Regional differences of East Asian monsoon precipitation in response to orbital forcing and global ice-volume changes since the late Middle Pleistocene
Xie Xiaoxun1,2, Liu Xiaodong1,3
1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, Shaanxi;
2. National Earth System Science Data Center, National Science and Technology Infrastructure of China, Beijing 100101;
3. University of Chinese Academy of Sciences, Beijing 100049
Abstract:Based on the results of long-term transient simulations driven by different climatic forcings for the last 300 ka simulated by Community Climate System Model version 3(CCSM3), we comparatively studied the regional differences of East Asian monsoon(EAM) precipitation since the late Middle Pleistocene and their response mechanisms to the changes of insolation, greenhouse gases and global ice volume. Three experiments were conducted, including an orbital-forcing-only experiment (O), an orbital forcing plus greenhouse gases forcing experiment(OG) and a full-forcing experiment(OGI) with further addition of global ice-sheet forcing. The results showed that:The EAM precipitation on the orbital time scale is dominated by a 23-ka precessional period, but the phase of EAM precipitation at the precessional band is different between the northern EAM(35°~45°N, 105°~120°E) and southern EAM(25°~35°N, 105°~120°E). The northern EAM precipitation is mainly controlled by precession forcing, changing in phase with the Northern Hemisphere(NH) insolation in June, while the southern EAM precipitation is directly modulated by global ice-volume variation, lagging behind the NH insolation in June by about 5-ka, with the maximum(minimum) of the southern EAM precipitation corresponding to the minimum(maximum) of global ice volume. The increased NH summer insolation induced by the precession, can enhance the water vapor transport northward in the East Asian region by amplifying the land-sea thermal contrast between the East Asian continent and the North Pacific, thereby strengthening the summer precipitation of the northern EAM. Conversely, the deceased NH summer insolation induced by the precession can weaken the northern EAM precipitation. When the Arctic ice sheets decreases(increases) at the precessional band, the summer circulation anomalies of the middle troposphere in response to the changes in the ice volume can be transmitted to the southern East Asia through the North Pacific, resulting in enhanced(weakened) convergence of wind fields in the lower troposphere, and corresponding increase(decrease) in precipitation over southern EAM. Our simulation results suggest that there are significant regional differences in the EAM precipitation changes on the orbital time scale. Orbital forcing and ice volume changes dominate the summer precipitation changes in the northern and southern East Asia at the precessional scale, respectively.
谢小训, 刘晓东. 晚中更新世以来东亚季风降水变化对轨道强迫和全球冰量变动响应的区域差异[J]. 第四纪研究, 2020, 40(6): 1486-1498.
Xie Xiaoxun, Liu Xiaodong. Regional differences of East Asian monsoon precipitation in response to orbital forcing and global ice-volume changes since the late Middle Pleistocene. Quaternary Sciences, 2020, 40(6): 1486-1498.
Ding Y, Chan J C L. The East Asian summer monsoon:An overview[J]. Meteorology and Atmospheric Physics, 2005, 89(1):117-142.
[2]
丁一汇, 孙颖, 刘芸芸, 等. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, 2013, 37(2):253-280. Ding Yihui, Sun Ying, Liu Yunyun, et al. Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2):253-280.
[3]
An Z. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1):171-187.
[4]
Wang P, Wang B, Cheng H, et al. The global monsoon across timescales:Coherent variability of regional monsoons[J]. Climate of the Past, 2014, 10(6):2007-2052.
[5]
Berger A. Milankovitch Theory and climate[J]. Reviews of Geophysics, 1988, 26(4):624-657.
[6]
Ding Z, Liu T, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years[J]. Quaternary Research, 1995, 44(2):149-159.
[7]
An Z, An S, Liu T, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China[J]. Quaternary International, 1990, 7:91-95. doi:10.1016/1040-6182(90)90042-3.
[8]
Sun Y, Clemens S C, An Z, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Ma monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1-2):33-48.
[9]
Sun Y, Kutzbach J, An Z, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews, 2015, 115:132-142. doi:10.1016/j.quascirev.2015.03.009.
[10]
Beck J W, Zhou W, Li C, et al. A 550,000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391):877-881.
[11]
Wang Y, Cheng H, Edwards R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182):1090-1093.
[12]
Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646.
[13]
马小林, 田军. 15 Ma以来海陆记录的轨道-构造尺度东亚季风的演化以及西北内陆的干旱化[J]. 第四纪研究, 2015, 35(6):1320-1330. Ma Xiaolin, Tian Jun. East Asian monsoon evolution and aridification of Northwest China viewed from land and sea on the tectonic-orbital time scale since 15 Ma[J]. Quaternary Sciences, 2015, 35(6):1320-1330.
[14]
程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学, 2019, 49(10):1565-1589. Cheng Hai, Zhang Haiwei, Zhao Jingyao, et al. Chinese stalagmite paleoclimate researches:A review and perspective[J]. Science China:Earth Sciences, 2019, 49(10):1565-1589.
[15]
Chen F, Xu Q, Chen J, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5:11186. doi:10.1038/srep11186.
[16]
Xie S, Evershed R P, Huang X, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in Central China[J]. Geology, 2013, 41(8):827-830.
[17]
Liu X, Liu J, Chen S, et al. New insights on Chinese cave δ18O records and their paleoclimatic significance[J]. Earth-Science Reviews, 2020,207:103216. doi:10.1016/j.earscirev.2020.103216.
[18]
Kutzbach J E. Monsoon climate of the Early Holocene:Climate experiment with the Earth's orbital parameters for 9000 years ago[J]. Science, 1981, 214(4516):59-61.
[19]
Kutzbach J E, Guetter P J. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years[J]. Journal of the Atmospheric Sciences, 1986, 43(16):1726-1759.
[20]
De Noblet N, Braconnot P, Joussaume S, et al. Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126,115 and 6 kBP[J]. Climate Dynamics, 1996, 12(9):589-603.
[21]
Liu X, Liu Z, Kutzbach J E, et al. Hemispheric insolation forcing of the Indian Ocean and Asian monsoon:Local versus remote impacts[J]. Journal of Climate, 2006, 19(23):6195-6208.
[22]
Jiang D, Lang X. Last Glacial Maximum East Asian monsoon:Results of PMIP simulations[J]. Journal of Climate, 2010, 23(18):5030-5038.
[23]
刘晓东, 石正国. 岁差对亚洲夏季风气候变化影响研究进展[J]. 科学通报, 2009, 54(20):3097-3107. Liu Xiaodong, Shi Zhengguo. Effect of precession on the Asian summer monsoon evolution:A systematic review[J]. Chinese Science Bulletin, 2009, 54(20):3097-3107.
[24]
石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟:历史与展望[J]. 第四纪研究, 2020, 40(1):8-17. Shi Zhengguo, Lei Jing, Zhou Peng, et al. Numerical simulation researches on orbital-scale Asian climate dynamics:History and perspective[J]. Quaternary Sciences, 2020, 40(1):8-17.
[25]
Kutzbach J E, Liu X, Liu Z, et al. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years[J]. Climate Dynamics, 2008, 30(6):567-579.
[26]
Li X, Liu X, Qiu L, et al. Transient simulation of orbital-scale precipitation variation in monsoonal East Asia and arid Central Asia during the last 150 ka[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(14):7481-7488.
[27]
Shi Z G, Liu X D, Sun Y B, et al. Distinct responses of East Asian summer and winter monsoons to astronomical forcing[J]. Climate of the Past, 2011, 7(4):1363-1370.
[28]
Weber S L, Tuenter E. The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons[J]. Quaternary Science Reviews, 2011, 30(3-4):469-479.
[29]
Wen X, Liu Z, Wang S, et al. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years[J]. Nature Communications, 2016, 7:11999. doi:10.1038/ncomms11999.
[30]
Shi Z, Liu X, Cheng X. Anti-phased response of northern and southern East Asian summer precipitation to ENSO modulation of orbital forcing[J]. Quaternary Science Reviews, 2012, 40:30-38. doi:10.1016/j.quascirev.2012.02.019.
[31]
Thomas E K, Clemens S C, Sun Y, et al. Midlatitude land surface temperature impacts the timing and structure of glacial maxima[J]. Geophysical Research Letters, 2017, 44(2):984-992.
[32]
Xie X, Liu X, Chen G, et al. A transient modeling study of the latitude dependence of East Asian winter monsoon variations on orbital timescales[J]. Geophysical Research Letters, 2019, 46(13):7565-7573.
[33]
Collins W D, Bitz C M, Blackmon M L, et al. The Community Climate System Model Version 3(CCSM3)[J]. Journal of Climate, 2006, 19(11):2122-2143.
[34]
Yeager S G, Shields C A, Large W G, et al. The low-resolution CCSM3[J]. Journal of Climate, 2006, 19(11):2545-2566.
[35]
Zhu J, Liu Z, Zhang X, et al. Linear weakening of the AMOC in response to receding glacial ice sheets in CCSM 3[J]. Geophysical Research Letters, 2014, 41(17):6252-6258.
[36]
Mohtadi M, Prange M, Oppo D W, et al. North Atlantic forcing of tropical Indian Ocean climate[J]. Nature, 2014, 509(7498):76-80.
[37]
Otto-Bliesner B L, Brady E C, Clauzet G, et al. Last Glacial Maximum and Holocene climate in CCSM3[J]. Journal of Climate, 2006, 19(11):2526-2544.
[38]
Berger A. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12):2362-2367.
[39]
Augustin L, Barbante C, Barnes P R, et al. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429(6992):623-628.
[40]
Loulergue L, Schilt A, Spahni R, et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years[J]. Nature, 2008, 453(7193):383-386.
[41]
Peltier W R. Global glacial isostasy and the surface of the ice-age Earth:The ICE-5G(VM2)model and GRACE[J]. Annual Review of Earth and Planetary Sciences, 2004, 32(1):111-149.
[42]
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003.
[43]
Lorenz S J, Lohmann G. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model:Method and application for the Holocene[J]. Climate Dynamics, 2004, 23(7-8):727-743.
[44]
Wang B, Wu Z, Li J, et al. How to measure the strength of the East Asian summer monsoon[J]. Journal of Climate, 2008, 21(17):4449-4463.
[45]
Chang C P, Zhang Y, Li T. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part Ⅰ:Roles of the subtropical ridge[J]. Journal of Climate, 2000, 13(24):4310-4325.
[46]
Bloomfield P. Fourier Analysis of Time Series:An Introduction[M]. New York:John Wiley & Sons, 1976:1-258.
[47]
Hannan E J. Multiple Time Series[M]. New York:John Wiley & Sons, 1970:536.
[48]
Zhou T, Gong D, Li J, et al. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs[J]. Meteorologische Zeitschrift, 2009, 18(4):455-467.
[49]
黄荣辉, 张振洲, 黄刚, 等. 夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别[J]. 大气科学, 1998, 22(4):460-469. Huang Ronghui, Zhang Zhenzhou, Huang Gang, et al. Characteristics of the water vapor transport in East Asian monsoon region and its difference from that in South Asian monsoon region in summer[J]. Chinese Journal of Atmospheric Sciences, 1998, 22(4):460-469.
[50]
周晓霞, 丁一汇, 王盘兴. 夏季亚洲季风区的水汽输送及其对中国降水的影响[J]. 气象学报, 2008, 66(1):59-70. Zhou Xiaoxia, Ding Yihui, Wang Panxing. Moisture transport in Asian summer monsoon region and its relationship with summer precipitation in China[J]. Journal of Meteorological Research, 2008, 66(1):59-70.
[51]
姜大膀, 田芝平. 末次冰盛期和全新世中期东亚地区水汽输送的模拟研究[J]. 第四纪研究, 2017, 37(5):999-1008. Jiang Dabang, Tian Zhiping. Last Glacial Maximum and mid-Holocene water vapor transport over East Asia:A modeling study[J]. Quaternary Sciences, 2017, 37(5):999-1008.
[52]
Batchelor C L, Margold M, Krapp M, et al. The configuration of Northern Hemisphere ice sheets through the Quaternary[J]. Nature Communications, 2019:10(1):1-10.
[53]
Yin Q Z, Berger A, Crucifix M. Individual and combined effects of ice sheets and precession on MIS-13 climate[J]. Climate of the Past, 2009, 5(2):229-243.
[54]
Shi F, Yin Q, Nikolova I, et al. Impacts of extremely asymmetrical polar ice sheets on the East Asian summer monsoon during the MIS-13 interglacial[J]. Quaternary Science Reviews, 2020, 230:106164. doi:10.1016/j.quascirev.2020.106164.