen J, et al. NCEP-DOE AMIP-Ⅱ reanalysis(R-2)[J]. Bulletin of the American Meteorological Society, 2002, 83(11):1631-1643.
[44]
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D7):7183-7192.
[45]
Yu G, Harrison S P, Xue B. Lake Status Records from China:Data Base Documentation[R]. Max-Planck-Institut für Biogeochemie, 2001:243.
[46]
薛滨, 于革. 中国末次冰盛期以来湖泊水量变化及古气候变化机制解释[J]. 湖泊科学, 2005, 17(1):35-40. Xue Bin, Yu Ge. The lake status of China since LGM and its significance for palaeoclimate[J]. Journal of Lake Sciences, 2005, 17(1):35-40.
[47]
吴海斌, 李琴, 于严严, 等. 末次冰盛期中国气候要素定量重建[J]. 中国科学:地球科学, 2019, 49(8):1259-1268. Wu Haibin, Li Qin, Yu Yanyan, et al. Quantitative climatic reconstructions of the Last Glacial Maximum in China[J]. Science China:Earth Sciences, 2019, 49(8):1259-1268.
[48]
Stocker T F, Qin D, Plattner G-K, et al. Technical summary[M]//Stocker T F, Qin D, Plattner G-K, et al. Climate Change 2013:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York:Cambridge University Press, 2013:3-29.
[49]
周鑫, 郭正堂. 浅析新生代气候变化与大气温室气体浓度的关系[J]. 地学前缘, 2009, 16(5):15-28. Zhou Xin, Guo Zhengtang. On the Cenozoic climate changes and greenhouse gases[J]. Earth Science Frontiers, 2009, 16(5):15-28.
[50]
Jiang D., Lang X, Tian Z. Reliability of climate models for China throught the IPCC third to fifth assessment reports[J]. International Journal of Climatology, 2016, 36(3):1114-1133.