Abstract:The Late Pliocene-Early Pleistocene period is a transitional period of major changes in the global environment. The Yinchuan Basin(37°50'~39°20'N, 105°21'~106°50'E) is located in Northwestern China and in the junction of arid and semi-arid regions. The basin is an ideal area for studying the evolution of the paleoenvironment since it's abundant Cenozoic sediments. A depth 720.77-m core PL02(38°55'26.62″N, 106°36'03.82″; 1103 m a.s.l.) is located in the subsidence central of Yinchuan Basin and it is typical flood sedimentary environment of subsidence basin. In this study, we reconstructed paleoenvironment evolution characteristics during the Late Pliocene-Early Pleistocene(3.3~1.5 Ma) period in Yinchuan Basin by pollen(200 samples), magnetic susceptibility and mean grains size of the bottom of the core PL02(depth:705.7~247.9 m). Moreover, we also analyzed the paleoclimate change cycle of this period through spectrum analysis and wavelet transform methods. The results show that the climate in the study area has gradually become cold and dry during the Late Pliocene period(since 2.8 Ma), and has become more arid and fluctuates greatly in the Early Pleistocene period. In addition, pollen, magnetic susceptibility and mean grains size reflected that the paleoclimate changes in Yinchuan Basin from the Late Pliocene to Early Pleistocene period have a relatively significant cycles of ca. 20 ka of the precession and of ca. 40 ka of the obliquity, but the cycles of ca. 100 ka of the eccentricity is only reflected in individual indicators. Moreover, these results are more consistent with the climate change cycle of the Late Pleistocene-Early Pleistocene revealed by the records of the Loess Plateau and the deep-sea oxygen isotope records. Therefore, it can be speculated that the climate fluctuations in the Yinchuan Basin during this period may be affected by the Earth's orbital factors and similar to global environmental change.
田晏嫣, 周助, 迟长婷, 陆璐, 王均平, 魏明建. 银川盆地PL02钻孔孢粉记录的晚上新世-早更新世时期的古气候变化周期[J]. 第四纪研究, 2020, 40(6): 1418-1430.
Tian Yanyan, Zhou Zhu, Chi Changting, Lu Lu, Wang Junping, Wei Mingjian. The paleoclimate change period of the Late Pliocene-Early Pleistocene recorded by pollen from core PL02 in Yinchuan Basin. Quaternary Sciences, 2020, 40(6): 1418-1430.
李孟. 兰州皋兰山红粘土-黄土记录的上新世-更新世转型期环境演变[D]. 兰州:兰州大学硕士论文, 2019:1-82. Li Meng. The Paleoenvironmental Evolution during the Pliocene-Pleistocene Transition Recorded by the Gaolanshan Red Clay-Loess Core in the Lanzhou Basin[D]. Lanzhou:The Master's Degree Thesis of Lanzhou University, 2019:1-82.
[2]
Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517):686-693.
[3]
Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic climate[J]. Nature, 1992, 359(6391):117-122.
[4]
Deng T, Wang X, Fortelius M, et al. Out of Tibet:Pliocene woolly rhino suggests high-plateau origin of ice age megaherbivores[J]. Science, 2011,333(6047):1285-1288.
[5]
李吉均, 方小敏. 青藏高原隆起与环境变化研究[J]. 科学通报, 1998, 43(15):1569-1574. Li Jijun, Fang Xiaomin. Uplift of the Tibetan Plateau and environmental changes[J]. Chinese Science Bulletin, 1998, 43(15):1569-1574.
[6]
Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3):5-21.
[7]
Sun Y, Chen J, Clemens S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(12):97-112.
[8]
Wu F L, Fang X M, Ma Y Z, et al. Plio-Quaternary stepwise drying of Asia:Evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2007, 257(1-2):160-169.
[9]
Li Y, Li Z, Chen Y, et al. Analysis and applications on sun lighting characteristics of space objects[J]. Journal of Aerospace Science and Technology, 2014, 2(3):43-51.
[10]
Emiliani C, Hudson J H, Shinn E A, et al. Oxygen and carbon isotopic growth record in a reef coral from the Florida keys and a deep-sea coral from Blake Plateau[J]. Science, 1978, 202(4368):627-629.
[11]
Wang Y, Evans M E, Rutter N, et al. Magnetic susceptibility of Chinese loess and its bearing on paleoclimate[J]. Geophysical Research Letters, 1990, 17(13):2449-2451.
[12]
Williams D F, Peck J, Karabanov E B, et al. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years[J]. Science, 1997, 278(5340):1114-1117.
[13]
Kashiwaya K, Ochiai S, Sakai H, et al. Onset of current Milankovith type climatic oscillations in Lake Baikal sediments at around 4 Ma[J]. Earth and Planetary Science Letters, 2003, 213(3-4):185-190.
[14]
童国榜, 郑宏瑞, 杨振京, 等. 中国4 Ma来孢粉植物群气候的多重旋回模型[J]. 海洋地质与第四纪地质, 1995, 15(4):81-95. Tong Guobang, Zheng Hongrui, Yang Zhenjing, et al. Multicyclic model of palynoflora climate since 4 Ma in China[J]. Marine Geology & Quaternary Geology, 1995, 15(4):81-95.
[15]
Xu Q, Tian F, Bunting M J, et al. Pollen source areas of lakes with inflowing rivers:Modern pollen influx data from Lake Baiyangdian, China[J]. Quaternary Science Reviews, 2012, 37:81-91. https://doi.org/10.1016/j.quascirev.2012.01.019.
[16]
赵淼, 张文卿, 蔡五田, 等. 二连盆地马尼特坳陷ZK001钻孔孢粉组合及其地质时代与气候变化[J]. 第四纪研究, 2018, 38(6):1396-1408. Zhao Miao, Zhang Wenqing, Cai Wutian, et al. Palynological assemblages of borehole ZK001 in Manite depression of Erlian basin and discussion of the stratigraphy and climate evolution[J]. Quaternary Sciences, 2018, 38(6):1396-1408.
[17]
李宇, 王倩, 羊向东. 30-10 ka云南高山湖泊高分辨率生物记录与气候突变事件[J]. 第四纪研究, 2019, 39(4):863-877. Li Yu, Wang Qian, Yang Xiangdong. The monsoon evolution and abrupt climate events recorded in high-resolution biological records from the alpine lakes of Yunnan during 30-10 ka[J]. Quaternary Sciences, 2019, 39(4):863-877.
[18]
黄小忠, 向丽雄, 张恩源, 等. 全新世中期7 ka前后降温事件对中国北方植被生态的影响[J]. 第四纪研究, 2019, 39(3):687-700. Huang Xiaozhong, Xiang Lixiong, Zhang Enyuan, et al. Mid-Holocene cold event at ca.7 ka and its impact on vegetation ecology in Northern China[J]. Quaternary Sciences, 2019, 39(3):687-700.
[19]
Tian Y Y, Andrei A. Andreev, Zhou Z, et al. Early Pleistocene(Olduvai Subchron)vegetation and climate change based on palynological records from the Yinchuan Basin of Northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 556:109893. https://doi.org/10.1016/j.palaeo.2020.109893.
[20]
杨振京, 刘志明, 张俊牌, 等. 银川盆地中更新世以来的孢粉记录及古气候研究[J]. 海洋地质与第四纪地质, 2001, 21(3):43-49. Yang Zhenjing, Liu Zhiming, Zhang Junpai, et al. Sporopollen records and paleoclimate study of Yinchuan Basin since mid-Pleistocene[J]. Marine Geology & Quaternary Geology, 2001, 21(3):43-49.
[21]
施炜, 刘源, 刘洋, 等. 青藏高原东北缘海原断裂带新生代构造演化[J]. 地学前缘, 2013, 20(4):1-17. Shi Wei, Liu Yuan, Liu Yang, et al. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2013, 20(4):1-17.
[22]
Liu X, Shi W, Hu J, et al. Magnetostratigraphy and tectonic implications of Paleogene-Neogene sediments in the Yinchuan Basin, western North China Craton[J]. Journal of Asian Earth Sciences, 2019, 173(APR.15):61-69.
[23]
Li J, Feng Z, Tang L. Late Quaternary monsoon patterns on the Loess Plateau of China[J]. Earth Surface Processes and Landforms, 1988, 13(2):125-135.
[24]
Li X L, Hao Q Z, Wei M J, et al. Phased uplift of the northeastern Tibetan Plateau inferred from a pollen record from Yinchuan Basin, Northwestern China[J]. Scientific Report, 2017, 7(1):18023.
[25]
Zhou Z, Tian Y Y, Wang J P, et al. Vegetation and climate history during the Mammoth subchron from high-resolution pollen records in Yinchuan Basin, Northwestern China[J]. Review of Palaeobotany and Palynology, 2020, 279:104239. https://doi.org/10.1016/j.revpalbo.2020.104239.
[26]
申苗苗. 银川盆地平罗东通平钻孔磁性地层及古气候研究[D]. 北京:首都师范大学硕士论文, 2015:1-87. Shen Miaomiao. Magnetostratigraphy and Paleoclimate Research of Pingluo Dongtong Core in Yinchuan Basin[D]. Beijing:The Master's Degree Thesis of Capital Normal University, 2015:1-87.
[27]
Wang J P, Shen M M, Hu J M, et al. Magnetostratigraphy and its paleoclimatic significance of the PL02 borehole in the Yinchuan Basin[J]. Journal of Asian Earth Sciences, 2015, 114:258-265. https://doi.org/10.1016/j.jseaes.2015.07.017.
[28]
Schulz M, Mudelsee M. Redfit:Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series[J]. Computers & Geosciences, 2002, 28(3):421-426.
[29]
Torrence C, Compo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1):61-78.
[30]
Grinsted A, Moore J C, Jevrejeva S, et al. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Processes in Geophysics, 2004, 11(5-6):561-566.
[31]
赵琳, 鹿化煜, 唐领余. 渭河盆地新生代孢粉组合与植被演化特征[J]. 第四纪研究, 2018, 38(5):1083-1093. Zhao Lin, Lu Huayu, Tang Lingyu. Cenozoic palynological records and vegetation evolution in the Weihe Basin, Central China[J]. Quaternary Sciences, 2018, 38(5):1083-1093.
[32]
杨振京, 徐建明. 孢粉-植被-气候关系研究进展[J]. 植物生态学报, 2002, 26(S1):73-81. Yang Zhenjing, Xu Jianming. Advances in studies on relationship among pollen, vegetation and climate[J]. Acta Phytoecologica Sinica, 2002, 26(S1):73-81.
[33]
张生瑞, 肖举乐, 温锐林, 等. 东亚中高纬Heinrich 1事件的表现特征:呼伦湖孢粉记录[J]. 第四纪研究, 2019, 39(4):905-915. Zhang Shengrui, Xiao Jule, Wen Ruilin, et al. The character and impact of the Heinrich event 1 in the middle-high latitude of East Asia:Pollen records from the Hulun Lake[J]. Quaternary Sciences, 2019, 39(4):905-915.
[34]
肖霞云, 沈吉, 谭金凤. 末次冰消期滇西地区气候突变事件:湖泊孢粉记录[J]. 第四纪研究, 2019, 39(4):964-974. Xiao Xiayun, Shen Ji, Tan Jinfeng. Climatic abrupt events during the last deglaciation in the western Yunnan Province revealed by pollen records[J]. Quaternary Sciences, 2019, 39(4):964-974.
[35]
丁国强, 申改慧, 李月丛, 等. 泥河湾盆地上新世末期植被与气候变化的孢粉学记录[J]. 第四纪研究, 2018, 38(2):336-347. Ding Guoqiang, Shen Gaihui, Li Yuecong, et al. Late Pliocene palynological records of vegetation and climate changes in the Nihewan Basin[J]. Quaternary Sciences, 2018, 38(2):336-347.
[36]
徐仁, 孔昭宸, 杜乃秋. 中国更新世的云杉-冷杉植物群及其在第四纪研究上的意义[J]. 第四纪研究, 1980, (1):48-56. Xu Ren, Kong Zhaochen, Du Naiqiu. The flora of spruce and fir during the Pleistocene in China and their significance in the study of the Quaternary[J]. Quaternary Sciences, 1980, (1):48-56.
[37]
李文漪, 姚祖驹. 表土中松属花粉与植被间数量关系研究[J]. 植物学报, 1990, 12(32):943-950. Li Wenyi, Yao Zuju. A study on the quantitative relationship between Pinus pollen in surface sample and Pinusvegetation[J]. Chinese Bulletin of Botany, 1990, 12(32):943-950.
[38]
李月丛, 丁国强, 王永, 等. 泥河湾盆地早更新世(2.6-2.1 Ma)植被和气候变化[J]. 第四纪研究, 2018, 38(4):830-841. Li Yuecong, Ding Guoqiang, Wang Yong, et al. Early Pleistocene(2.6-2.1 Ma)vegetation and climate changes in the Nihewan Basin[J]. Quaternary Sciences, 2018, 38(4):830-841.
阎顺. 新疆第四纪孢粉组合特征及植被演替[J]. 干旱区地理, 1991, 14(2):1-9. Yan Shun. Quaternary spore-pollen assemblage and the vegetation succession in Xinjiang[J]. Arid Land Geography, 1991, 14(2):1-9.
[41]
孙湘君, 杜乃秋, 翁成郁, 等. 新疆玛纳斯湖盆周围近14000年以来的古植被古环境[J]. 第四纪研究, 1994, (3):239-247. Sun Xiangjun, Du Naiqiu, Weng Chengyu, et al. Paleovegetation and paleoenvironment of Manas Lake, Xinjiang, N. W. China during the last 14000 years[J]. Quaternary Sciences, 1994, (3):239-247.
[42]
Tian Y Y, Wei M J, Cai M T, et al. Late Pliocene and Early Pleistocene environmental evolution from the sporopollen record of core PL02 from the Yinchuan Basin, Northwest China[J]. Quaternary International, 2018, 476:26-33. https://doi.org/10.1016/j.quaint.2018.03.009.
[43]
Keisling B A, Castaneda I S, Brigham-grette J. Hydrological and temperature change in Arctic Siberia during the intensification of Northern Hemisphere Glaciation[J]. Earth and Planetary Science Letters, 2017, 457:136-148. https://doi.org/10.1016/j.epsl.2016.09.058.
[44]
Li L, Li Q, Tian J A. 4 Ma record of thermal evolution in the tropical western Pacific and its implications on climate change[J]. Earth and Planetary Science Letters, 2011, 309(1-2):10-20.
[45]
Maslin M A, Shackleton N J, Pflaumann U. Surface water temperature, salinity, and density changes in the northeast Atlantic during the last 45,000 years:Heinrich events, deep water formation, and climatic rebounds[J]. Paleoceanography, 1995, 10(3):527-544.
[46]
Rea D K, Janecek T R. Late Pliocene onset of glaciation:Ice-rafting and diatom stratigraphy of North Pacific DSDP cores[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 49(3-4):313-325.
[47]
丁国强. 泥河湾盆地早更新世(2.2-1.8 Ma)植被演替和气候变化特征[D]. 石家庄:河北师范大学硕士论文, 2018:1-48. Ding Guoqiang. Vegetation Succession and Climate Change during the Early Pleistocene(2.2-1.8 Ma)in Nihewan Basin[D]. Shijiazhuang:The Master's Degree Thesis of Hebei Normal University, 2018:1-48.
[48]
袁宝印, 朱日祥. 泥河湾组的时代, 地层划分和对比问题[J]. 中国科学(D辑), 1996, 26(1):67-73. Yuan Baoyin, Zhu Rixiang. Age stratum division and contrast of Nihewan Formation[J]. Science in China(Series D), 1996, 26(1):67-73.
[49]
Brighamgrette J, Melles M, Minyuk P, et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia[J]. Science, 2013, 340(6139):1421-1427.
[50]
吴怀春, 房强, 张世红, 等. 新生代米兰科维奇旋回与天文地质年代表[J]. 第四纪研究, 2016, 36(5):1055-1074. Wu Huaichun, Fang Qiang, Zhang Shihong, et al. Cenozoic Milankovitch cycles and astronomical time scale[J]. Quaternary Sciences, 2016, 36(5):1055-1074.
[51]
Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1):39-70.
[52]
Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit:Pacemaker of the ice ages[J]. Science, 1976, 4270(194):1121-1132.
[53]
鹿化煜, 胡挺, 王先彦, 等. 1100万年以来中国北方风尘堆积与古气候变化的周期及驱动因素分析[J]. 高校地质学报, 2009, 15(2):149-158. Lu Huayu, Hu Ting, Wang Xianyan, et al. Cycles and forcing mechanism of wet-dry variations in North China during the past 11.0 million years revealed by wind-blown silt deposits[J]. Geological Journal of China Universities, 2009, 15(2):149-158.
李新玲. 银川盆地1.5 Ma以来古气候环境演变及机制研究[D]. 北京:首都师范大学博士论文, 2018:1-160. Li Xinling. Paleoclimatic Environment Evolution and Mechanism Research in Yinchuan Basin since the 1.5 Ma[D]. Beijing:The Doctor's Degree Thesis of Capital Normal University, 2018:1-160.
[56]
Kashiwaya K, Ochiai S, Sakai H, et al. Orbit-related long-term climate cycles revealed in a 12-Myr continental record from Lake Baikal[J]. Nature, 2001, 410(6824):71-74.
[57]
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18 O records[J]. Paleoceanography 2005, 20(1):1003-1017.
[58]
Sun Y, An Z, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2010,297(3-4):525-535.