The monsoon variations at orbital timescale revealed by dolomite and stable carbon isotopic composition of loess from Xining(northeastern Qinghai-Tibetan Plateau)
Wang Susu, Lu Huayu, Wang Yao, Wang Xianyan, Zhang Xiaojian, Wang Xiaoyong
School of Geography and Ocean Science, Nanjing University, Nanjing 210023, Jiangsu
Abstract:East Asian summer monsoon(EASM) is an important component of Earth's climate system, which significantly influences the production and life of billion-plus populations over East Asia. East Asian monsoon variability and associated forcing mechanisms are the focus and frontier of Earth system science. Orbital timescale variability and forcing mechanisms of the EASM from paleoclimatic reconstructions still remain elusive. Previous studies revealed that precession-band variance is not the dominated frequency in loess records, while eccentricity-band is missing in high-resolution speleothem records. Whether loess deposit can record monsoon variability on a precession timescale largely depends on sedimentation rate and post-depositional processes that can attenuate the variability of the loess proxies. In this study, we chose the upper 60 m of the loess core located at Panzishan(PZS) (36.649°N, 101.844°E; 2728 m a.s.l.), Xining Basin in the northeastern Qinghai-Tibetan Plateau, where the dust sedimentation rate is high. A total of 272 samples were taken at an interval of 20 cm in this section. The depth-age model was constructed based on linear interpolations, and detail correlations between the grain size variations of the loess and the grain size time series of Luochuan. We present the grain size distribution, magnetic susceptibility, carbonate content, dolomite content and δ13C of carbonate of the loess-paleosol samples to reconstruct the EASM changes at Xining. The carbonate content and dolomite content are negatively related to rainfall. The δ13C of loess carbonate is related to soil respiration flux which was determined by the EASM intensity, therefore it is an ideal proxy of EASM in the northeastern Qinghai-Tibetan Plateau. Compared with magnetic susceptibility, carbonate content, dolomite content and δ13C can detect the same order of wet events during the last 280 ka. Our results show that these proxy records exhibit significant orbital timescale fluctuations, and linking the EASM with the high-latitude ice sheets in Northern Hemisphere and temperature. In addition, our spectral and wavelet transfers of the proxies time series detect a distinct 23 ka cycle, corresponding well with the precision cycle and frequency of speleothem δ18O. These results suggest that climate change in the northeastern Qinghai-Tibetan Plateau is not simply a response to high-latitude ice sheets and Northern Hemispaere temperature; low-latitude solar radiation changes driven by precession is also playing an important role in driving EASM precipitation changes in the northeastern Qinghai-Tibetan Plateau.
王素素, 鹿化煜, 王珧, 王先彦, 张肖剑, 王晓勇. 西宁黄土白云石和碳同位素记录的轨道尺度季风气候变化[J]. 第四纪研究, 2020, 40(6): 1453-1463.
Wang Susu, Lu Huayu, Wang Yao, Wang Xianyan, Zhang Xiaojian, Wang Xiaoyong. The monsoon variations at orbital timescale revealed by dolomite and stable carbon isotopic composition of loess from Xining(northeastern Qinghai-Tibetan Plateau). Quaternary Sciences, 2020, 40(6): 1453-1463.
Wang B, Liu J, Kim H-J, et al. Recent change of the global monsoon precipitation(1979-2008)[J]. Climate Dynamics, 2012, 39(5):1123-1135.
[2]
Wang Pinxian, Wang Bin, Cheng Hai, et al. The global monsoon across time scales:Mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174:84-121. doi:10.1016/j.earscirev.2017.07.006.
[3]
丁仲礼. 米兰科维奇冰期旋回理论:挑战与机遇[J]. 第四纪研究, 2006, 26(5):710-717. Ding Zhongli. The Milankovitch Theory of Pleistocene glacial cycles:Challenges and chances[J]. Quaternary Sciences, 2006, 26(5):710-717.
[4]
程海, 张海伟, 赵景耀, 等. 中国石笋古气候研究的回顾与展望[J]. 中国科学:地球科学, 2019, 49(10):1565-1589. Cheng Hai, Zhang Haiwei, Zhao Jingyao, et al. Chinese stalagmite paleoclimate researches:A review and perspective[J]. Science China:Earth Sciences, 2019, 62(10):1489-1513.
[5]
鹿化煜, 王珧, 郝青振, 等. 第四纪轨道尺度亚洲季风变化[M]//郭正堂. 气候变化及人类的演化与适应. 北京:2021. Lu Huayu, Wang Yao, Hao Qingzhen, et al. Quaternary orbit-scale Asian monsoon changes[M]//Guo Zhengtang. Climate Change and Human Evolution and Adaptation. Beijing:2021.
[6]
Lu Huayu, Zhang Fuqing, Liu Xiaodong. Patterns and frequencies of the East Asian winter monsoon variations during the past million years revealed by wavelet and spectral analyses[J]. Global and Planetary Change, 2003, 35(1-2):67-74.
[7]
Lu Huayu, Zhang Fuqing, Liu Xiaodong, et al. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China[J]. Quaternary Science Reviews, 2004, 23(18-19):1891-1900.
[8]
Sun Youbin, Yin Qiuzhen, Crucifix Michel, et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications, 2019, 10(1):352-363.
[9]
Sun Youbin, Kutzbach John, An Zhisheng, et al. Astronomical and glacial forcing of East Asian summer monsoon variability[J]. Quaternary Science Reviews,2015, 115:132-142. doi:10.1016/j.quascirev.2015.03.009.
[10]
Guo Zhengtang, Pierre Biscaye, Wei Lanying, et al. Summer monsoon variations over the last 1.2 Ma from the weathering of loess-soil sequences in China[J]. Geophysical Research Letters, 2000, 27:1751-1754. doi:10.1029/1999GL008419.
[11]
Guo Zhengtang, Zhou Xin, Wu Haibin. Glacial-interglacial water cycle, global monsoon and atmospheric methane changes[J]. Climate Dynamics, 2012, 39:1073-1092. doi:10.1007/s00382-011-1147-5.
[12]
Cheng Hai, Edwards R Lawrence, Sinha Ashish, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646.
[13]
Wang Yongjin, Cheng Hai, Edwards R Lawrence, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182):1090-1093.
[14]
An Zhisheng, Wu Guoxiong, Li Jianping, et al. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 2015, 43:29-77. doi:10.1146/annurev-earth-060313-054623.
[15]
陈发虎, 饶志国, 张家武, 等. 陇西黄土高原末次冰期有机碳同位素变化及其意义[J]. 科学通报, 2006, 51(11):1310-1317. Chen Fahu, Rao Zhiguo, Zhang Jiawu, et al. Variations of organic carbon isotopic composition and its environmental significance during the last glacial on western Chinese Loess Plateau[J]. Chinese Science Bulletin, 2006, 51(13):1593-1602.
[16]
Liu Qingsong, Banerjee Subir K, Jackson Michael J, et al. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage 5 and indications of pedogenesis[J]. Quaternary Science Reviews, 2005, 24(1-2):195-210.
[17]
Lu Huayu, Wang Xiaoyong, Ma Haizhou, et al. The Plateau monsoon variation during the past 130 kyr revealed by loess deposit at northeast Qinghai Tibet(China)[J]. Global and Planetary Change, 2004, 41(3-4):207-214.
[18]
鹿化煜, 马海洲, 谭红兵, 等. 西宁黄土堆积记录的最近13万年高原季风气候变化[J]. 第四纪研究, 2001, 21(5):416-426. Lu Huayu, Ma Haizhou, Tan Hongbing, et al. Plateau monsoon climate change recorded by Xining loess accumulation in the latest 130,000 years[J]. Quaternary Sciences, 2001, 21(5):416-426.
[19]
Wang Xianyan, Lu Huayu, Vandenberghe Jef, et al. Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment[J]. Global and Planetary Change, 2012, 88-89:10-19. doi:10.1016/j.gloplacha.2012.02.009.
[20]
鹿化煜, 王先彦, 孙雪峰, 等. 钻探揭示的青藏高原东北部黄土地层与第四纪气候变化[J]. 第四纪研究, 2007, 27(2):230-241. Lu Huayu, Wang Xianyan, Sun Xuefeng, et al. Loess stratigraphy and palaeoclimate changes during Quaternary in northeastern Tibetan Plateau revealed by loess core[J]. Quaternary Sciences, 2007, 27(2):230-241.
[21]
Thomas Elizabeth K, Huang Yongsong, Clemens Steven C, et al. Changes in dominant moisture sources and the consequences for hydroclimate on the northeastern Tibetan Plateau during the past 32 kyr[J]. Quaternary Science Reviews, 2016, 131:157-167. doi:10.1016/j.quascirev.2015.11.003.
[22]
Chen Fahu, Bloemendal Jan W, Wang Jianming, et al. High-resolution multi-proxy climate records from Chinese loess:Evidence for rapid climatic changes over the last 75 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 130(1-4):323-335.
[23]
Porter Stephen C, An Zhisheng. Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6529):305-308.
[24]
Ji Junfeng, Ge Yun, Balsam William, et al. Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer(FTIR):A fast method for identifying Heinrich events in IODP Site U1308[J]. Marine Geology, 2009, 258(1-4):60-68.
[25]
Meng Xianqiang, Liu Lianwen, Balsam William, et al. Dolomite abundance in Chinese loess deposits:A new proxy of monsoon precipitation intensity[J]. Geophysical Research Letters, 2015, 42(23):10391-10398.
[26]
He Tong, Chen Yang, Balsam William, et al. Distribution and origin of protodolomite from the Late Miocene-Pliocene Red Clay Formation, Chinese Loess Plateau[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(6):Q06004.
[27]
Lisiecki Lorraine E, Raymo Maureen E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Palaeogeography, 2005, 20(1):PA1003.
[28]
Li Tao, Liu Fei, Abels Hemmo A, et al. Continued obliquity pacing of East Asian summer precipitation after the mid-Pleistocene transition[J]. Earth and Planetary Science Letters, 2017, 457:181-190. doi:10.1016/j.epsl.2016.09.045.
[29]
Berger Andre, Loutre Marie-Frane. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviewes, 1991, 10(4):297-317.
[30]
席建建, 符超峰, 孟媛媛, 等. 青藏高原东北缘尖扎盆地碳酸盐含量及其古环境意义[J]. 第四纪研究, 2018, 38(1):107-117. Xi Jianjian, Fu Chaofeng, Meng Yuanyuan, et al. Carbonate content of Jianzha Basin in northeastern margin of the Tibetan Plateau and paleoclimatic significance[J]. Quaternary Sciences, 2018, 38(1):107-117.
[31]
Liu Weiguo, Huang Yongsong, An Zhisheng, et al. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau:Carbon isotope evidence from bulk organic matter and individual leaf waxes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(3-4):243-254.
[32]
Peterse Francien, Martínez-García Alfredo, Zhou Bin, et al. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130,000 years[J]. Quaternary Science Reviews, 2014, 83:76-82. doi:10.1016/j.quascirev.2013.11.001.
[33]
Xin Zhongbao, Xu Jiongxin, Zheng Wei. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau(1981-2006):Impacts of climate changes and human activities[J]. Science in China(Series D), 2008, 51(1):67-78.
[34]
张新时. 中国植被及其地理格局——中华人民共和国植被图集(1︰100万)说明书(下卷)[M]. 北京:地质出版社, 2007. Zhang Xinshi. Vegetation of China and Its Geography, Atlas of vegetaion China(1︰1000000)(Ⅱ)[M]. Beijing:Geoloegical Publishing House, 2007.
[35]
An Zhisheng, Huang Yongsong, Liu Weiguo, et al. Multiple expansions of C4 plant biomass in East Asia since 7 Ma coupled with strengthened monsoon circulation[J]. Geology, 2005, 33(9):705-708.
[36]
Plummer L Niel, Busenberg Eurybiades. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 ℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et Cosmochimica Acta, 1982, 46(6):1011-1040.
[37]
俞凯峰, 鹿化煜, Lehmkuhl Frank, 等. 末次盛冰期和全新世大暖期中国北方沙地古气候定量重建初探[J]. 第四纪研究, 2013, 33(2):293-302. Yu Kaifeng, Lu Huayu, Lehmkuhl Frank, et al. A preliminary quantitative paleoclimate reconstruction of the dune fields of Northern China during the Last Glacial Maximum and Holocene Optimum[J]. Quaternary Sciences, 2013, 33(2):293-302.
[38]
Lu Hongxuan, Liu Weiguo, Yang Hong, et al. 800-kyr land temperature variations modulated by vegetation changes on Chinese Loess Plateau[J]. Nature Communications, 2019, 10(1):1958-1967.
[39]
Peterse Francien, Prins Maarten A, Beets Christiaan J, et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J]. Earth and Planetary Science Letters, 2011, 301(1-2):256-264.
[40]
Jeong Gi Young, Hillier Stephen, Kemp Rob A. Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section:Implications for loess provenance and weathering[J]. Quaternary Science Reviews, 2008, 27(11-12):1271-1287.
[41]
Li Gaojun, Chen Jun, Chen Yang, et al. Dolomite as a tracer for the source regions of Asian dust[J]. Journal of Geophysical Research:Atmospheres, 2007, 112(D17):D17201.
[42]
Cerling Thure E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2):229-240.
[43]
Cerling Thure E, Harris John M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies[J]. Oecologia, 1999, 120(3):347-363.
[44]
Liu Weiguo, Yang Hong, Sun Youbin, et al. δ13C Values of loess total carbonate:A sensitive proxy for Asian summer monsoon in arid northwestern margin of the Chinese Loess Plateau[J]. Chemical Geology, 2011, 284(3-4):317-322.
[45]
Ning Youfeng, Liu Weiguo, An Zhisheng. Variation of soil Δδ13C values in Xifeng loess-paleosol sequence and its paleoenvironmental implication[J]. Chinese Science Bulletin, 2006, 51(11):1350-1354.
[46]
Morse John W, Mackenzie Fred T. Geochemistry of Sedimentary Carbonates[M]. Amsterdam:Elsevier, 1990:1-20.
[47]
盛雪芬, 陈骏, 杨杰东, 等. 不同粒级黄土-古土壤中碳酸盐碳氧稳定同位素组成及其古环境意义[J]. 地球化学, 2002, 31(2):105-112. Sheng Xuefen, Chen Jun, Yang Jiedong, et al. Carbon and oxygen isotopic composition of carbonate in different grain size fractions from loess-paleosol sequences, China[J]. Geochimica, 2002, 31(2):105-112.
[48]
Yang Shiling, Ding Zhongli, Wang Xu, et al. Negative δ18O-δ13C relationship of pedogenic carbonate from Northern China indicates a strong response of C3/C4 biomass to the seasonality of Asian monsoon precipitation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 317-318:32-40. doi:10.1016/j.palaeo.2011.12.007.
[49]
Quade Jay, Cerling Thure E, Bowman John R. Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects in the southern Great Basin, United States[J]. Geological Society of America Bulletin, 1989, 101(4):464-475.
[50]
Breecker D O, Sharp Z D, McFadden L D. Seasonal bias in the formation and stable isotopic composition of pedogenic carbonate in modern soils from central New Mexico, USA[J]. Geological Society of America Bulletin, 2009, 121(3-4):630-640.
[51]
Caves Jeremy K, Moragne Danielle Y, Ibarra Daniel E, et al. The Neogene de-greening of Central Asia[J]. Geology, 2016, 44(11):887-890.
[52]
Bond-Lamberty B, Thomson A H. A global database of soil respiration data[J]. Biogeosciences, 2010, 7(6):1915-1926.
[53]
Kohn Matthew J. Carbon isotope compositions of terrestrial C3 plants as indicators of(paleo)ecology and(paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(46):19691-19695.
[54]
Retallack Gregory J. Pedogenic carbonate proxies for amount and seasonality of precipitation in paleosols[J]. Geology, 2005, 33(4):333-336.
[55]
Ahn Jinho, Brook Edward J. Atmospheric CO2 and climate on millennial time scales during the last glacial period[J]. Science, 2008, 322(5898):83-85.
[56]
Eggleston S, Schmitt J, Bereiter B, et al. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle[J]. Paleoceanography, 2016, 31(3):434-452.
[57]
饶志国, 陈发虎, 曹洁, 等. 黄土高原西部地区末次冰期和全新世有机碳同位素变化与C3/C4植被类型转换研究[J]. 第四纪研究, 2005, 25(1):107-114. Rao Zhiguo, Chen Fahu, Cao Jie, et al. Variation of soil organic carbon isotope and C3/C4 vegetation type transition in the western Loess Plateau during the last glacial and Holocene periods[J]. Quaternary Sciences, 2005, 25(1):107-114.
[58]
鹿化煜, 安芷生, 王晓勇, 等. 最近14 Ma青藏高原东北缘阶段性隆升的地貌证据[J]. 中国科学(D辑), 2004, 34(9):855-864. Lu Huayu, An Zhisheng, Wang Xiaoyong, et al. Geomorphologic evidence of phased uplift of the northeastern Qinghai-Tibet Plateau since 14 million years ago[J]. Science in China(Series D), 2004, 47(9):822-833.
[59]
Lu Huayu, Wang Xianyan, Wang Xiaoyong, et al. Palaeoclimatic changes in Northeastern Qinghai-Tibetan Plateau revealed by magnetostratigraphy and magnetic susceptibility analysis of thick loess deposits[J]. Netherlands Journal of Geosciences, 2012, 91(1-2):189-198.
[60]
Feng Zhaodong, Wang Haibin, Olson C G. Pedogenic factors affecting magnetic susceptibility of the last interglacial palaeosol S1 in the Chinese Loess Plateau[J]. Earth Surface Processes and Landforms, 2004, 29(11):1389-1402.
[61]
Feng Zhaodong, Wang Haibin. Geographic variations in particle size distribution of the last interglacial pedocomplex S1 across the Chinese Loess Plateau:Their chronological and pedogenic implications[J]. Catena, 2006, 65(3):315-328.
[62]
Ma Long, Li Ying, Liu Xingxing, et al. Registration of precession signal in the last interglacial paleosol(S1) on the Chinese Loess Plateau[J]. Geochemistry, Geophysics, Geosystems, 2017, 18(11):3964-3975.
[63]
Lu Huayu, Sun Donghuai. Pathways of dust input to the Chinese Loess Plateau during the last glacial and interglacial periods[J]. Catena, 2000, 40(3):251-261.
[64]
Wang Zheng, An Zhisheng, Liu Zhonghui, et al. Hydroclimatic variability in loess δDwax records from the central Chinese Loess Plateau over the past 250 ka[J]. Journal of Asian Earth Sciences, 2018, 155:49-57. doi:10.1016/j.jseaes.2017.11.008.