Orbital variations of the East Asian winter monsoon during the past 3 Ma from a transient simulation
Zhang Xiaojian1, Jin Liya2,3, Andrey Ganopolski4, Matteo Willeit4
1. School of Geography and Ocean Science, Nanjing University, Nanjing 210023, Jiangsu;
2. School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan;
3. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu;
4. Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany
Abstract:The East Asian winter monsoon(EAWM) is an important component of Earth's climate system, which significantly influences climate changes over East Asia. Orbital-scale variability of the EAWM during the Quaternary period is a crucial issue for paleoclimate researches because it significantly affects the geographical environment in Northern China. In addition, the EAWM provides another perspective for the development of Northern Hemisphere ice sheets given the coupling of the EAWM variability and Northern Hemisphere ice volume at orbital timescales. However, their coupling relationship is doubled by many proxy records and climate simulations. This study intends to explore orbital variations of the EAWM during the past 3 Ma and associated physical mechanisms, especially their response to the Northern Hemisphere ice volume, based on transient simulations by the fully coupled Earth system model of intermediate complexity CLIMBER-2. The CLIMBER-2 considers the synchronous interactions among climate system, carbon cycle, and ice sheets, which therefore requires the sole forcing factor:Earth's orbital variations. The CLIMBER-2 simulates well the glacial cycles and global cooling during the Quaternary period, which provides a solid foundation for the simulation of the EAWM. This study uses two EAWM indices to fully describe EAWM variability. The first EAWM index(EAWMU, u-component of EAWM winds) is defined as the mean zonal near-surface wind velocity over East Asia(35°~45°N and 95°~115°E), which reflects the capacity of the EAWM transporting coarse sediment to Chinese Loess Plateau. The second EAWM index(EAWMV, v-component of EAWM winds) is defined as the strength of the northerly winds over East Asia(25°~35°N and 120°~130°E). Simulation results indicate a general intensification of the EAWM during the past 3 Ma, showing a sharp increase around 2.2 Ma(1.5 Ma) for the EAWMV(EAWMU). Simulated EAWMV(EAWMU) was dominated by 20 ka precession cycle before ca. 2.2 Ma(ca. 1.5 Ma), by 41 ka obliquity and 20 ka precession cycles between ca. 2.2~1.0 Ma(ca. 1.5~1.0 Ma). After ca. 1.0 Ma, both the EAWMV and EAWMU show combined 100 ka eccentricity, 41 ka obliquity and 20 ka precession cycles. The shift in paleoclimatic periodicity of modelled EAWM from 20 ka to 100 ka cycles differs with the loess records, which reveal a shift from 41 ka to 100 ka over the mid-Pleistocene transition. The EAWMU is influenced by the meridional contrast of surface pressure at middle latitudes, which is further controlled by the meridional thermal contrast. The EAWMV is controlled by the sea-land thermal contrast. Before ca. 2.2 Ma(ca. 1.5 Ma), the effect of the Northern Hemisphere ice sheet on the sea-land thermal contrast(meridional thermal contrast) was weaker than the direct effect of the insolation due to the relatively small ice sheet. Therefore, the EAWMV(EAWMU) was dominated by 20 ka precession cycle during the corresponding period. Accompanying by the increase of the ice sheet after ca. 2.2 Ma(ca. 1.5 Ma), the effect of the ice sheet on the sea-land thermal contrast(meridional thermal contrast) was stronger than the direct effect of the insolation. Hence, the EAWMV(EAWMU) was dominated by 20 ka precession and 41 ka obliquity cycles between ca. 2.2~1.0 Ma(ca. 1.5~1.0 Ma), and by 100 ka eccentricity cycle after ca. 1.0 Ma. Our simulations indicate that the coupled relationship between the EAWM and Northern Hemisphere ice volume depends on the size of the ice sheets. The sensitivity of the EAWM to the size of the ice sheets is significant different between the EAWMU and EAWMV, which reflects the spatial difference of the EAWM. Our study further suggests that special caution should be taken when exploring the development of Northern Hemisphere ice sheets based on loess records during the Early Pleistocene.
张肖剑, 靳立亚, Andrey Ganopolski, Matteo Willeit. 3 Ma以来轨道尺度东亚冬季风演化的模拟研究[J]. 第四纪研究, 2020, 40(6): 1406-1417.
Zhang Xiaojian, Jin Liya, Andrey Ganopolski, Matteo Willeit. Orbital variations of the East Asian winter monsoon during the past 3 Ma from a transient simulation. Quaternary Sciences, 2020, 40(6): 1406-1417.
Raymo M E, Oppo D W, Curry W B. The mid-Pleistocene climate transition:A deep sea carbon perspective[J]. Paleoceanography, 1997, 12(4):546-559.
[2]
马小林, 田军. 15 Ma以来海陆记录的轨道-构造尺度东亚季风的演化以及西北内陆的干旱化[J]. 第四纪研究, 2015, 35(6):1320-1330. Ma Xiaolin, Tian Jun. East Asian monsoon evolution and aridification of Northwest China viewed from land and sea on the tectonic-orbital time scale since 15 Ma[J]. Quaternary Sciences, 2015, 35(6):1320-1330.
[3]
Augustin L, Barbante C, Barnes P R F, et al. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429:623-628. doi:10.1038/nature02599.
[4]
Abe-Ouchi A, Saito F, Kawamura K, et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume[J]. Nature, 2013, 500:190-193. doi:10.1038/nature12374.
[5]
鹿化煜, 王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报, 2016, 61(11):1164-1172. Lu Huayu, Wang Yao. What causes the ice ages in the Late Pliocene and Pleistocene?[J]. Chinese Science Bulletin, 2016, 61(11):1164-1172.
[6]
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317.
[7]
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):PA1003. doi:10.1029/2004PA001071.
[8]
Hao Q, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400,000-year minima in insolation variability[J]. Nature, 2012, 490:393-396. doi:10.1038/nature11493.
[9]
丁仲礼, 余志伟. 第四纪时期东亚季风变化的动力机制[J]. 第四纪研究, 1995, (1):63-74. Ding Zhongli, Yu Zhiwei. Forcing mechanisms of paleomonsoons over East Asia[J]. Quaternary Sciences, 1995, (1):63-74.
[10]
杨周, 林振山, 俞鸣同. 东亚冬季风演变和亚洲内陆干旱化信号的多尺度分析[J]. 第四纪研究, 2011, 31(1):73-80. Yang Zhou, Lin Zhenshan, Yu Mingtong. Multi-scale analysis of East Asian winter monsoon evolution and Asian inland drying force[J]. Quaternary Sciences, 2011, 31(1):73-80.
[11]
张仲石, 燕青, 张冉, 等. 第四纪北半球冰盖发育与东亚气候的遥相关[J]. 第四纪研究, 2017, 37(5):1009-1016. Zhang Zhongshi, Yan Qing, Zhang Ran, et al. Teleconnection between Northern Hemisphere ice sheets and East Asian climate during Quaternary[J]. Quaternary Sciences, 2017, 37(5):1009-1016.
[12]
杨石岭, 丁仲礼. 黄土高原黄土粒度的空间变化及其古环境意义[J]. 第四纪研究, 2017, 37(5):934-944. Yang Shiling, Ding Zhongli. Spatial changes in grain size of loess deposits in the Chinese Loess Plateau and implications for palaeoenvironment[J]. Quaternary Sciences, 2017, 37(5):934-944.
[13]
孙有斌, 郭飞. 中国黄土记录的季风快速变化[J]. 第四纪研究, 2017, 37(5):963-973. Sun Youbin, Guo Fei. Rapid monsoon changes recorded by Chinese loess deposits[J]. Quaternary Sciences, 2017, 37(5):963-973.
[14]
袁宝印, 郝青振, 徐钦琦, 等. 洛川黄土堆积粗颗粒变化记录与华北第四纪哺乳动物迁徙关系的初步探讨[J]. 第四纪研究, 2015, 35(6):1480-1488. Yuan Baoyin, Hao Qingzhen, Xu Qinqi, et al. A preliminary study on the relationship of climatic events recorded by coarse fractions in loess-paleosol sequence from Luochuan and southward migration of mammalian animals in North China[J]. Quaternary Sciences, 2015, 35(6):1480-1488.
[15]
Sun Y, An Z, Clemens S C. Non-stationary response of Plio-Pleistocene East Asian winter monsoon variation to ice volume forcing[J]. Geological Society, London, Special Publications, 2010, 342:79-86. doi:10.1144/SP342.7.
[16]
Sun Y, An Z, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2010, 297(3-4):525-535.
[17]
Tian J, Wang P, Cheng X. Development of the East Asian monsoon and Northern Hemisphere glaciation:Oxygen isotope records from the South China Sea[J]. Quaternary Science Reviews, 2004, 23(18-19):2007-2016.
[18]
黄恩清. 中更新世以来东亚冬季风海陆记录对比[J]. 第四纪研究, 2015, 35(6):1331-1341. Huang Enqing. A comparison of the East Asian winter monsoon reconstructions from terrestrial and marine sedimentary records since the mid-Pleistocene[J]. Quaternary Sciences, 2015, 35(6):1331-1341.
[19]
刘志飞, 赵玉龙, 王轶婕, 等. 南海第四纪东亚季风演化的粘土矿物指标[J]. 第四纪研究, 2017, 37(5):921-933. Liu Zhifei, Zhao Yulong, Wang Yijie, et al. Clay mineralogical proxy of the East Asian monsoon evolution during the Quaternary in the South China Sea[J]. Quaternary Sciences, 2017, 37(5):921-933.
[20]
石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟:历史与展望[J]. 第四纪研究, 2020, 40(1):8-17. Shi Zhengguo, Lei Jing, Zhou Peng, et al. Numerical simulation researches on orbital-scale Asian climate dynamics:History and perspective[J]. Quaternary Sciences, 2020, 40(1):8-17.
[21]
孙炜毅, 刘健, 王志远. 东亚冬季风百年尺度变化特征及成因的模拟研究[J]. 第四纪研究, 2016, 36(3):722-731. Sun Weiyi, Liu Jian, Wang Zhiyuan. Modeling study on the characteristics and causes of East Asian winter monsoon on centennial time scale[J]. Quaternary Sciences, 2016, 36(3):722-731.
[22]
Wen X, Liu Z, Wang S, et al. Correlation and anti-correlation of the East Asian summer and winter monsoons during the last 21,000 years[J]. Nature Communications, 2016, 7:11999. doi:10.1038/ncomms11999.
[23]
Li Y, Morrill C. A Holocene East Asian winter monsoon record at the southern edge of the Gobi Desert and its comparison with a transient simulation[J]. Climate Dynamics, 2015, 45:1219-1234. doi:10.1007/s00382-014-2372-5.
[24]
Shi Z G, Liu X D, Sun Y B, et al. Distinct responses of East Asian summer and winter monsoons to astronomical forcing[J]. Climate of the Past, 2011, 7:1363-1370. doi:10.5194/cp-7-1363-2011.
[25]
Xie X, Liu X, Chen G, et al. A transient modeling study of the latitude dependence of East Asian winter monsoon variations on orbital timescales[J]. Geophysical Research Letters, 2019, 46(13):7565-7573.
[26]
Petoukhov V, Ganopolski A, Brovkin V, et al. CLIMBER-2:A climate system model of intermediate complexity. Part Ⅰ:Model description and performance for present climate[J]. Climate Dynamics, 2000, 16:1-17. doi:10.1007/PL00007919.
[27]
Ganopolski A, Petoukhov V, Rahmstorf S, et al. CLIMBER-2:A climate system model of intermediate complexity. Part Ⅱ:Model sensitivity[J]. Climate Dynamics, 2001, 17:735-751. doi:10.1007/s003820000144.
[28]
Greve R. A continuum-mechanical formulation for shallow polythermal ice sheets[J]. Philosophical Transactions of the Royal Society A, 1997, 355(1726):921-974.
[29]
Brovkin V, Ganopolski A, Svirezhev Y. A continuous climate-vegetation classification for use in climate-biosphere studies[J]. Ecological Modelling, 1997, 101(2-3):251-261.
[30]
Brovkin V, Bendtsen J, Claussen M, et al. Carbon cycle, vegetation, and climate dynamics in the Holocene:Experiments with the CLIMBER-2 model[J]. Global Biogeochemical Cycles, 2002, 16(4):1139. doi:10.1029/2001GB001662.
[31]
Brovkin V, Ganopolski A, Archer D, et al. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry[J]. Paleoceanography, 2007, 22(4):PA4202. doi:10.1029/2006PA001380.
[32]
Calov R, Ganopoolski A, Claussen M, et al. Transient simulation of the last glacial inception. Part Ⅰ:Glacial inception as a bifurcation in the climate system[J]. Climate Dynamics, 2005, 24:545-561. doi:10.1007/s00382-005-0007-6.
[33]
Ganopolski A, Calov R, Claussen M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity[J]. Climate of the Past, 2010, 6:229-244. doi:10.5194/cp-6-229-2010.
[34]
Ganopolski A, Brovkin V. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity[J]. Climate of the Past, 2017, 13:1695-1716. doi:10.5194/cp-13-1695-2017.
[35]
Willeit M, Ganopolski A, Calov R, et al. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal[J]. Science Advances, 2019, 5(4):eaav7337. doi:10.1126/sciadv.aav7337.
[36]
Ganopolski A, Winkelmann R, Schellnhuber H J. Critical insolation-CO2 relation for diagnosing past and future glacial inception[J]. Nature, 2016, 529:200-203. doi:10.1038/nature16494.
[37]
Jin L, Chen F, Ganopolski A, et al. Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity[J]. Journal of Geophysical Research, 2007, 112:D06117. doi:10.1029/2006JD007316.
[38]
汪品先, 李前裕, 田军, 等. 从南海看第四纪大洋碳储库的长周期循环[J]. 第四纪研究, 2015, 35(6):1297-1319. Wang Pinxian, Li Qianyu, Tian Jun, et al. Long-term cycles in carbon reservoir of the Quaternary ocean:A perspective from the South China Sea[J]. Quaternary Sciences, 2015, 35(6):1297-1319.
[39]
Willeit M, Ganopolski A, Feulner G. On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets[J]. Climate of the Past, 2013, 9:1749-1759. doi:10.5194/cp-9-1749-2013.
[40]
Clark P, Archer D, Pollard D, et al. The Middle Pleistocene transition:Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 2006, 25(23-24):3150-3184. doi:10.1016/j.quascirev.2006.07.008.
[41]
刘瑞璇, 鹿化煜, 王珧, 等. 东阿拉伯海拉克希米盆地浊流沉积序列的粒度变化及其对中更新世气候转型的响应[J]. 第四纪研究, 2018, 38(5):1120-1129. Liu Ruixuan, Lu Huayu, Wang Yao, et al. Grain size analysis of a depositional sequence in the Laxmi Basin(IODP Hole U1456A, Arabian Sea)reveals the Indian monsoon shift at the mid-Pleistocene Climatic Transition[J]. Quaternary Sciences, 2018, 38(5):1120-1129.
[42]
王海粟, 党皓文, 翦知湣. 中更新世转型时期南海北部上层水体结构演化特征——ODP1146站浮游有孔虫稳定同位素记录[J]. 第四纪研究, 2019, 39(2):316-327. Wang Haisu, Dang Haowen, Jian Zhimin. Variations in the upper water structure of northern South China Sea during the mid-Pleistocene Climate Transition Period:Planktonic foraminifera oxygen isotope records of ODP site 1146[J]. Quaternary Sciences, 2019, 39(2):316-327.
[43]
Da J, Zhang Y G, Li G, et al. Low CO2 levels of the entire Pleistocene epoch[J]. Nature Communications, 2019, 10:4342. doi:10.1038/s41467-019-12357-5.
[44]
Lüthi D, Floch M L, Bereiter B, et al. High-resolution carbon dioxide concentration record 650,000-800,000 years before present[J]. Nature, 2008, 453:379-382. doi:10.1038/nature06949.
[45]
孙继敏. 黄土沉积与地球圈层相互作用[J]. 第四纪研究, 2020, 40(1):1-7. Sun Jimin. Loess deposits and its relationship with Earth sphere interactions[J]. Quaternary Sciences, 2020, 40(1):1-7.
[46]
涂路遥, 周鑫, 刘毅, 等. 近海泥质沉积物敏感粒径作为冬季风强度指标的再研究:与器测数据的对比[J]. 第四纪研究, 2015, 35(6):1393-1401. Tu Luyao, Zhou Xin, Liu Yi, et al. Re-analysis of sensitive grain size of coastal muddy sediments as proxy of winter monsoon strength:Comparison with instrumental data[J]. Quaternary Sciences, 2015, 35(6):1393-1401.
[47]
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorological Society, 1996, 77(3):437-471.
[48]
Sun Y, Clemens S C, An Z, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau[J]. Quaternary Science Reviews, 2006, 25(1-2):33-48.
[49]
丁仲礼, 杨石岭, 孙继敏, 等. 2.6 Ma前后大气环流重构的黄土-红粘土沉积证据[J]. 第四纪研究, 1999, (3):277-281. Ding Zhongli, Yang Shiling, Sun Jimin, et al. Re-organization of atmospheric circulation at about 2.6 Ma over Northern China[J]. Quaternary Sciences, 1999, (3):277-281.
[50]
Lu H, Zhang F, Liu X, et al. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China[J]. Quaternary Science Reviews, 2004, 23(18-19):1891-1900.
[51]
鹿化煜, 王珧, 郝青振, 等. 第四纪轨道尺度亚洲季风变化[M]//郭正堂. 气候变化及人类的演化与适应. 北京:2021. Lu Huayu, Wang Yao, Hao Qingzhen, et al. Quaternary orbit-scale Asian monsoon changes[M]//Guo Zhengtang. Climate Change and Human Evolution and Adaptation. Beijing:2021.
[52]
Sun Y, Yin Q, Crucifix M, et al. Diverse manifestations of the mid-Pleistocene Climate Transition[J]. Nature Communications, 2019, 10:353. doi:10.1038/s41467-018-08257-9.
[53]
Zhang X, Jin L, Huang W, et al. Forcing mechanisms of orbital-scale changes in winter rainfall over Northwestern China during the Holocene[J]. The Holocene, 2016, 26(4):549-555.
[54]
刘东生, 丁仲礼. 二百五十万年来季风环流与大陆冰量变化的阶段性耦合过程[J]. 第四纪研究, 1992, (1):12-23. Liu Tungsheng, Ding Zhongli. Stepwise coupling of monsoon circulation to continental ice-volume variations during the past 2500000 years[J]. Quaternary Sciences, 1992, (1):12-23.
[55]
Ding Z L, Liu T, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years[J]. Quaternary Research, 1995, 44(2):149-159.
[56]
Guo Z T, Berger A, Yin Q Z, et al. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records[J]. Climate of the Past, 2009, 5:21-31. doi:10.5194/cp-5-21-2009.
[57]
An Z, Liu T, Lu Y, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China[J]. Quaternary International, 1990, 7-8:91-95. doi:10.1016/1040-6182(90)90042-3.
[58]
Liu T, Ding Z. Chinese loess and the paleomonsoon[J]. Annual Review of Earth and Planetary Sciences, 1998, 26:111-145. doi:10.1146/annurev.earth.26.1.111.
[59]
Beghin P, Charbit S, Dumas C, et al. Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation:The role of atmospheric circulation[J]. Climate of the Past, 2014, 10:345-358. doi:10.5194/cp-10-345-2014.
[60]
Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits[J]. Quaternary Science Reviews, 1994, 13(1):39-70.
胡挺, 鹿化煜, 王先彦, 等. 轨道调谐建立西宁厚层黄土堆积时间标尺的探索[J]. 第四纪研究, 2010, 30(1):62-68. Hu Ting, Lu Huayu, Wang Xianyan, et al. A preliminary orbit-tuned time scale for thick loess deposit at Xining, the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2010, 30(1):62-68.