1. 西安交通大学全球变化研究院, 陕西 西安 710054;
2. 中国科学院地球环境研究所, 黄土与第四纪地质国家重点实验室, 陕西 西安 710061;
3. 中国地质科学院岩溶地质研究所岩溶动力学重点实验室, 广西 桂林 541004;
4. 兰州大学资源环境学院, 西部环境教育部重点实验室, 甘肃 兰州 730000;
5. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven 27568, Germany;
6. 同济大学海洋地质国家重点实验室, 上海 200092;
7. 北京大学物理学院大气与海洋科学系, 北京 100871;
8. Department of Earth Sciences, California State University Dominguez Hills, California 90747, USA
European-Asian-African continent: An early form of supercontinent and supermonsoon
Cheng Hai1,2,3, Li Hanying1, Zhang Xu4,5, Zhang Haiwei1, Yi Liang6, Cai Yanjun1, Hu Yongyun7, Shi Zhengguo2, Peng Youbing1, Zhao Jingyao1, Gayatri Kathayat1, Ashish Sinha1,8
1. Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710054, Shaanxi;
2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, Shaanxi;
3. Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi Zhuang Autonomous Region, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, Guangxi;
4. Key Laboratory of Western Chin's Environmental Systems, Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu;
5. Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven 27568, Germany;
6. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092;
7. Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871;
8. Department of Earth Sciences, California State University Dominguez Hills, California 90747, USA
Abstract:The assembled European, Asian and African continents, accounting more than half(ca. 56%) of the Earth's landmass, and the corresponding Afro-Asian monsoon-dry-region system may be viewed as the early forms of super-continent and supermonsoon-arid-zone system. A comprehensive understanding of the vast Afro-Asian monsoon-dry region system is important from both theoretical and socioeconomic standpoints. Additionally, this understanding may also provide an important "analog" to probe the climate variations in the Pangean supermonsoon-arid-zone system across the low to middle latitude of the Pangean supercontinent and its change in the context of the continental breakup. Myriad empirical records and modeling results show that Afro-Asian monsoon variations broadly follow the summer insolation changes, manifesting significant precession cycles with a nearly anti-phase relation between Northern and Southern Hemisphere. Furthermore, the orbital-scale climate variations of the Afro-Asian monsoon and the accompanied large atmospheric circulation in the Asian Westerly arid-zone are approximately in-phase at the precession band. The Afro-Asian monsoon-arid Westerlies climate variations also lead the global ice volume change at the precession band. We suggest that the dominant orbital rhythm is eccentricity-modulated precession cycles in monsoon-arid-zone systems including the Pangean supermonsoon-arid-zone system. Regarding climatic dynamics, it appears that the Afro-Asian monsoon-arid-zone system has substantial similarity with the monsoon-arid-zone systems companied with the continent evolution at different stages during the Pangean supercontinent breakup. As such, it is critical to understand the Quaternary climate dynamics of the Afro-Asian monsoon-arid-zone system, which may provide key insight into the similar climate systems in deep time when the climate records are largely fragmented.
郭正堂. 黄土高原见证季风和荒漠的由来[J]. 中国科学:地球科学, 2017, 47(4):421-437. Guo Zhengtang. The Loess Plateau witnesses the origin of the monsoon and desert[J]. Science China:Earth Sciences, 2017, 47(4):421-437.
[2]
Adler R F, Sapiano M, Huffman G J, et al. The Global Precipitation Climatology Project(GPCP)monthly analysis(New Version 2.3)and a review of 2017 global precipitation[J]. Atmosphere, 2018, 9:138. doi:10.3390/atmos9040138.
[3]
Geen R, Lambert F H, Vallis G K. Processes and timescales in onset and withdrawal of "Aquaplanet Monsoons"[J]. Journal of the Atmospheric Sciences, 2019, 76(8):2357-2373.
[4]
Geen R, Bordoni S, Battisti D S, et al. The dynamics of the global monsoon:Connecting theory and observations[J]. Reviews of Geophysics, 2021, In review.
[5]
Hoskins B. On the existence and strength of the summer subtropical anticyclones:Bernhard Haurwitz memorial lecture[J]. Bulletin of the American Meteorological Society, 1996, 77(6):1287-1292.
[6]
Rodwell M J, Hoskins B J. Monsoons and the dynamics of deserts[J]. Quarterly Journal of the Royal Meteorological Society 1996,122(534):1385-1404.
[7]
Wang P X, Wang B, Cheng H, et al. The global monsoon across timescales:Coherent variability of regional monsoons[J]. Climate of the Past, 2014, 10(6):2007-2052.
[8]
Manabe S, Broccoli A J. Mountains and arid climates of middle latitudes[J]. Science, 1990, 247(4939):192-194.
[9]
Wu G X, Liu Y M, He B, et al. Thermal controls on the Asian summer monsoon[J]. Scientific Report, 2012, 2(1):404. doi:10.1038/srep00404.
[10]
汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5):535-556. Wang Pinxian. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 2009, 54(5):535-556.
[11]
Cheng H, Sinha A, Wang X, et al. The global paleomonsoon as seen through speleothem records from Asia and the Americas[J]. Climate Dynamics, 2012, 39(5):1045-1062.
[12]
An Z S, Wu G X, Li J P, et al. Global monsoon dynamics and climate change[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1):29-77.
[13]
Wang P X, Wang B, Cheng H, et al. The global monsoon across time scales:Mechanisms and outstanding issues[J]. Earth-Science Reviews, 2017, 174:84-121. doi:10.1016/J. EARSCIREV.2017.07.006.
[14]
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR 40-year reanalysis project[J]. Bulletin of the American Meteorology Society, 1996, 77(3):437-471.
[35]
Yoshimura K, Kanamitsu M, Noone D, et al. Historical isotope simulation using reanalysis atmospheric data[J]. Journal of Geophysical Research:Atmospheres,2008,113:D19. doi:10.1029/2008JD010074.
[16]
Ding Y H, Li C Y, Liu Y J. Overview of the South China Sea monsoon experiment[J]. Advance in Atmospheric Science, 2004, 21(3):343-360.
[17]
程海, 艾思本, 王先锋, 等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2):157-163. Cheng Hai, Edwards R L, Wang Xianfeng, et al. Oxygen isotope records of stalagmites from Southern China[J]. Quaternary Sciences, 2005, 25(2):157-163.
[18]
程海, 张海伟, 蔡演军, 等. 亚洲夏季风:轨道尺度上的"困惑"与探索[J]. 中国科学:地球科学, 2021,(审稿中). Cheng Hai, Zhang Haiwei, Cai Yanjun, et al. Asian summer monsoon:Orbital-scale[J]. Science China:Earth Sciences, 2021(in review).
[19]
Cheng H, Edwards R L, Wang Y, et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations[J]. Geology, 2006, 34(3):217-220.
[20]
Cheng H, Zhang H, Zhao J, et al. Chinese stalagmite paleoclimate researches:A review and perspective[J]. Science China:Earth Sciences, 2019, 62(10):1489-1513.
[21]
严中伟, 李兆元, 王晓春. 历史上10年-100年尺度气候跃变的分析[J]. 大气科学, 1993, 17(6):663-672. Yan Zhongwei, Li Zhaoyuan, Wang Xiaochun. An analysis of decade to century scale climatic humps in history[J]. Scientia Atmospherica Sinca, 1993, 17(6):663-672.
[22]
Trenbert K E, Stepaniak D P, Caron J M. The global monsoon as seen through the divergent atmospheric circulation[J]. Journal of Climate, 2000, 13(22):3969-3993.
[23]
Feudale L, Kucharski F. A common mode of variability of African and Indian monsoon rainfall at decadal timescale[J]. Climate Dynamics, 2013, 41(2):243-254.
[24]
丁一汇, 李怡. 亚非夏季风系统的气候特征及其长期变率研究综述[J]. 热带气象学报, 2016, 32(6):786-796. Ding Yihui, Li Yi. A review on climatology of Afro-Asian summer monsoon and its long-term variability[J]. Journal of Tropical Meteorology, 2016, 32(6):786-796.
[25]
Li Y, Ding Y, Li W. Interdecadal variability of the Afro-Asian summer monsoon system[J]. Advances in Atmospheric Sciences, 2017, 34(7):833-846.
[26]
严中伟, Petit-Maire Nicole. 关于全球冷暖和亚、非夏季风区干湿变迁之联系的一个述评[J]. 地理学报, 1995, 50(5):471-479. Yan Zhongwei,Petit-Maire Nicole. On the relationship between global thermal variations and the wet/dry alterations in the Asian and African monsoon areas[J]. Acta Geographica Sinica, 1995, 50(5):471-479.
[27]
Liu Z, Wen X, Brady E C, et al. Chinese cave records and the East Asia summer monsoon[J]. Quaternary Science Reviews, 2014, 83:115-128. doi:10.1016/J. QUASCIREV.2013.10.021.
[28]
Kutzbach J E, Liu X D, Liu Z Y, et al Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years[J]. Climate Dynamics, 2008, 30(6):567-579.
[29]
Ziegler M, Tuenter E, Lourens L J. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean(ODP Site 968)[J]. Quaternary Science Reviews, 2010, 29(11):1481-1490.
[30]
Battisti D, Ding Q, Roe G. Coherent pan-Asian climatic and isotopic response to orbital forcing of tropical insolation[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(21):11997-12020.
[31]
Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640,000 years and ice age terminations[J]. Nature, 2016, 534(7609):640-646.
[32]
Lee J E, Fox-Kemper B, Horvat C, et al. The response of East Asian monsoon to the precessional cycle:A new study using the geophysical fluid dynamics laboratory model[J]. Geophysical Research Letters, 2019, 46(20):11388-11396.
[33]
Kutzbach J E. Monsoon climate of the Early Holocene:Climate experiment with the Earth's orbital parameters for 9000 years ago[J]. Science, 1981, 214(4516):59-61.
[34]
Pokras E M, Mix A C. Earth's precession cycle and Quaternary climate change in tropical Africa[J]. Nature, 1987, 326(6112):486-487.
[35]
Rossignol-Strick M. African monsoons, an immediate climate response to orbital insolation[J]. Nature, 1983, 304(5921):46-49.
[36]
Weber S, Tuenter E. The impact of varying ice sheets and greenhouse gases on the intensity and timing of boreal summer monsoons[J]. Quaternary Science Reviews, 2011, 30(3):469-479.
[37]
Huang E Q, Wang P X, Wang Y, et al. Dole effect as a measurement of the low-latitude hydrological cycle over the past 800 thousand years[J]. Science Advances, 2021, In press.
[38]
Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the earth[J]. Astronomy Astrophysics, 2004, 428(1):261-285.
[39]
Cheng H, Spotl C, Breitenbach S F, et al. Climate variations of Central Asia on orbital to millennial timescales[J]. Scientific Report, 2016, 6(1):36975.
[40]
Fleitmann D, Burn, S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300(5626):1737-1739.
[41]
Dykoski C A, Edwards R L, Cheng H et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1):71-86.
[42]
Weldeab S, Lea D W, Schneider R R, et al. 155,000 years of West African monsoon and ocean thermal evolution[J]. Science, 2007, 316(5829):1303-1307.
[43]
Tierney J E, Pausata F S R, deMenocal P B. Rainfall regimes of the green Sahara[J]. Science Advances, 2017, 3(1):e1601503.
[44]
Haug G H, Hughen K A, Sigman D Mv. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533):1304-1308.
[45]
Holmgren K, Lee-Thorp J A, Cooper G R, et al. Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa[J]. Quaternary Science Reviews, 2003, 22(21):2311-2326.
[46]
Ziegler M, Simon M H, Hall I R, et al. Development of Middle Stone Age innovation linked to rapid climate change[J]. Nature Communications, 2013, 4:1905. doi:10.1038/ncomms2897.
[47]
Chiang J C, Fung I Y, Wu C H, et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate[J]. Quaternary Science Reviews, 2015, 108:111-129. doi:10.1016/J. QUASCIREV.2014.11.009.
[48]
Chiang J C H, Herman M J, Yoshimura K, et al. Enriched East Asian oxygen isotope of precipitation indicates reduced summer seasonality in regional climate and westerlies[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, doi/10.1073/pnas.1922602117.
[49]
Li X Z, Liu X D, Qiu L J, et al. Transient simulation of orbital-scale precipitation variation in monsoonal East Asia and arid Central Asia during the last 150 ka[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(14):7481-7488.
[50]
Shi Z G. Response of Asian summer monsoon duration to orbital forcing under glacial and interglacial conditions:Implication for precipitation variability in geological records[J]. Quaternary Science Reviews, 2016, 139:30-42. doi:10.1016/J. QUASCIREV.2016.03.008.
[51]
Kong W, Swenson L M, Chiang J C. Seasonal transitions and the westerly jet in the Holocene East Asian summer monsoon[J]. Journal of Climate, 2017, 30(9):3343-3365.
[52]
Bosmans J H C, Erb M P, Dolan A M, et al. Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs[J]. Quaternary Science Reviews, 2018, 188:121-135. doi:10.1016/J. QUASCIREV.2018.03.025.
[53]
Tabor C R, Otto-Bliesner B L, Brady E C, et al. Interpreting precession-driven δ18O variability in the South Asian monsoon region[J]. Journal of Geophysical Research:Atmospheres, 2018, 123(11):5927-5946.
[54]
Hu J, Emile-Geay J, Tabor C, et al. Deciphering oxygen isotope records from Chinese speleothems with an isotope-enabled climate model[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 34(12):2098-2112.
[55]
Cheng H, Zhang P, Spotl C, et al. The climatic cyclicity in semiarid-arid Central Asia over the past 500,000 years[J]. Geophysical Research Letters, 2012, 39(1):1705.
[56]
Cai Y J, Fung I Y, Edwards R L, et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(10):2954-2959.
[57]
Simon M H, Ziegler M, Bosmans J, et al. Eastern South African hydroclimate over the past 270,000 years[J]. Scientific Reports, 2015, 5(1):18153.
[58]
Partridge T C, deMenocal P B, Lorentz S A, et al. Orbital forcing of climate over South Africa:A 200,000-year rainfall record from the Pretoria Saltpan[J]. Quaternary Science Reviews. 1997, 16(10):1125-1133.
[59]
Daniau A L, Fernand M, Goñib S, et al. Orbital-scale climate forcing of grassland burning in Southern Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(13):5069-5073.
[60]
Sha L, Ait Brahim Y, Wassenburg J A, et al. How far north did the African Monsoon fringe expand during the African Humid Period? Insights from Southwest Moroccan speleothems[J]. Geophysical Research Letters, 2019, 46(23):14093-14102.
[61]
Werner M, Haese B, Xu X, et al. Glacial-interglacial changes of H2 18O, HDO and deuterium excess-results from the fully coupled Earth System Model ECHAM 5/MPI-OM[J]. Geoscientific Model Development, 2016, 9:647-670. https://doi.org/10.5194/gmd-9-647-2016.
[62]
Roeckner E, Bauml G, Bonaventura L, et al. The atmospheric general circulation model ECHAM 5. PART I:Model description, Report[R]. Max-Planck-Institut für Meteorologie, 2003, 349:doi:10.17617/2.995269.
[63]
Brovkin V, Raddatz T, Reick C H, et al. Global biogeophysical interactions between forest and climate[J]. Geophysical Research Letters, 2009, 36(7):doi:10.1029/2009GL037543.
[64]
Marsland S J, Haak H, Jungclaus J H, et al. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates[J]. Ocean Modeling, 2003, 5(2):91-127.
[65]
Hibler Ⅲ W. A dynamic thermodynamic sea ice model[J]. Journal of Physical Oceanography, 1979, 9(4):815-846.
[66]
Ruddiman W F. Orbital changes and climate[J]. Quaternary Science Reviews, 2006, 25(23):3092-3112.
[67]
Cheng H, Springer G S, Sinha A, et al. Eastern North American climate in phase with fall insolation throughout the last three glacial-interglacial cycles[J]. Earth and Planetary Science Letters, 2019, 522:125-134. doi:10.1016/J. EPSL.2019.06.029.
[68]
Ruddiman W F. Orbital insolation, ice volume, and greenhouse gases[J]. Quaternary Science Reviews, 2003, 22(15):1597-1629.
[69]
Wang Y, Cheng H, Edwards R, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7182):1090-1093. https://doi.org/10.1038/nature06692.
[70]
Kathayat G, Cheng H, Sinha A, et al. Indian monsoon variability on millennial-orbital timescales[J]. Scientific Report, 2016, 6:24374. doi:10.1038/SREP24374.
[71]
Bar-Matthews M, Ayalon A, Gilmour M, et al. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the eastern Mediterranean region and their implication for paleorainfall during interglacial intervals[J]. Geochimica et Cosmochimica Acta, 2003, 67(17):3181-3199.
[72]
Konijnendijk T. 1.2 million years of climate change, globally and in the Mediterranean[D]. Utrecht:The PhD Dissertation of Utrecht University's, 2015:7.
[73]
Valentine J W, Moores E M. Plate-tectonic regulation of faunal diversity[J]. Nature, 1970, 228(5272):657-659.
[74]
Smith A G, Briden J C, Drewry G E. Phanerozoic world maps[M]//Hughes N F ed. Organisms and Continents through Time. London:Blackwell, 1973:1-42.
[75]
Robinson P L. Palaeoclimatology and continental drift[M]//Tarling D H, Runcom S K eds. Implications of Continental Drift to the Earth Sciences I. London:Academic Press, 1973:449-476.
[76]
Lamb H. Climate:Present, past and future[M]//Lamb H H ed. Climatic History and the Future(Volume 2). London:Methuen and Co. Ltd., 2011:835.
[77]
Kutzbach J E, Gallimore R G. Pangaean climates-Megamonsoons of the megacontinent[J]. Journal of Geophysical Research:Atmospheres, 1989, 94(D3):3341-3357.
[78]
Parrish J T. Climate of the supercontinent Pangea[J]. Journal of Geology, 1993, 101(2):215-233.
[79]
Kutzbach J E. Idealized Pangean climates:Sensitivity to orbital change[J]. Geological Society of America Special Paper, 1994, 288:41-55. doi:10.1130/SPE288-P41.
[80]
Rossignol-Strick M. Mediterranean Quaternary sapropels, an immediate response of the African monsoon to variation of insolation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1985, 49:237-263. doi:10.1016/0031-0182(85)90056-2.
[81]
Kutzbach J E. The changing pulse of the monsoon[M]//Fein J S, Stephens P L eds. Monsoons. New York:Wiley, 1987:247-268.
[82]
Davis O K. The effect of latitudinal variations of insolation maxima on desertification during the Late Quaternary[C]//Petit-Maire Nicole ed. Proceedings of the First IGCP 252 Workshop, Fuerteventura, Canary Islands(IGCP 252). Marseille:CNRS Press, 1988:41-58.
[83]
Shields C A, Kiehl J T. Monsoonal precipitation in the paleo-Tethys warm pool during the Latest Permian[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 491:123-136. doi:10.1016/J. PALAEO.2017.12.001.
[84]
Vollmer T, Werner R, Weber M, et al. Orbital control on Upper Triassic Playa cycles of the Steinmergel-Keuper(Norian):A new concept for ancient playa cycles[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 267(1):1-16.
[85]
Olsen P E, Kent D V. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996,122:1-26. doi:10.1016/0031-0182(95)00171-9.
[86]
Ruddiman W F. Earth's Climate:Past and Future[M]. New York:W. H. Freeman and Company, 2007:1-465.
[87]
Wang P, Li Q. Monsoons:Pre-Quaternary[M]//Gornitz V ed. Encyclopedia of Paleoclimatology and Ancient Environments. Dordrecht:Springer, 2009:583-589.
[88]
Fang Q, Wu H C, Hinnov L A, et al. Abiotic and biotic responses to Milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age[J]. Global and Planetary Change, 2018, 163:97-108. doi:10.1016/J. GLOPLACHA.2018.01.022.
[89]
Chu R J, Wu H C, Zhu R K, et al. Orbital forcing of Triassic megamonsoon activity documented in lacustrine sediments from Ordos Basin, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 541:109542. doi:10.1016/J. PALAEO.2019.109542.
[90]
Wu H C, Zhang S H, Feng Q L, et al. Milankovitch and sub-milankovitch cycles of the Early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications[J]. Gondwana Research, 2012, 22(2):748-759.
[91]
Li M, Ogg J, Zhang Y, et al. Astronomical-cycle scaling of the end-Permian extinction and the Early Triassic Epoch of South China and Germany[J]. Earth and Planetary Science Letters, 2016, 441:10-25. doi:10.1016/J. EPSL.2016.02.017.
[92]
Li M, Huang C J, Hinnov L, et al. Astrochronology of the Anisian stage(Middle Triassic)at the Guandao reference section, South China[J]. Earth and Planetary Science Letters, 2018, 482:591-606. doi:10.1016/J. EPSL.2017.11.042.
[93]
Rohling E J, Marino G, Grant K M. Mediterranean climate and oceanography, and the periodic development of anoxic events(sapropels)[J]. Earth-Science Reviews, 2014, 143:62-97. doi:10.1016/J. EARSCIREV.2015.01.008.
[94]
石正国, 雷婧, 周朋, 等. 轨道尺度亚洲气候演化机理的数值模拟:历史与展望[J]. 第四纪研究, 2020, 40(1):8-17. Shi Zhengguo, Lei Jing, Zhou Peng. Numerical simulation researches on orbital-scale Asian climate dynamics, history and perspective[J]. Quaternary Sciences, 2020, 40(1):8-17.