1. 兰州大学资源环境学院, 西部环境教育部重点实验室, 甘肃 兰州 730000;
2. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven D27570, Germany;
3. 中国科学院青藏高原地球科学卓越创新中心, 北京 100101
Changes in the north boundary of the East Asian summer monsoon in interglacials of last 800 ka
Wang Zhenqian1, Zhang Xu1,2,3
1. Key Laboratory of Western China's Environmental Systems, Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu;
2. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven D 27570, Germany;
3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101
Abstract:In this work, we employed a fully coupled climate model, COSMOS(ECHAM5/JSBACH/MPIOM), to investigate climate responses in East Asian Summer Monsoon(EASM) regions to warm interglacial periods in the 800 ka. In contrast to previous studies in which peak warm interglacials are defined by highest boreal summer insolation, here we define that an equilibrated warm interglacial is a period with low global ice volume and no existences of millennial-scale climate variability after the preceding deglaciation. Therefore, the defined interglacials are real time intervals, which can be compared with paleoclimate reconstructions directly. Our results show that, compared with the Pre-industrial(PI) period, surface air temperature in most areas of middle-high latitude regions in China is increased, including MIS1, MIS5.5, MIS7.3, MIS7.5, MIS9.3, MIS11.3, MIS13.1, MIS15.1, and MIS17, while cooling is found in the MIS15.5 and MIS19.3. MIS15.5 is characterized by a decrease in precipitation in the Northern China, while an increase is found in the other interglacial periods. In MIS15.5, as a consequence of lower-than-PI summer solar radiation due to eccentricity-modulated precession as well as a low atmospheric CO2 level, the land-sea thermal contrast is weakened, which gives rise to a southward shift of the northern boundary of the EASM. In MIS19.3, similar orbital settings results in slight changes in the land-sea thermal contrast and hence the intensity of the EASM was almost unchanged. In the rest of interglacial periods with higher-than-PI boreal summer insolation, the EASM north boundary migrated northwest, in association with changes in intensity and position of the western Pacific Subtropical High(WPSH). This indicates that changes in boreal summer insolation might via the WPSH modulate northern China precipitation and hence the EASM north boundary.
王振乾, 张旭. 不同间冰期东亚夏季风北界的位置变化及机制研究[J]. 第四纪研究, 2020, 40(6): 1474-1485.
Wang Zhenqian, Zhang Xu. Changes in the north boundary of the East Asian summer monsoon in interglacials of last 800 ka. Quaternary Sciences, 2020, 40(6): 1474-1485.
World Climate Research Programme. The World Climate Research Programme Implementation Plan 2010-2015[M]. Geneva:World Climate Research Programme, 2009:33.
[2]
An Zhisheng, Wu Guoxiong, Li Jianping, et al. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):29-77.
[3]
Sperber K R, Annamalai H, Kang I S, et al. The Asian summer monsoon:An intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century[J]. Climate Dynamics, 2013, 41(9-10):2711-2744.
[4]
Song Fengfei, Zhou Tianjun, Qian Yun. Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models[J]. Geophysical Research Letters, 2014, 41(2):596-603.
[5]
Lei Yonghui, Hoskins Brian, Slingo Julia. Exploring the interplay between natural decadal variability and anthropogenic climate change in summer rainfall over China. Part Ⅰ:Observational evidence[J]. Journal of Climate, 2011, 24(17):4584-4599.
[6]
中国气象局. 中国气象灾害年鉴(2016)[M]. 北京:气象出版社, 2016:1-211. China Meteorological Administration. China Meteorological Disaster Yearbook(2016)[M]. Beijing:China Meteorological Press, 2016:1-211.
[7]
Ministry of Emergency Management of the People's Republic of China.MEM Announces "Ten Natural Disasters in 2019"[EB/OL]. 2020-01-12, https://www.mem.gov.cn/xw/bndt/202001/t20200112_343410.shtml.
[8]
CCTV News. 30.2 Million People Were Affected by Floods in the South China[EB/OL]. 2020-07-10, http://m.news.cctv.com/2020/07/10/ARTIRo94o79JXkFo9ynd0Bwa200710.shtml.
[9]
胡豪然, 钱维宏. 东亚夏季风北边缘的确认[J]. 自然科学进展, 2007, 17(1):57-65. Hu Haoran, Qian Weihong. Confirmation of the north edge of East Asian summer monsoon[J]. Progress in Natural Science, 2007, 17(1):57-65.
[10]
黄荣辉, 周连童. 我国重大气候灾害特征、形成机理和预测研究[J]. 自然灾害学报, 2002, 11(1):1-9. Huang Ronghui, Zhou Liantong. Research on the characteristics, formation mechanism and prediction of severe climatic disasters in China[J]. Journal of Natural Disasters, 2002, 11(1):1-9.
[11]
史正涛. 中国季风边缘带自然灾害的区域特征[J]. 干旱区资源与环境, 1996, 10(4):1-7. Shi Zhengtao. Regional characters of natural disaster in marginal monsoon belt of China[J]. Journal of Arid Land Resources and Environment, 1996, 10(4):1-7.
[12]
施尚文, 巢俊民. 全国热带夏季风学术会议文集:1981[C]. 昆明:云南人民出版社, 1983:230. Shi Shangwen, Chao Junmin. Proceedings of the National Conference on Tropical Summer Monsoon:1981[C]. Kunming:Yunnan People's Publishing House, 1983:230.
[13]
朱乾根, 杨松. 东亚副热带季风的北进及其低频振荡[J]. 南京气象学院学报, 1989, 12(3):249-258. Zhu Qiangen, Yang Song. The northward advance and oscillation of the East-Asian summer monsoon[J]. Journal of Nanjing Institute of Meteorology, 1989, 12(3):249-258.
[14]
王安宇, 吴池胜, 林文实, 等. 关于我国东部夏季风进退的定义[J]. 高原气象, 1999, 18(3):400-408. Wang Anyu, Wu Chisheng, Lin Wenshi, et al. The definition of the advance and retreat of the summer monsoon in China[J]. Plateau Meteorology, 1999, 18(3):400-408.
[15]
Chen Jie, Huang Wei, Jin Liya, et al. A climatological northern boundary index for the East Asian summer monsoon and its interannual variability[J]. Science China:Earth Sciences, 2018, 61(1):13-22.
[16]
姜江, 姜大膀, 林一骅. 1961-2009年中国季风区范围和季风降水变化[J]. 大气科学, 2015, 39(4):722-730. Jiang Jiang, Jiang Dabang, Lin Yihua. Monsoon area and precipitation over China for 1961-2009[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(4):722-730.
[17]
Wang Bin, Liu Jian, Kim Hyung-Jin, et al. Recent change of the global monsoon precipitation(1979-2008)[J]. Climate Dynamics, 2012, 39(5):1123-1135.
[18]
Qian Weihong, Lee Dong-Kyou. Seasonal march of Asian summer monsoon[J]. International Journal of Climatology, 2000, 20(11):1371-1386.
[19]
Qian Weihong, Lin Xiang, Zhu Yafen, et al. Climatic regime shift and decadal anomalous events in China[J]. Climatic Change, 2007, 84(2):167-189.
[20]
Wang Bin, Lin Ho. Rainy season of the Asian-Pacific summer monsoon[J]. Journal of Climate, 2002, 15(4):386-398.
[21]
Qian Weihong, Zhu Yafen. Little Ice Age climate near Beijing, China, inferred from historical and stalagmite records[J]. Quaternary Research, 2002, 57(1):109-119.
[22]
李春, 韩笑. 东亚夏季风北界与我国夏季降水关系的研究[J]. 高原气象, 2008, 27(2):325-330. Li Chun, Han Xiao. Relationship of northern boundary of East Asian summer monsoon and summer precipitation in eastern part of China[J]. Plateau Meteorology, 2008, 27(2):325-330.
[23]
Jin Chunhan, Liu Jian, Wang Bin, et al. Decadal variations of the East Asian summer monsoon forced by 11-year insolation cycle[J]. Journal of Climate, 2019, 32(10):2735-2745.
[24]
姜江, 姜大膀, 林一骅. RCP4.5情景下中国季风区及降水变化预估[J]. 大气科学, 2015, 39(5):901-910. Jiang Jiang, Jiang Dabang, Lin Yihua. Projection of monsoon area and precipitation in China under the RCP4.5 Scenario[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(5):901-910.
[25]
Lee June-Yi, Wang Bin. Future change of global monsoon in the CMIP5[J]. Climate Dynamics, 2014, 42(1-2):101-119.
[26]
Tzedakis P C, Raynaud D, McManus J F, et al. Interglacial diversity[J]. Nature Geoscience, 2009, 2(11):751-755.
[27]
Yin Qiuzhen, Berger Andre. Individual contribution of insolation and CO2 to the interglacial climates of the past 800,000 years[J]. Climate Dynamics, 2012, 38(3-4):709-724.
[28]
Yin Qiuzhen, Berger Andre. Insolation and CO2 contribution to the interglacial climate before and after the Mid-Brunhes Event[J]. Nature Geoscience, 2010, 3(4):243-246.
[29]
Past Interglacials Working Group of PAGES. Interglacials of the last 800,000 years[J]. Reviews of Geophysics, 2016, 54(1):162-219.
[30]
Barker S, Knorr G, Conn S, et al. Early interglacial legacy of deglacial climate instability[J]. Paleoceanography and Paleoclimatology, 2019, 34(8):1455-1475.
[31]
Berger André L. Long-term variations of daily insolation and Quaternary climatic changes[J]. Journal of the Atmospheric Sciences, 1978, 35(12):2362-2367.
[32]
Lüthi Dieter, Le Floch Martine, Bereiter Bernhard, et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present[J]. Nature, 2008, 453(7193):379-382.
[33]
Loulergue Laetitia, Schilt Adrian, Spahni Renato, et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years[J]. Nature, 2008, 453(7193):383-386.
[34]
Schilt Adrian, Baumgartner Matthias, Blunier Thomas, et al. Glacial-interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years[J]. Quaternary Science Reviews, 2010, 29(1):182-192.
[35]
Bereiter B, Eggleston S, Schmitt J, et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present[J]. Geophysical Research Letters, 2015, 42(2):542-549.
[36]
Stepanek Christian, Lohmann Gerrit. Modelling mid-Pliocene climate with COSMOS[J]. Geoscientific Model Development, 2012, 5(5):1221-1243.
[37]
Harris Ian, Osborn Timothy J, Jones Phil, et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset[J]. Scientific Data, 2020, 7(1):109.
[38]
Becker A, Finger P, Meyer-Christoffer A, et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial(trend)analysis from 1901-present[J]. Earth System Science Data, 2013, 5(1):71-99.
[39]
Xie Pingping, Arkin Phillip A. Global precipitation:A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs[J]. Bulletin of the American Meteorological Society, 1997, 78(11):2539-2558.
[40]
富元海, 刘宣飞. 中国北方季风边缘区边界位置的年代际变化[J]. 大气科学学报, 2007, 30(1):94-100. Fu Yuanhai, Liu Xuanfei. Interdecadal fluctuations of the monsoon's boundary zone in the Northern China[J]. Transactions of Atmospheric Sciences, 2007, 30(1):94-100.
[41]
曾剑, 张强, 王春玲. 东亚夏季风边缘摆动区陆面能量时空分布规律及其与气候环境的关系[J]. 气象学报, 2016, 74(6):876-888. Zeng Jian, Zhang Qiang, Wang Chunling. Spatial-temporal pattern of surface energy fluxes over the East Asian summer monsoon edge area in China and its relationship with climate[J]. Acta Meteorologica Sinica, 2016, 74(6):876-888.
[42]
Liu Jian, Wang Bin, Ding Qinghua, et al. Centennial variations of the global monsoon precipitation in the last millennium:Results from ECHO-G Model[J]. Journal of Climate, 2009, 22(9):2356-2371.
[43]
Wang Bin, Kim Hyung-Jin, Kikuchi Kazuyoshi, et al. Diagnostic metrics for evaluation of annual and diurnal cycles[J]. Climate Dynamics, 2011, 37(5-6):941-955.
[44]
Black David E. The rains may be a-comin'[J]. Science, 2002, 297(5581):528-529.
[45]
Bosmans J H C, Erb M P, Dolan A M, et al. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs[J]. Quaternary Science Reviews, 2018, 188:121-135. doi:10.1016/j.quascirev.2018.03.025.
[46]
黄士松, 汤明敏. 论东亚夏季风体系的结构[J]. 气象科学, 1987, (3):1-14. doi:10.3969/2012jms. 00* *. Huang Shisong, Tang Mingmin. On the structure of the summer monsoon regime of East Asia[J]. Journal of the Meteorological Sciences, 1987, (3):1-14. doi:10.3969/2012jms.00* *.
[47]
余丹丹, 张韧, 洪梅, 等. 亚洲夏季风系统成员与西太平洋副高的相关特征分析[J]. 热带气象学报, 2007, 23(1):78-84. Yu Dandan, Zhang Ren, Hong Mei, et al. A characteristic correlation analysis between the Asia summer monsoon memberships and west Pacific Subtropical High[J]. Journal of Tropical Meteorology, 2007, 23(1):78-84.
[48]
何超, 周天军, 邹立维, 等. 夏季西北太平洋副热带高压的两种年际变率模态[J]. 中国科学:地球科学, 2012, 42(12):1923-1936. He Chao, Zhou Tianjun, Zou Liwei, et al. Two interannual variability modes of the northwest Pacific Subtropical High in summer[J]. Science China:Earth Sciences, 2012, 42(12):1923-1936.
[49]
Enomoto Takeshi. Interannual variability of the Bonin high associated with the propagation of rossby waves along the Asian Jet[J]. Journal of the Meteorological Society of Japan Series Ⅱ, 2004, 82(4):1019-1034.
[50]
Liu Yunyun, Li Weijing, Zuo Jinqing, et al. Simulation and Projection of the western Pacific subtropical high in CMIP5 Models[J]. Journal of Meteorological Research, 2014, 28(3):327-340.
[51]
Yan Hongming, Wang Ling. The relationship between east-west movement of subtropical high over northwestern Pacific and precipitation in Southwestern China[J]. Journal of Applied Meteorological Science, 2019, 30(3):360-375.
[52]
王宁, 张肖剑, 靳立亚. 千年时间尺度南亚高压和西太平洋副热带高压关系的时空变化特征[J]. 第四纪研究, 2015, 35(6):1425-1436. Wang Ning, Zhang Xiaojian, Jin Liya. The spatial and temporal variation characteristics of the South Asia high and Western Pacific Subtropical High on millennial time scale[J]. Quaternary Sciences, 2015, 35(6):1425-1436.
[53]
晏红明, 胡娟, 周建琴, 等. 一个新的东亚副热带夏季风指数的定义[J]. 气象学报, 2017, 75(2):193-210. Yan Hongming, Hu Juan, Zhou Jianqin, et al. Definition of a new East Asian subtropical summer monsoon index[J]. Acta Meteorologica Sinica, 2017, 75(2):193-210.
[54]
林本海, 刘荣谟. 最近800 ka黄土高原夏季风变迁的稳定同位素证据[J]. 科学通报, 1992, 37(18):1691-1693. Lin Benhai, Liu Rongmo. Stable isotope evidence for the change of summer monsoon in the Loess Plateau during the last 800 ka[J]. Chinese Science Bulletin, 1992, 37(18):1691-1693.
[55]
陈骏, 安芷生, 汪永进, 等. 最近800 ka洛川黄土剖面中Rb/Sr分布和古季风变迁[J]. 中国科学(D辑), 1998, 28(6):498. Chen Jun, An Zhisheng, Wang Yongjin, et al. Distribution of Rb/Sr and paleo-monsoon changes in Luochuan loess section during the recent 800 ka[J]. Science in China(Series D), 1998, 28(6):498.
[56]
孟先强, 刘连文, 季峻峰. 弱的早更新世间冰期东亚夏季风——来自黄土高原古土壤层中酸溶相元素的证据[J]. 第四纪研究, 2019, 39(4):789-802. Meng Xianqiang, Liu Lianwen, Ji Junfeng. Weak East Asian summer monsoon during the Early Pleistocene interglacials:Evidence from acetic acid-leachable elements in paleosol layers on the Chinese Loess Plateau[J]. Quaternary Sciences, 2019, 39(4):789-802.
[57]
Cheng Hai, Edwards R Lawrence, Sinha Ashish, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2017, 534(7609):640-646.
[58]
Wen Ruilin, Xiao Jule, Fan Jiawei, et al. Pollen evidence for a mid-Holocene East Asian summer monsoon maximum in Northern China[J]. Quaternary Science Reviews, 2017, 176:29-35. doi:10.1016/j.quascirev.2017.10.008.
[59]
Wang Na, Jiang Dabang, Lang Xianmei. Mechanisms for spatially inhomogeneous changes in East Asian summer monsoon precipitation during the mid-Holocene[J]. Journal of Climate, 2020, 33(8):2945-2965.
[60]
Wang Yongjin, Cheng Hai, Edwards R Lawrence, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182):1090-1093.
[61]
黄小忠, 向丽雄, 张恩源, 等. 全新世中期7 ka前后降温事件对中国北方植被生态的影响[J]. 第四纪研究, 2019, 39(3):687-700. Huang Xiaozhong, Xiang Lixiong, Zhang Enyuan, et al. Mid-Holocene cold event at ca.7 ka and its impact on vegetation ecology in Northern China[J]. Quaternary Sciences, 2019, 39(3):687-700.
[62]
郭飞, 王婷, 刘宇明, 等. 临夏黄土记录的26万年来季风快速变化[J]. 第四纪研究, 2019, 39(3):557-564. Guo Fei, Wang Ting, Liu Yuming, et al. Rapid Asian monsoon changes recorded by loess depositions in Linxia since 260 ka B.P.[J]. Quaternary Sciences, 2019, 39(3):557-564.
[63]
Chen Fahu, Xu Qinghai, Chen Jianhui, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5(1):11186.