1. College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang;
2. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;
3. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044;
4. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049
Abstract:The Mid-Pleistocene Transition(MPT, approximately 1.2 Ma to 0.5 Ma) was marked by fundamental changes in Earth's climate state, where the low-frequency, high-amplitude, quasi-periodic(100-ka) glacial variability emerged and characterized the Later Pleistocene and Holocene. Previously published MPT records reveal that evidences from the marine realm are abundant and high-resolution. However, discontinuity and low-resolution of the continental MPT records mainly limited the practice of further researches from land area. Moreover, only a few studies have tried to explore diverse manifestations of the Middle Pleistocene climate transition by terrestrial deposits. Consequently, further work is needed to fully understand and explore characteristics, mechanisms, and implications for MPT recorded in terrestrial deposits. In South China, red earth has been recognized as an important definition of this area, as it is covered by red soil at a large scale. Especially, red earth in South China deposited during the Quaternary period and documented the evolution of regional environment, which has enormous potential to decipher the environmental changes across the MPT. Thus, we selected the JL red earth section(29°42'N, 116°02'E) located in Mount Lushan, Jiujiang, Jiangxi Province as study section, where the depth of the section is about 18.46 m. A total of 920 samples were taken at 2 cm interval from the JL red earth sections for particle size, color and magnetic susceptibility measurements. Our principal aim is to investigate the manifestations and the main causal mechanisms of the MPT based on works of ESR dating and multi-proxies analyses. A more careful analysis of chronology of our section and other red earth section in South China suggests that the chronostratigraphic framework of JL red earth section can be estimated to span ca. 1200 ka to 233 ka. The multi-proxies analysis will be focused on Principal Component Analysis(PCA). Results of PCA analysis indicates that PCA F1 is a sensitive proxy for the degree of regional warming and cooling, which provides significant information for identifying the three MPT processes:early MPT(1200~738 ka), late MPT(738~536 ka) and post MPT(536~233 ka). Analyzing lithology of the typical Quaternary red earth sections in South China and the PCA F1 of JL red earth section shows that, during the early MPT, the average value of PCA F1 is 1.24 and vermiculated morphology of red earth sections is typical dense and thick, with clear stripes, which implying that the homochronous climate is warm and humid; during the late MPT, the average value of PCA F1 decreased to -0.31 with unconspicuous vermiculated characteristics, indicating a drier and cooler regional climate; during the post MPT, the average value of PCA F1 changed to -2.25 and maximum value of PCA F1 is about 0, when vermiculated morphology vanished and inversely yellowish-brown soil deposited, these evidences proved that regional climate deteriorated distinctly. However, the average value of global deep-sea oxygen isotope composition nearly maintained the same value from 1200 ka to 233 ka. Apparently the Pleistocene environment in South China recorded by JL red earth section failed to match changes in global ice volume, and after the MPT, preceding equilibrium state of regional climate system may be crossed, and the subsequent development of dry and cold climate marked that the regional environmental shifted irreversibly during this interval. The combination of our records and previous study suggests that increased global ice volume and global cooling and enhanced Siberian High Pressure integrally affected the evolution of environment in South China during the Pleistocene. In addition, the spatial distribution of MPT records in the East Asian region shows that wide-ranging aridification in the region may have exceeded the upper limit existed before the Middle Pleistocene.
Martin J H, Brad P, Sarah A F. The Early-Middle Pleistocene transition:Characterization and proposed guide for the defining boundary[J]. Episodes, 2008, 31(2):255-259.
[2]
Clark P U, Archer D, Pollard D, et al. The Middle Pleistocene transition:Characteristics, mechanisms, and implications for long-term changes in atmospheric PCO2[J]. Quaternary Science Reviews, 2006, 25(23-24):3150-3184.
[3]
Mudelsee M, Stattegger K. Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis[J]. Geologische Rundschau, 1997, 86(2):499-511.
[4]
Mudelsee M, Schulz M. The mid-Pleistocene climate transition:Onset of 100 ka cycle lags ice volume build-up by 280 ka[J]. Earth and Planetary Science Letters, 1997, 151(1):117-123.
[5]
Berger W H, Yasuda M K, Bickert T, et al. Quaternary time scale for the Ontong Java Plateau:Milankovitch template for Ocean Drilling Program Site 806[J]. Geology, 1994, 22(5):463-487.
[6]
Maasch K A. Statistical detection of the mid-Pleistocene transition[J]. Climate Dynamics, 1988, 2(3):133-143.
[7]
Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution:Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 1989, 4(8):353-412.
[8]
Raymo M E, Oppo D W, Curry W. The mid-Pleistocene climate transition:A deep sea carbon isotopic perspective[J]. Paleoceanography, 1997, 12(4):546-559.
[9]
Liu W G, Liu Z H, Sun J M, et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition[J]. Geology, 2020, doi:10.1130/G47406.1.
[10]
Sun M, Zhang X J, Tian M Z, et al. Loess deposits since Early Pleistocene in Northeast China and implications for desert evolution in East China[J]. Journal of Asian Earth Sciences, 2018, 155(17):164-173. doi:10.1016/j.jseaes.2017.09.013.
[11]
Wang F, Sun D H, Chen F H, et al. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426:139-158. doi:10.1016/j.palaeo.2015.03.011.
[12]
熊尚发, 丁仲礼, 刘东生. 北京邻区1.2 Ma以来黄土沉积及其对东部沙漠扩张的指示[J]. 海洋地质与第四纪地质, 1999, 19(3):70-76. Xiong Shangfa, Ding Zhongli, Liu Tungsheng. Loess deposits in Beijing region since last 1.2 Ma and desert expansion over Northern China[J]. Marine Geology & Quaternary Geology, 1999, 19(3):70-76.
[13]
Song Y, Guo Z T, Markovi Ac'1 S B, et al. Magnetic stratigraphy of the Danube loess:A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia[J]. Journal of Asian Earth Sciences, 2018, 155(15):68-80.
[14]
李徐生, 韩志勇, 鹿化煜, 等. 下蜀黄土底界的年代及其对区域气候变干的指示[J]. 中国科学:地球科学, 2018, 48(2):210-223. Li Xusheng, Han Zhiyong, Lu Huayu, et al. Onset of Xiashu loess deposition in Southern China by 0.9 Ma and its implications for regional aridification[J]. Science China:Earth Sciences, 2018, 48(2):210-223.
[15]
Dodonov A E, Zhou L P. Loess deposition in Asia:Its initiation and development before and during the Quaternary[J]. Episodes, 2008, 31(2):222-225.
[16]
Schellenberger A, Veit H. Pedostratigraphy and pedological and geochemical characterization of Las Carreras loess-paleosol sequence, Valle de Tafí, NW-Argentina[J]. Quaternary Science Reviews, 2006, 25:811-831. doi:10.1016/j.quascirev.2005.07.011.
[17]
Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3):1033.
[18]
Fujioka T, Chappell J. History of Australian aridity:Chronology in the evolution of arid landscapes[J]. Geological Society, London, Special Publications, 2010, 346:121-139. doi:10.1144/SP346.8.
[19]
Mclaren S, Wallace M W. Plio-Pleistocene climate change and the onset of aridity in Southeastern Australia[J]. Global and Planetary Change, 2010, 71:55-72. doi:10.1016/j.gloplacha.2009.12.007.
[20]
Trauth M H, Maslin M A, Deino A, et al. Late Cenozoic moisture history of East Africa[J]. Science, 2005, 309(5743):2051-2053.
[21]
Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 2011, 476:312-315. doi:10.1038/nature10310.
[22]
Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere[J]. Paleoceanography, 1998, 13(3):215-224.
[23]
Raymo M E, Huybers P. Unlocking the mysteries of the ice ages[J]. Nature, 2008, 451:284-285. doi:10.1038/nature06589.
[24]
孙有斌. 探寻中更新世气候转型之谜[J]. 地球环境学报, 2019, 10(2):210. Sun Youbin. Explore the mystery of the mid-Pleistocene climate transition[J]. Journal of Earth Environment, 2019, 10(2):210.
[25]
Wu G J, Pan B T, Guan Q Y, et al. Terminations and their correlation with solar insolation in the Northern Hemisphere:A record from a loess section in Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3-4):267-277.
[26]
邬光剑, 潘保田, 管清玉, 等. 中更新世气候转型与100 ka周期研究[J]. 地球科学进展, 2002, 17(4):605-611. Wu Guangjian, Pan Baotian, Guan Qingyu, et al. Review of studies on the mid-Pleistocene climatic transition and the 100 ka cycle[J]. Advance in Earth Sciences, 2002, 17(4):605-611.
[27]
Sun Y B, Qiu Z Y, Michel C, et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications, 2019, 10:352. doi:10.1038/s41467-018-08257-9.
[28]
Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across Northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2):45-55.
[29]
王海粟, 党皓文, 翦知湣. 中更新世转型时期南海北部上层水体结构演化特征——ODP1146站浮游有孔虫稳定同位素记录[J]. 第四纪研究, 2019, 39(2):316-327. Wang Haisu, Dang Haowen, Jian Zhimin. Variations in the upper water structure of northern South China Sea during the mid-Pleistocene Climate Transition Period:Planktonic foraminifera oxygen isotope records of ODP site 1146[J]. Quaternary Sciences, 2019, 39(2):316-327.
[30]
李文宝, 王汝建. 近800 ka以来南大洋区域经向海表温度差异及气候变化响应[J]. 第四纪研究, 2018, 38(5):1130-1141. Li Wenbao, Wang Rujian. Change of sea surface temperature and responding to climate change around the Southern Ocean during the last 800 ka[J]. Quaternary Sciences, 2018, 38(5):1130-1141.
[31]
刘瑞璇, 鹿化煜, 王珧, 等. 东阿拉伯海拉克希米盆地浊流沉积序列的粒度变化及其对中更新世气候转型的响应[J]. 第四纪研究, 2018, 38(5):1120-1129. Liu Ruixuan, Lu Huayu, Wang Yao, et al. Grain size analysis of a depositional sequence in the Laxmi Basin(IODP Hole U1456A, Arabian Sea)reveals the Indian monsoon shift at the mid-Pleistocene Climatic Transition[J]. Quaternary Sciences, 2018, 38(5):1120-1129.
[32]
Schefuβ E, Sinninghe Damsté J S, Jansen J H F. Forcing of tropical Atlantic Sea surface temperatures during the mid-Pleistocene transition[J]. Paleoceanography, 2004, 19:PA4029. doi:10.1029/2003PA000892.
[33]
Berger W H, Bickert T, Jansen E, et al. The central mystery of the Quaternary ice age[J]. Oceanus, 1993, 36(4):53-57.
[34]
Clemens S C, Murray D W, Prell W L. Nonstationary phase of the Plio-Pleistocene Asian monsoon[J]. Science, 1996, 274:943-948. doi:10.1126/science.274.5289.943.
[35]
Herbert T D, Peterson L C, Lawrence K T, et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science, 2010, 328:1530-1534. doi:10.1126/science.1185435.
[36]
Wang P X, Tian J, Cheng X R. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea[J]. Science in China(Series D), 2001, 44(10):926-933.
[37]
Wang P X, Li Q Y, Tian J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean:A perspective from the South China Sea[J]. National Science Review, 2014, 1(1):119-143.
[38]
邱亚会, 李永项, 敖红, 等. 华北早更新世哺乳动物群的磁性地层年代序列与古环境关系:兼论对古人类活动的指示意义[J]. 第四纪研究, 2018, 38(5):1268-1292. Qiu Yahui, Li Yongxiang, Ao Hong, et al. Magnetostratigraphic chronology and paleoenvironmental background of Early Pleistocene humans and mammal in North China[J]. Quaternary Sciences, 2018, 38(5):1268-1292.
[39]
李小平, 夏应菲, 杨浩. 安徽宣城第四纪红土剖面的全氧化铁含量及其古环境意义[J]. 江苏地质, 1998, 22(3):182-185. Li Xiaoping, Xia Yingfei, Yang Hao. Total iron content of Quaternary laterite profile and its paleoenvironmental significance in Xuancheng of Anhui Province[J]. Jiangsu Geology, 1998, 22(3):182-185.
[40]
张明强, 朱丽东, 姜永见, 等. 九江JL红土剖面记录的中更新世气候转型事件[J]. 海洋地质与第四纪地质, 2010, 30(6):115-123. Zhang Mingqiang, Zhu Lidong, Jiang Yongjian, et al. Mid-Pleistocene climate transition event recorded by JL red earth section, Jiujiang, Jiangxi Province[J]. Marine Geology & Quaternary Geology, 2010, 30(6):115-123.
[41]
黄颖, 朱丽东, 张晓, 等. 庐山北麓JL红土剖面粉砂粒级元素地球化学特征及其物源意义[J]. 第四纪研究, 2019, 39(5):1092-1102. Huang Ying, Zhu Lidong, Zhang Xiao, et al. Geochemical characteristics and their provenance implications of the silt fraction from JL red earth section in Lushan region, Jiujiang, South China[J]. Quaternary Sciences, 2019, 39(5):1092-1102.
[42]
张晓, 朱丽东, 黄颖, 等. 加积型网纹红土网纹化机制及形成环境[J]. 第四纪研究, 2020, 40(1):214-228. Zhang Xiao, Zhu Lidong, Huang Ying, et al. The reticulated mechanism and its climatic implication of aggradation red earth[J]. Quaternary Sciences, 2020, 40(1):214-228.
[43]
曾琳, 鹿化煜, 弋双文, 等. 我国东北地区黄土堆积的磁性地层年代与古气候变化[J]. 科学通报, 2011, 56(27):2267-2275. Zeng Lin, Lu Huayu, Yi Shuangwen, et al. Magnetostratigraphy of loess in Northeastern China and paleoclimatic changes[J]. Chinese Science Bulletin, 2011, 56(27):2267-2275.
[44]
方小敏, 史正涛, 杨胜利, 等. 天山黄土和古尔班通古特沙漠发育及北疆干旱化[J]. 科学通报, 2002, 47(7):540-545. Fang Xiaomin, Shi Zhengtao, Yang Shengli, et al. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of Northern Xinjiang[J]. Chinese Science Bulletin, 2002, 47(7):540-545.
[45]
李保生, 李森, 王跃, 等. 我国极端干旱区边缘阿羌砂尘堆积剖面的地质时代[J]. 地质学报, 1998, 72(1):83-92. Li Baosheng, Li Sen, Wang Yue, et al. Geological age of the sand and dust deposits of the Aqiang section in the extremely arid region of China[J]. Acta Geologica Sinica, 1998, 72(1):83-92.
[46]
Xiong S F, Ding Z L, Jiang W Y, et al. Damped fluctuations in Chinese loess grain size[J]. Geophysical Research Letters, 2003, 30(19):153-166.
[47]
乔彦松, 郭正堂, 郝青振, 等. 安徽宣城黄土堆积的磁性地层学与古环境意义[J]. 地质力学学报, 2002, 8(4):369-375. Qiao Yansong, Guo Zhengtang, Hao Qingzhen, et al. Magnetostratigraphy and paleoclimatic significance of an eollian sequence from the Xuancheng area, Anhui Province[J]. Journal of Geomechanics, 2002, 8(4):369-375.
[48]
朱丽东. 中亚热带加积型红土及其所记录的第四纪环境变化探讨[D]. 兰州:兰州大学博士学位论文, 2007:20-139. Zhu Lidong. Aggradation Red Earth Sediments in Mid-subtropics of China and Their Recorded Environmental Changes during Quaternary[D]. Lanzhou:The Doctoral Dissertation of Lanzhou University, 2007:20-139.
[49]
朱丽东, 姜永见, 张明强, 等. 庐山JL红土剖面红土磁化率特征及古环境记录[J]. 山地学报, 2011, 29(4):385-394. Zhu Lidong, Jiang Yongjian, Zhang Mingqiang, et al. Characteristics of magnetic susceptibility and its paleoenvironmental records from JL red earth section, Lushan area[J]. Mountain Research, 2011, 29(4):385-394.
[50]
蒋复初, 吴锡浩, 肖华国, 等. 九江地区网纹红土的时代[J]. 地质力学学报, 1997, 3(4):27-32. Jiang Fuchu, Wu Xihao, Xiao Huaguo, et al. Age of the vermiculated red soil in Jiujiang area, Central China[J]. Journal of Geomechanics, 1997, 3(4):27-32.
[51]
程峰. 中国南方更新世红土沉积物的特征及其物源研究[D]. 武汉:中国地质大学(武汉)博士学位论文, 2018:25-152. Cheng Feng. Study on Characteristics and Source Provenance of the Pleistocene Red Earth Sediments in Southern China[D]. Wuhan:The Doctoral Dissertation of China University of Geosciences(Wuhan), 2018:25-152.
[52]
乔彦松, 郭正堂, 郝青振, 等. 皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J]. 科学通报, 2003, 48(13):1465-1469. Qiao Yansong, Guo Zhengtang, Hao Qingzhen, et al. Loess-soil sequences in Southern Anhui Province:Magnetostratigraphy and paleoclimatic significance[J]. Chinese Science Bulletin, 2003, 48(13):1465-1469.
[53]
赵志中, 乔彦松, 王燕, 等. 成都平原红土堆积的磁性地层学及古环境记录[J]. 中国科学(D辑), 2007, 37(3):370-377. Zhao Zhizhong, Qiao Yansong, Wang Yan, et al. Magnetostratigraphy and records of paleoenvironment of the red earth formation in the Chengdu Plain[J].Science in China(Series D), 2007, 37(3):370-377.
[54]
梁胜杰, 张志华, 崔立林, 等. 基于主成分分析与核独立成分分析的降维方法[J]. 系统工程与电子技术, 2011, 33(9):2144-2148. Liang Shengjie, Zhang Zhihua, Cui Lilin, et al. Dimensionality reduction method based on PCA and KICA[J]. Systems Engineering and Electronics, 2011, 33(9):2144-2148.
[55]
严其艳. 基于主成分分析和动态神经网络的时间序列预报[J]. 中国西部科技, 2009, 8(10):27-28. Yan Qiyan. Time series predicting based on PCA and dynamic neural network[J]. Science and Technology of West China, 2009, 8(10):27-28.
[56]
Roland K, Peter M, Andreas U. Lightweight detection of additive watermarking in the DWT-domain[J]. IEEE Transactions on Image Processing, 2011, 20(2):474-484.
[57]
余建英. 数据统计分析与SPSS应用[M]. 北京:人民邮电出版社, 2003:1-476. Yu Jianying. Data Statistical Analysis and SPSS Application[M]. Beijing:The People's Posts and Telecommunications Press, 2003:1-476.
[58]
李月丛, 丁国强, 王永, 等. 泥河湾盆地早更新世(2.6-2.1 Ma)植被和气候变化[J]. 第四纪研究, 2018, 38(4):830-841. Li Yuecong, Ding Guoqiang, Wang Yong, et al. Early Pleistocene(2.6-2.1 Ma)vegetation and climate changes in the Nihewan Basin[J]. Quaternary Sciences, 2018, 38(4):830-841.
[59]
张贵林, 王建, 周新郢, 等. 末次冰消期内蒙古东部气候不稳定性:布日敦湖花粉记录[J]. 第四纪研究, 2019, 39(4):938-951. Zhang Guilin, Wang Jian, Zhou Xinying, et al. Pollen from Buridun Lake recorded instable climate change of east Inner Mongolia during the last deglaciation[J]. Quaternary Sciences, 2019, 39(4):938-951.
[60]
范保硕, 张文胜, 张茹春, 等. 华北平原小冰期以来干湿变化与人类活动特征[J]. 第四纪研究, 2019, 39(2):483-496. Fan Baoshuo, Zhang Wensheng, Zhang Ruchun, et al. Characteristics of dry-wet changes and human activities in the North China Plain since the Little Ice Age[J]. Quaternary Sciences, 2019, 39(2):483-496.
[61]
何晓群. 现代统计分析方法与应用[M]. 北京:中国人民大学出版社, 1998:316-332. He Xiaoqun. Mordern Statistical Analysis Method and Application[M]. Beijing:Publishing House of Renmin University of China, 1998:316-332.
[62]
贾俊平. 统计学基础[M]. 北京:中国人民大学出版社, 2014:185-232. Jia Junping. Fundamentals of Statistics[M]. Beijing:Publishing House of Renmin University of China, 2014:185-232.
[63]
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20:PA1003. doi:10.1029/2004pa001071.
[64]
杨胜利, 方小敏, 李吉均, 等. 表土颜色和气候定性至半定量关系研究[J]. 中国科学(D辑), 2001, 31(增刊):175-181. Yang Shengli, Fang Xiaomin, Li Jijun, et al. Transformation functions of soil color and climate[J]. Science in China(Series D), 2001, 31(Suppl.):175-181.
[65]
Sun Y B, Liu H, Liang L J, et al. Changing color of Chinese loess:Geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6):1131-1138.
[66]
Robertson A R. The CIE 1976 color-difference formulae[J]. Color Research & Application, 1977, 2(1):7-11.
[67]
Singh B, Gilkes R J. Properties and distribution of iron oxides and their association with minor elements in the soils of South-Western Australia[J]. European Journal of Soil Science, 1992, 43(1):77-98.
[68]
Bigham J M, Golden D C, Buol S W, et al. Iron oxide mineralogy of well-drained ultisols and oxisols:Ⅱ. Influence on color, surface area, and phosphate retention[J]. Soil Science Society of America Journal, 1978, 42(5):825.
[69]
卢升高, 董瑞斌, 俞劲炎, 等. 中国东部红土的磁性及其环境意义[J]. 地球物理学报, 1999, 42(6):764-771. Lu Shenggao, Dong Ruibin, Yu Jinyan, et al. Magnetic measurement characterisation of red earth profile in Eastern China and its environmental implications[J]. Chinese Journal of Geophysics, 1999, 42(6):764-771.
[70]
卢升高. 第四纪红土的磁性与氧化铁矿物学特征及其古环境意义[J]. 土壤学报, 2000, 37(2):182-191. Lu Shenggao. Characterization of magnetism and iron oxide minerals of Quaternary red earth and its paleoenvironmental implications[J]. Acta Pedologica Sinica, 2000, 37(2):182-191.
[71]
胡雪峰, 龚子同, 夏应菲, 等. 安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J]. 土壤学报, 1999, 36(3):301-307. Hu Xuefeng, Gong Zitong, Xia Yingfei, et al. Comparative study of yellow-brown earth and Quaternary red clay in Xuanzhou, Anhui Province and its palaeo-climate significance[J]. Acta Pedologica Sinica, 1999, 36(3):301-307.
[72]
邓黄月, 郑祥民, 杨立辉, 等. 长江中下游地区第四纪红土磁学特征及其环境意义[J]. 沉积学报, 2015, 33(2):285-298. Deng Huangyue, Zheng Xiangmin, Yang Lihui, et al. Magnetic properties of Quaternary red earth profile in Yangtze River Valley and its paleo-environmental implications[J]. Acta Sedimentologica Sinica, 2015, 33(2):285-298.
[73]
刘秀铭, 夏敦胜, 刘东生, 等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J]. 第四纪研究, 2007, 27(2):210-220. Liu Xiuming, Xia Dunsheng, Liu Tungsheng, et al. Discussion on two models of paleoclmatic records of magnetic susceptibility of Alaskan and Chinese loess[J]. Quaternary Sciences, 2007, 27(2):210-220.
[74]
刘秀铭, 刘东生, 夏敦胜, 等. 中国与西伯利亚黄土磁化率古气候记录——氧化和还原条件下的两种成土模式分析[J]. 中国科学(D辑), 2007, 37(10):1382-1391. Liu Xiuming, Liu Tungsheng, Xia Dunsheng, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess[J]. Science in China(Series D), 2007, 37(10):1382-1391.
[75]
Dearing J A, Livingstone I P, Bateman M D, et al. Palaeoclimate records from QIS 8.0-5.4 recorded in loess-palaeosol sequences on the Matmata Plateau, southern Tunisia, based on mineral magnetism and new luminescence dating[J]. Quaternary International, 2001, 76-77:43-56. doi:10.1016/S1040-6182(00)00088-4.
[76]
Zhao Q C, Xue S K, Shi H, et al. Preliminary study on element leaching and current soil-forming process of red soils[J]. Pedosphere, 1991, 1(2):117-126.
[77]
李凤全, 叶玮, 王天阳, 等. 网纹红土红色基质与白色条纹铁迁移模型[J]. 第四纪研究, 2018, 38(2):306-313. Li Fengquan, Ye Wei, Wang Tianyang, et al. The model for iron migration between white reticulated mottles and red matrix[J]. Quaternary Sciences, 2018, 38(2):306-313.
[78]
朱景郊. 网纹红土的成因及其研究意义[J]. 地理研究, 1988, 7(4):14-22. Zhu Jingjiao. Genesis and research significance of the plinthitic horizon[J]. Geographical Research, 1988, 7(4):14-22.
[79]
李凤全, 叶玮, 朱丽东, 等. 第四纪网纹红土的类型与网纹化作用[J]. 沉积学报, 2010, 28(2):346-355. Li Fengquan, Ye Wei, Zhu Lidong, et al. The types and formation of Quaternary plinthitic red earth[J]. Acta Sedimentologica Sinica, 2010, 28(2):346-355.
[80]
尹秋珍, 郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期[J]. 科学通报, 2006, 51(2):186-193. Yin Qiuzhen, Guo Zhengtang. Mid-Pleistocene vermiculated red soils in Southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 2006, 51(2):186-193.
[81]
Lu S G, Xue Q F, Zhu L, et al. Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China[J]. Catena, 2008, 73(1):22-33.
[82]
胡忠行, 朱丽东, 张卫国, 等. 江西九庐公路红土剖面的磁学特征及其反映的风化成土作用[J]. 地球物理学报, 2011, 54(5):1319-1326. Hu Zhongxing, Zhu Lidong, Zhang Weiguo, et al. Magnetic properties of red clay section along the Jiulu Highway at Jiujiang, Jiangxi and implication for pedogenesis[J]. Chinese Journal of Geophysics, 2011, 54(5):1319-1326.
[83]
吕厚远, 韩家懋, 吴乃琴, 等. 中国现代土壤磁化率分析及其古气候意义[J]. 中国科学(B辑), 1994, 24(12):1290-1297. Lü Houyuan, Han Jiamao, Wu Naiqin, et al. Magnetic susceptibility of Chinese and its paleoclimatic significance[J]. Science in China(Series B), 1994, 24(12):1290-1297.
[84]
黄雨振, 陈秀玲, 吕镔, 等. 福建北部闽江流域第四纪红土的磁学特征及其环境意义[J]. 山地学报, 2018, 36(4):527-535. Huang Yuzhen, Chen Xiuling, Lü Bin, et al. Magnetic characteristics of Quaternary red earth sequence from the Minjiang drainage basin in northern Fujian and its environmental significance[J]. Mountain Research, 2018, 36(4):527-535.
[85]
Balsam W L, Ellwood B B, Ji J F, et al. Magnetic susceptibility as a proxy for rainfall:Worldwide data from tropical and temperate climate[J]. Quaternary Science Reviews, 2011, 30(19-20):2732-2744.
[86]
Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693.
[87]
朱丽东, 周尚哲, 李凤全, 等. 庐山JL红土剖面的色度气候意义[J]. 热带地理, 2007, 27(3):193-197. Zhu Lidong, Zhou Shangzhe, Li Fengquan, et al. Climatic implication of the chroma of JL red earth section in the Lushan Mountain[J]. Tropical Geography, 2007, 27(3):193-197.
[88]
陈秀玲, 李志忠, 靳建辉, 等. 中国南方第四纪红土研究进展[J]. 福建师范大学学报(自然科学版), 2009, 25(5):118-124. Chen Xiuling, Li Zhizhong, Jin Jianhui, et al. Research advance of Quaternary red earth in South China[J]. Journal of Fujian Normal University(Natural Science Edition), 2009, 25(5):118-124.
[89]
袁宝印, 夏正楷, 李保生, 等. 中国南方红土年代地层学与地层划分问题[J]. 第四纪研究, 2008, 28(1):1-13. Yuan Baoyin, Xia Zhengkai, Li Baosheng, et al. Chronostratigraphy and stratigraphic division of red soil in Southern China[J]. Quaternary Sciences, 2008, 28(1):1-13.
[90]
Clark P U, Alley R B, Pollard D. Northern Hemisphere ice-sheet influences on global climate change[J]. Science, 1999, 286(5442):1104-1111.
[91]
Hao Q Z, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability[J]. Nature, 2012, 490(7420):393-396.
[92]
Ding Z L, Liu T S, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years[J]. Quaternary Research, 1995, 44(2):149-159.
[93]
Guan Q Y, Pan B T, Li N, et al. Timing and significance of the initiation of present day deserts in the northeastern Hexi Corridor, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(1-2):70-74.
[94]
Pan B T, Burbank D, Wang Y X, et al. A 900 k.y. record of strath terrace formation during glacial-interglacial transitions in Northwest China[J]. Geology, 2003, 31(11):957-960.
[95]
Yang S X, Wang F G, Xie F, et al. Technological innovations at the onset of the mid-Pleistocene climate transition in high-latitude East Asia[J]. National Science Review, 2020, doi:10.1093/nsr/nwaa053.
[96]
刘东生, 等. 黄土与环境[M]. 北京:科学出版社, 1985:191-207. Liu Tungsheng, et al. Loess and the Environment[M]. Beijing:Science Press, 1985:191-207.
[97]
Liu T S, Ding Z L, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma[J]. Quaternary Science Reviews. 1999, 18(10-11):1205-1212.