Wildfire responses to millennial- and orbit-scale climate variability and vegetation changes during the last glacial-interglacial periods
Cui Qiaoyu
Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101
Abstract:Wildfire is an important part of the earth system, which is closely related to climate changes and vegetation successions. It is necessary to understand the coupling relationship between fire, climate and vegetation in natural state to understand the fire history dynamics and to predict the frequency and intensity of fire events under future climate change. The last interglacial period and the last deglaciation period are considered as best analogues for our present interglacial period. The comprehensive understanding of the linkages of fire-vegetation-climate during the last glacial-interglacial period can provide important scientific basis for maintaining the stability of terrestrial ecosystem under the background of global warming. Herein, this paper reviews the Quaternary fire studies briefly and synthesis qualified charcoal data contained in the global charcoal database(GCD) in order to investigate the linkages between wildfire, climate, and vegetation changes at the millennial-and orbit-scales during the last glacial-interglacial periods. The main conclusions are:the trend of the global biomass burning since the last interglacial period is consistent with the trend of climate change with a certain lag; the global fire activity in the last interglacial period is higher than that in the last glacial period, but with large variations; the global biomass burning increased in the warm periods of D-O cycles whereas decreased in the cold periods of D-O cycles and Henrich events; the lag of vegetation response to climate can explain the lag of palaeofire records to climate changes. However, due to the lack of sufficient palaeofire records covering the last interglacial period, the uncertainty of the synthesized fire regime for the last interglacial period is remain to be discussed. More high-quality palaeofire and palaeovegetation records covering the last glacial-interglacial period are needed to understand the dynamics of global and regional paleofire at orbital suborbital scale.
崔巧玉. 末次间冰期以来古火对千年及轨道尺度气候和植被变化的响应[J]. 第四纪研究, 2020, 40(6): 1513-1521.
Cui Qiaoyu. Wildfire responses to millennial- and orbit-scale climate variability and vegetation changes during the last glacial-interglacial periods. Quaternary Sciences, 2020, 40(6): 1513-1521.
Scott A C. The pre-Quaternary history of fire[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1):281-329.
[2]
Bowman D M J S, Balch J K, Paulo A, et al. Fire in the Earth system[J]. Science, 2009, 324(5926):481-484.
[3]
Conedera M, Tinner W, Neff C, et al. Reconstructing past fire regimes:Methods, applications, and relevance to fire management and conservation[J]. Quaternary Science Reviews, 2009, 28(5):555-576.
[4]
Carcaillet C, Almquist H, Asnong H, et al. Holocene biomass burning and global dynamics of the carbon cycle[J]. Chemosphere, 2002, 49(8):845-863.
[5]
Trabaud L, Lepart J. Diversity and stability in garrigue ecosystems after fire[J]. Vegetation, 1980, 43(1):49-57.
[6]
Nasi R, Dennis R, Meijaard E, et al. Forest fire and biological diversity[J]. Unasylva, 2002, 53(209):36-40.
[7]
Harrison S P, Marlon J R, Bartlein P J. Fire in the Earth system[M]//Dodson J. Changing Climates, Earth Systems and Society. Netherlands:Springer, 2010:21-48.
[8]
Liu Y, Stanturf J, Goodrick S. Trends in global wildfire potential in a changing climate[J]. Forest Ecology and Management, 2010, 259(4):685-697.
[9]
Alan Pounds J, Bustamante M R, Coloma L A, et al. Widespread amphibian extinctions from epidemic disease driven by global warming[J]. Nature, 2006, 439:161-167. doi:10.1038/nature04246.
[10]
Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change[J]. Nature, 2004, 427:145-148. doi:10.1038/nature02121.
[11]
Scott A C, Jones T P. Fossil charcoal:A plant-fossil record preserved by fire[J]. Geology Today, 1991, 7(6):214-216.
[12]
Clark J S. Particle motion and the theory of charcoal analysis:Source area, transport, deposition, and sampling[J]. Quaternary Research, 1988, 30(1):67-80.
[13]
Whitlock C, Larsen C. Charcoal as a fire proxy[M]//Smol J P, Birks H J B, Last W M, et al. Tracking Environmental Change Using Lake Sediments (Volume 3):Terrestrial, Algal, and Siliceous Indicators. Dordrecht:Kluwer Academic Publishers, 2001:75-97.
[14]
Clark J S, Royall P D. Particle-size evidence for source areas of charcoal accumulation in Late Holocene sediments of eastern north American lakes[J]. Quaternary Research, 1995, 43(1):80-89.
[15]
Tinner W, Conedera M, Ammann B, et al. Pollen and charcoal in lake sediments compared with historically documented forest fires in Southern Switzerland since AD 1920[J]. The Holocene, 1998, 8(1):31-42.
[16]
Black M P, Mooney S D. Holocene fire history from the Greater Blue Mountains World Heritage Area, New South Wales, Australia:The climate, humans and fire nexus[J]. Regional Environmental Change, 2006, 6(1-2):41-51.
[17]
Mooney S D, Maltby E L. Two proxy records revealing the Late Holocene fire history at a site on the central coast of New South Wales, Australia[J]. Austral Ecology, 2006, 31(6):682-695.
[18]
Higuera P E, Gavin D G, Bartlein P J, et al. Peak detection in sediment-charcoal records:Impacts of alternative data analysis methods on fire-history interpretations[J]. International Journal of Wildland Fire, 2010, 19(8):996-1014.
[19]
Power M J, Marlon J R, Bartlein P J, et al. Fire history and the Global Charcoal Database:A new tool for hypothesis testing and data exploration[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1):52-59.
[20]
Blarquez O, Vannière B, Marlon J R, et al. paleofire:An R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning[J]. Computers & Geosciences, 2014, 72:255-261. doi:10.1016/j.cageo.2014.07.020.
[21]
Marlon J R, Bartlein P J, Daniau A-L, et al. Global biomass burning:A synthesis and review of Holocene paleofire records and their controls[J]. Quaternary Science Reviews, 2013, 65:5-25. doi:10.1016/j.quascirev.2012.11.029.
[22]
Marlon J R, Kelly R, Daniau A L, et al. Reconstructions of biomass burning from sediment-charcoal records to improve data-model comparisons[J]. Biogeosciences, 2016, 13(11):3225-3244.
[23]
Molinari C, Lehsten V, Harmand P, et al. Exploring potential drivers of European biomass burning over the Holocene:A data-model analysis[J]. Global Ecology & Biogeography, 2013, 22(12):1248-1260.
[24]
Leys B A, Umbanhowar C, Marlon J R, et al. Global fire history of grassland biomes[J]. Ecology & Evolution, 2018, 8(3):8831-8852.
[25]
Power M J, Mayle F E, Bartlein P J, et al. Climatic control of the biomass-burning decline in the Americas after AD 1500[J]. The Holocene, 2013, 23(1):3-13.
[26]
Marlon J R, Bartlein P J, Walsh M K, et al. Wildfire responses to abrupt climate change in North America[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(8):2519-2524.
[27]
Vannière B, Blarquez O, Rius D, et al. 7000-year human legacy of elevation-dependent European fire regimes[J]. Quaternary Science Reviews, 2016, 132:206-212. doi:10.1016/j.quascirev.2015.11.012.
[28]
Marlon J R, Bartlein P J, Carcaillet C, et al. Climate and human influences on global biomass burning over the past two millennia[J]. Nature Geoscience, 2008, 1(10):697-702.
[29]
Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122.
[30]
刘嘉麒, 倪云燕, 储国强. 第四纪的主要气候事件[J]. 第四纪研究, 2001, 21(3):239-248. Lui Jiaqi, Ni Yunyan, Chu Guoqiang. Main palaeoclimatic events in the Quaternary[J]. Quaternary Sciences, 2001, 21(3):239-248.
[31]
Dansgaard W, Johnsen S J, Clausen H B, et al. Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6434):218-220.
[32]
江鸿, 饶志国. 火的历史重建及其与气候变化和人类活动关系研究进展[J]. 海洋地质与第四纪地质, 2018, 38(2):185-197. Jiang Hong, Rao Zhiguo. Research progress on fire history reconstruction and its implications for climate change and human activities[J]. Marine Geology & Quaternary Geology, 2018, 38(2):185-197.
[33]
Niklasson M, Zin E, Zielonka T, et al. A 350-year tree-ring fire record from Bia?owiez a Primeval Forest, Poland:Implications for Central European lowland fire history[J]. Journal of Ecology, 2010, 98(6):1319-1329.
[34]
Fulé P Z, Ribas M, Gutiérrez E, et al. Forest structure and fire history in an old Pinus nigra forest, Eastern Spain[J]. Forest Ecology and Management, 2008, 255(3):1234-1242.
[35]
Blackford J J. Charcoal fragments in surface samples following a fire and implications for interpretation of subfossil charcoal data[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164(1):33-42.
[36]
Carcaillet C, Bouvier M, Fréchette B, et al. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history[J]. The Holocene, 2001, 11(4):467-476.
[37]
Pisaric M F J. Long-distance transport of terrestrial plant material by convection resulting from forest fires[J]. Journal of Paleolimnology, 2002, 28(3):349-354.
[38]
Tinner W, Hofstetter S, Zeugin F, et al. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps-Implications for fire history reconstruction[J]. The Holocene, 2006, 16(16):287-292.
[39]
Peters M E, Higuera P E. Quantifying the source area of macroscopic charcoal with a particle dispersal model[J]. Quaternary Research, 2007, 67(2):304-310.
[40]
Cui Q, Gaillard M J, Lemdahl G, et al. The role of tree composition in Holocene fire history of the hemiboreal and southern boreal zones of Southern Sweden, as revealed by the application of the Landscape Reconstruction Algorithm:Implications for biodiversity and climate-change issues[J]. The Holocene, 2013, 23(12):1747-1763.
[41]
Cui Q Y, Gaillard M J, Vannière B, et al. Evaluating fossil charcoal representation in small peat bogs:Detailed Holocene fire records from Southern Sweden[J]. The Holocene, 2020. doi:10.1177/0959683620941069.
[42]
Daniau A L, Sánchez-Goñi M F, Beaufort L, et al. Dansgaard-Oeschger climatic variability revealed by fire emissions in Southwestern Iberia[J]. Quaternary Science Reviews, 2007, 26(9):1369-1383.
[43]
Power M J, Marlon J, Ortiz N, et al. Changes in fire regimes since the Last Glacial Maximum:An assessment based on a global synthesis and analysis of charcoal data[J]. Climate Dynamics, 2008, 30(7):887-907.
[44]
Daniau A L, Harrison S P, Bartlein P J. Fire regimes during the Last Glacial[J]. Quaternary Science Reviews, 2010, 29(21):2918-2930.
[45]
Molinari C, Carcaillet C, Bradshaw R H W, et al. Fire-vegetation interactions during the last 11,000 years in boreal and cold temperate forests of Fennoscandia[J]. Quaternary Science Reviews, 2020, 241:106408. doi:10.1016/j.quascirev.2020.106408.
[46]
Bobek P, Šamonil P, Jamrichová E. Biotic controls on Holocene fire frequency in a temperate mountain forest, Czech Republic[J]. Journal of Quaternary Science, 2018, 33(8):892-904.
[47]
Leys B, Carcaillet C. Subalpine fires:The roles of vegetation, climate and, ultimately, land uses[J]. Climatic Change, 2016, 135(3):683-697.
[48]
Calvo M M, Prentice I C, Harrison S P. Climate versus carbon dioxide controls on biomass burning:A model analysis of the glacial-interglacial contrast[J]. Biogeosciences, 2014, 11(21):2569-2593.
[50]
Glasspool I J, Scott A C. Identifying past fire events[M]//Belcher C M. Fire Phenomena and the Earth System:An Interdisciplinary Guide to Fire Science. Hoboken:Wiley-Blackwell, 2013:157-176.
[49]
Power M J. A 21-000-year history of fire[M]//Belcher C M. Fire Phenomena and the Earth System:An Interdisciplinary Guide to Fire Science. Hoboken:Wiley-Blackwell, 2013:207-228.
[51]
Bond G, Broecker W, Johnsen S, et al. Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6442):143-147.
[52]
Leuschner D C, Sirocko F. The low-latitude monsoon climate during Dansgaard-Oeschger cycles and Heinrich Events[J]. Quaternary Science Reviews, 2000, 19(1):243-254.
[53]
Charles C D, Lynch-Stieglitz J, Ninnemann U S, et al. Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations[J]. Earth and Planetary Science Letters, 1996, 142(1):19-27.
[54]
Cheng H, Edwards R L, Broecker W S, et al. Ice age terminations[J]. Science, 2009, 326(5950):248-252.
[55]
Cheng H, Sinha A, Cruz F W, et al. Climate change patterns in Amazonia and biodiversity[J]. Nature Communications, 2013, 4(1):1411.
[56]
Griffiths M L, Drysdale R N, Gagan M K, et al. Australasian monsoon response to Dansgaard-Oeschger event 21 and teleconnections to higher latitudes[J]. Earth and Planetary Science Letters, 2013, 369-370:294-304. doi:10.1016/j.epsl.2013.03.030.
[57]
Wang Y, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182):1090-1093.
[58]
Bay R C, Bramall N, Price P B. Bipolar correlation of volcanism with millennial climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17):6341.
[59]
Fischer H, Schüpbach S, Gfeller G, et al. Millennial changes in North American wildfire and soil activity over the last glacial cycle[J]. Nature Geoscience, 2015, 8(9):723-727.
[60]
Mooney S D, Harrison S P, Bartlein P J, et al. Late Quaternary fire regimes of Australasia[J]. Quaternary Science Reviews, 2011, 30(1):28-46.
[61]
Clement A C, Peterson L C. Mechanisms of abrupt climate change of the last glacial period[J]. Reviews of Geophysics, 2008, 46:RG4002. doi:10.1029/2006RG000204.
[64]
Shi Y, Pan B, Wei M, et al. Wildfire evolution and response to climate change in the Yinchuan Basin during the past 1.5 Ma based on the charcoal records of the PL02 core[J]. Quaternary Science Reviews, 2020, 241:106393. doi:10.1016/j.quascirev.2020.106393.
[65]
Anderson R S, Jiménez-Moreno G, Belanger M, et al. Fire history of the unique high-elevation Snowmastodon(Ziegler Reservoir)site during MIS6-4, with comparisons of TⅡ to TⅠ in the southern Colorado Rockies[J]. Quaternary Science Reviews, 2020, 232:106213. doi:10.1016/j.quascirev.2020.106213.
[62]
Sun X, Li X, Chen H. Evidence for natural fire and climate history since 37 ka BP in the northern part of the South China Sea[J]. Science China:Earth Sciences, 2000, 43(5):487-493.
[63]
Muller J, Kylander M, Wüst R A J, et al. Possible evidence for wet Heinrich phases in tropical NE Australia:The Lynch's Crater deposit[J]. Quaternary Science Reviews, 2008, 27(5):468-475.
[66]
Bauch H A. Interglacial climates and the Atlantic meridional overturning circulation:Is there an Arctic controversy?[J]. Quaternary Science Reviews, 2013, 63:1-22. doi:10.1016/j.quascirev.2012.11.023.
[67]
Wang M, Zong Y. Significant SST differences between peak MIS5 and MIS1 along the low-latitude western North Pacific margin[J]. Quaternary Science Reviews, 2020, 227:106060. doi:10.1016/j.quascirev.2019.106060.
[68]
Otto-Bliesner B L, Rosenbloom N, Stone E J, et al. How warm was the last interglacial? New model-data comparisons[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2013, 371:20130097. doi:10.1098/rsta.2013.0097.
[69]
Anderson R F, Fleisher M Q, Lao Y. Glacial-interglacial variability in the delivery of dust to the central equatorial Pacific Ocean[J]. Earth and Planetary Science Letters, 2006, 242(3):406-414.
[70]
Scussolini P, Bakker P, Guo C, et al. Agreement between reconstructed and modeled boreal precipitation of the Last Interglacial[J]. Science Advances, 2019, 5:eaax7047. doi:10.1126/sciadv.aax7047.
[71]
Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436.
[72]
Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349:aaa4019. doi:10.1126/science.aaa4019.
[73]
Lowe J, Walker M. Reconstructing Quaternary Environments[M]. New York:Routledge, 2015:538.
[74]
Andersen K K, Azuma N, Barnola J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 431(7005):147-151.
[75]
胡圆峰, 周斌, 庞洋, 等. 古人类用火研究及其进展[J]. 第四纪研究, 2019, 39(1):240-257. Hu Yuanfeng, Zhou Bin, Pang Yang, et al. A review of study methods and progress on hominid use of fire[J]. Quaternary Sciences, 2019, 39(1):240-257.
[76]
刘恋. 新生代增温情景下自然火历史的研究[J]. 第四纪研究, 2019, 39(5):1289-1296. Liu Lian. The natural fire history during warming periods of Cenozoic[J]. Quaternary Sciences, 2019, 39(5):1289-1296.