Effects of temperature on organic carbon burial and mineralization in sediments of Hulun Lake
Zhang Fengju1, Gui Zhifan2, Xue Bin3, Yao Shuchun3
1. School of Geography, Geomatics and Planning, Jiangsu Normal University, Xuzhou 221116, Jiangsu;
2. College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, Hubei;
3. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu
Abstract:Lake sediments are well-recognized sites of organic carbon (OC) storage and play a key role in the global carbon cycling. The lake carbon burial and mineralization are important factors in determining the changes of carbon sink. Hence, understanding their values and temperature sensitivity will increase the capability to predict the carbon sink variations under future global change scenarios. In this study, a 74 cm long sediment core (HL2011:49.13°N, 117.51°E; 2.5 m in water depth) was recovered from Hulun Lake (48.55°~49.33°N, 116.97°~117.81°E), Inner Mongolia in 2011. The sediment ages and OC content in the upper 43 cm was analyzed to assess the organic carbon burial rate (OCBR) and its relationship with temperature over the past 150 years. In addition, thirty sediment cores were collected in Hulun Lake in 2016 and the upper 10 cm were transferred to incubation cores (5.4 cm inner diameter and 60 cm height) to determine the changes of OC mineralization rates under different temperatures. The results demonstrated that the total organic carbon (TOC) content in Hulun Lake ranged from 2.71% to 4.57% (the average value was 3.31%), the OCBR varied from 3.60 g/(m2·a) to 87.04 g/(m2·a) (the mean value was 36.34 g/(m2·a)). The OC being buried in Hulun Lake was mainly generated from terrigenous vegetation and the autochthonous OC demonstrated an increasing trend in the recent years. The average OC mineralization rates ranged from 206.15 mg/(m2·d) to 1158.70 mg/(m2·d) (the mean value was 686.10 mg/(m2·d)). Both the OCBR and OC mineralization rates exhibited a strongly positive relationship with temperature, suggesting that higher temperatures lead to more OC mineralization and more OC burial. The pattern of increasing OCBR with temperature was probably caused by the warming-induced increase of OCBR exceeded the decomposition of sediments. Hence, more CO2 will be released to the atmosphere and more OC will be stored in Hulun Lake sediments as global warming proceeds, implying lakes will play a more important role in the regional/global carbon cycle.
Alin S R, Johnson T C. Carbon cycling in large lakes of the world:A synthesis of production, burial, and lake-atmosphere exchange estimates[J]. Global Biogeochemical Cycles, 2007, 21(3):1-12.
[2]
Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1):172-185.
[3]
Hall B D, Hesslein R H, Emmerton C A, et al. Multidecadal carbon sequestration in a headwater boreal lake[J]. Limnology and Oceanography, 2019, 64(S1):S150-S165.
[4]
Tranvik L J, Downing J A, Cotner J B, et al. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6, part 2):2298-2314.
[5]
Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26(6):535-538.
[6]
Kortelainen P, Rantakari M, Pajunen H, et al. Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen[J]. Global Biogeochemical Cycles, 2013, 27(2):363-374.
[7]
Kastowski M, Hinderer M, Vecsei A. Long-term carbon burial in European lakes:Analysis and estimate[J]. Global Biogeochemical Cycles, 2011, 25(3):1-12.
[8]
Rantala M V, Luoto T P, Nevalainen L. Temperature controls organic carbon sequestration in a subarctic lake[J]. Scientific Reports, 2016, 6:1-11. doi:10.1038/srep34780.
[9]
Anderson N J, Leng M J, Osburn C L, et al. A landscape perspective of Holocene organic carbon cycling in coastal SW Greenland lake-catchments[J]. Quaternary Science Reviews, 2018, 202:98-108. doi:10.1016/j.quascirev.2018.09.006.
[10]
Squires M M, Mazzucchi D, Devito K J. Carbon burial and infill rates in small Western Boreal lakes:Physical factors affecting carbon storage[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63(4):711-720.
[11]
Heathcote A J, Downing J A. Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape[J]. Ecosystems, 2012, 15(1):60-70.
[12]
Anderson N J, Dietz R D, Engstrom D R. Land-use change, not climate, controls organic carbon burial in lakes[J]. Proceedings of the Royal Society of London B:Biological Sciences, 2013, 280(1769):1-7.
[13]
Dietz R D, Engstrom D R, Anderson N J. Patterns and drivers of change in organic carbon burial across a diverse landscape:Insights from 116 Minnesota lakes[J]. Global Biogeochemical Cycles, 2015, 29(5):708-727.
[14]
Heathcote A J, Anderson N J, Prairie Y T, et al. Large increases in carbon burial in northern lakes during the Anthropocene[J]. Nature Communications, 2015, 6:1-6. doi:10.1038/ncomms10016.
[15]
Gudasz C, Sobek S, Bastviken D, et al. Temperature sensitivity of organic carbon mineralization in contrasting lake sediments[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(7):1215-1225.
[16]
Cardoso S J, Enrich-Prast A, Pace M L, et al. Do models of organic carbon mineralization extrapolate to warmer tropical sediments?[J]. Limnology and Oceanography, 2014, 59(1):48-54.
[17]
Del Giorgio P A, Williams P J L B. Respiration in Aquatic Ecosystems[M]. New York:Oxford University Press, 2005:103-121.
[18]
Yvon-Durocher G, Allen A P. Linking community size structure and ecosystem functioning using metabolic theory[J]. Philosophical Transactions of the Royal Society B, 2012, 367(1605):2998-3007.
[19]
Cao L, Yan Z, Zhao P, et al. Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records[J]. Environmental Research Letters, 2017, 12(6):1-11.
[20]
Cao L, Zhao P, Yan Z, et al. Instrumental temperature series in Eastern and Central China back to the nineteenth century[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(15):8197-8207.
[21]
Luo Y, Zhao Z C, Xu Y, et al. Projections of climate change over China for the 21st century[J]. Journal of Meteorological Research, 2005, 19(4):401-406.
[22]
丁一汇, 王会军. 近百年中国气候变化科学问题的新认识[J]. 科学通报, 2016, 61(10):1029-1041. Ding Yihui, Wang Huijun. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China[J]. Chinese Science Bulletin, 2016, 61(10):1029-1041.
[23]
Dong X H, Anderson N J, Yang X D, et al. Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration[J]. Global Change Biology, 2012, 18(7):2205-2217.
[24]
Xie Z, He J, Lü C, et al. Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China[J]. Environmental Earth Sciences, 2015, 73(5):2169-2178.
[25]
Huang C, Zhang L, Li Y, et al. Carbon and nitrogen burial in a plateau lake during eutrophication and phytoplankton blooms[J]. Science of the Total Environment, 2018, 616-617:296-304. doi:10.1016/j.scitotenv.2017.10.320.
[26]
Lan J H, Xu H, Liu B, et al. A large carbon pool in lake sediments over the arid/semiarid region, NW China[J]. Chinese Journal of Geochemistry, 2015, 34(3):289-298.
[27]
Wang M, Chen H, Yu Z, et al. Carbon accumulation and sequestration of lakes in China during the Holocene[J]. Global Change Biology, 2015, 21(12):4436-4448.
[28]
Yu Z T, Wang X J, Zhao C Y, et al. Carbon burial in Bosten Lake over the past century:Impacts of climate change and human activity[J]. Chemical Geology, 2015, 419:132-141. doi:10.1016/j.chemgeo.2015.10.037.
[29]
Zhang F J, Yao S C, Xue B, et al. Organic carbon burial in Chinese lakes over the past 150 years[J]. Quaternary International, 2017, 438:94-103. doi:10.1016/j.quaint.2017.03.047.
[30]
薛滨, 姚书春, 毛志刚, 等. 呼伦湖[M]. 南京:南京大学出版社, 2017:18-35. Xue Bin, Yao Shuchun, Mao Zhigang, et al. Hulun Lake[M]. Nanjing:Nanjing University Press, 2017:18-35.
[31]
王苏民, 窦鸿身. 中国湖泊志[M]. 北京:科学出版社, 1998:317-319. Wang Sumin, Dou Hongshen. Lakes in China[M]. Beijing:Science Press, 1998:317-319.
[32]
梁丽娥, 李畅游, 史小红, 等. 2006-2015年内蒙古呼伦湖富营养化趋势及分析[J]. 湖泊科学, 2016, 28(6):1265-1273. Liang Li'e, Li Changyou, Shi Xiaohong, et al. Analysis on the eutrophication trends and affecting factors in Lake Hulun, 2006-2015[J]. Journal of Lake Sciences, 2016, 28(6):1265-1273.
[33]
严登华, 何岩, 邓伟, 等. 呼伦湖流域生态水文过程对水环境系统的影响[J]. 水土保持通报, 2001, 21(5):1-5. Yan Denghua, He Yan, Deng Wei, et al. Influences of eco-hydrological process to water environmental system in Hulun Lake Basin[J]. Bulletin of Soil and Water Conservation, 2001, 21(5):1-5.
[34]
Yao S C, Xue B, Xia W L, et al. Lead pollution recorded in sediments of three lakes located at the middle and lower Yangtze River basin, China[J]. Quaternary International, 2009, 208(1-2):145-150.
[35]
Gudasz C, Bastviken D, Steger K, et al. Temperature-controlled organic carbon mineralization in lake sediments[J]. Nature, 2010, 466(7305):478-482.
[36]
Bastviken D, Cole J, Pace M, et al. Methane emissions from lakes:Dependence of lake characteristics, two regional assessments, and a global estimate[J]. Global Biogeochemical Cycles, 2004, 18(4):1-12.
[37]
刘华琳. 基于形态的呼伦湖无机碳地球化学特征研究[D]. 呼和浩特:内蒙古大学硕士学位论文, 2010:45-49. Liu Hualin. Based on the Form of Geochemistry Character of Inorganic Carbon in Hulun Lake[D]. Hohhot:The Master's Thesis of Inner Mongolia University, 2010:45-49.
[38]
Last W M, Smol J P. Tracking Environmental Change Using Lake Sediments Volume 1:Basin Analysis, Coring, and Chronological Techniques[M]. Dordrecht:Kluwer Academic Publishers, 2001:171-196.
[39]
姚书春, 薛滨. 石臼湖近代环境演化历史[J]. 第四纪研究, 2009, 29(2):248-255. Yao Shuchun, Xue Bin. Recent environmental evolution of Shijiuhu Lake inferred from lake sediments[J]. Quaternary Sciences, 2009, 29(2):248-255.
[40]
刘恩峰, 薛滨, 羊向东, 等. 基于210Pb与137Cs分布的近代沉积物定年方法——以巢湖, 太白湖为例[J]. 海洋地质与第四纪地质, 2009, 29(6):89-94. Liu Enfeng, Xue Bin, Yang Xiangdong, et al. 137Cs and 210Pb chronology for modern lake sediment:A case study of Chaohu Lake and Taibai Lake[J]. Marine Geology & Quaternary Geology, 2009, 29(6):89-94.
[41]
Gälman V, Rydberg J, de-Luna S S, et al. Carbon and nitrogen loss rates during aging of lake sediment:Changes over 27 years studied in varved lake sediment[J]. Limnology and Oceanography, 2008, 53(3):1076-1082.
[42]
Granéli W. Sediment oxygen uptake in south Swedish lakes[J]. Oikos, 1978, 30(1):7-16.
[43]
Granéli W. A comparison of carbon dioxide production and oxygen uptake in sediment cores from four south Swedish lakes[J]. Ecography, 1979, 2(1):51-57.
[44]
den Heyer C, Kalff J. Organic matter mineralization rates in sediments:A within-and among-lake study[J]. Limnology and Oceanography, 1998, 43(4):695-705.
[45]
Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5):213-250.
[46]
Schubert C J, Calvert S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments:Implications for nutrient utilization and organic matter composition[J]. Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 2001, 48(3):789-810.
[47]
王国安. 稳定碳同位素在第四纪古环境研究中的应用[J]. 第四纪研究, 2003, 23(5):471-484. Wang Guo'an. Application of stable carbon isotope for paleoenvironmental research[J]. Quaternary Sciences, 2003, 23(5):471-484.
[48]
赵丽媛, 鹿化煜, 张恩楼, 等. 敦煌伊塘湖沉积物有机碳同位素揭示的末次盛冰期以来湖面变化[J]. 第四纪研究, 2015, 35(1):172-179. Zhao Liyuan, Lu Huayu, Zhang Enlou, et al. Lake-level and paleoenvironment variations in Yitang Lake(Northwestern China)during the past 23 ka revealed by stable carbon isotopic composition of organic matter of lacustrine sediments[J]. Quaternary Sciences, 2015, 35(1):172-179.
[49]
张成君, 陈发虎, 尚华明, 等. 中国西北干旱区湖泊沉积物中有机质碳同位素组成的环境意义——以民勤盆地三角城古湖泊为例[J]. 第四纪研究, 2004, 24(1):88-94. Zhang Chengjun, Chen Fahu, Shang Huaming, et al. The paleoenvironmental significance of organic carbon isotope in lacustrine sediments in the arid China:An example from Sanjiaocheng palaeolake in Minqin[J]. Quaternary Sciences, 2004, 24(1):88-94.
[50]
沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京:科学出版社, 2010:220-221. Shen Ji, Xue Bin, Wu Jinglu, et al. Lake Sediments and Environment Changes[M]. Beijing:Science Press, 2010:220-221.
[51]
Clow D W, Stackpoole S M, Verdin K L, et al. Organic carbon burial in lakes and reservoirs of the conterminous United States[J]. Environmental Science & Technology, 2015, 49(13):7614-7622.
[52]
Anderson N J, Bennion H, Lotter A F. Lake eutrophication and its implications for organic carbon sequestration in Europe[J]. Global Change Biology, 2014, 20(9):2741-2751.
[53]
Sun W, Jiang Q, Liu E, et al. Climate change dominates recent sedimentation and organic carbon burial in Lake Chenghai, Southwest China[J]. Journal of Limnology, 2018, 77(3):372-384.
[54]
刘会基, 刘恩峰, 于真真, 等. 近百年来洱海沉积物有机碳埋藏时空变化[J]. 湖泊科学, 2019, 31(1):282-292. Liu Huiji, Liu Enfeng, Yu Zhenzhen, et al. Spatio-temporal patterns of organic carbon burial in the sediment of Lake Erhai in China during the past 100 years[J]. Journal of Lake Sciences, 2019, 31(1):282-292.
[55]
Rustad L, Campbell J, Marion G, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562.
[56]
曾小平, 赵平, 孙谷畴. 气候变暖对陆生植物的影响[J]. 应用生态学报, 2006, 17(12):2445-2450. Zeng Xiaoping, Zhao Ping, Sun Guchou. Effects of climate warming on terraneous plants[J]. Chinese Journal of Applied Ecology, 2006, 17(12):2445-2450.
[57]
Freeman C, Evans C D, Monteith D T, et al. Export of organic carbon from peat soils[J]. Nature, 2001, 412(6849):785-786.
[58]
Worrall F, Burt T, Shedden R. Long term records of riverine dissolved organic matter[J]. Biogeochemistry, 2003, 64(2):165-178.
[59]
Monteith D T, Stoddard J L, Evans C D, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry[J]. Nature, 2007, 450(7169):537-541.
[60]
Evans C D, Jones T G, Burden A, et al. Acidity controls on dissolved organic carbon mobility in organic soils[J]. Global Change Biology, 2012, 18(11):3317-3331.
[61]
Chuai X, Chen X, Yang L, et al. Effects of climatic changes and anthropogenic activities on lake eutrophication in different ecoregions[J]. International Journal of Environmental Science and Technology, 2012, 9(3):503-514.
[62]
中国科学院南京地理与湖泊研究所. 内蒙古呼伦湖生态与环境状况及保护对策[R]. 南京:中国科学院南京地理与湖泊研究所, 2010:1-40. Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. Ecological and Environmental Situation of Hulun Lake in Inner Mongolia and Its Protection Measures[R]. Nanjing:Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2010:1-40.
[63]
郝盛吞, 周爱锋, 张晓楠, 等. 湖泊沉积有机碳埋藏效率及其影响要素研究进展[J]. 地球环境学报, 2017, 8(4):292-306. Hao Shengtun, Zhou Aifeng, Zhang Xiaonan, et al. Progress of research on the burial efficiency of organic carbon and its influencing factors in lacustrine sediments[J]. Journal of the Earth Environment, 2017, 8(4):292-306.
[64]
蒋宇轩, 邢磊, 张海龙, 等. 海洋沉积有机物质的降解及其模式[J]. 海洋地质与第四纪地质, 2014, 34(4):173-180. Jiang Yuxuan, Xing Lei, Zhang Hailong, et al. Study on the degradation of marine sedimentary organic matter and model development[J]. Marine Geology & Quaternary Geology, 2014, 34(4):173-180.
[65]
Dorrepaal E, Toet S, van Logtestijn R S P, et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic[J]. Nature, 2009, 460(7255):616-619.
[66]
张风菊, 薛滨, 姚书春. 中全新世以来呼伦湖沉积物碳埋藏及其影响因素分析[J]. 湖泊科学, 2018, 30(1):234-244. Zhang Fengju, Xue Bin, Yao Shuchun. Organic carbon burial and its driving mechanism in the sediment of Lake Hulun, northeastern Inner Mongolia, since the mid-Holocene[J]. Journal of Lake Sciences, 2018, 30(1):234-244.
[67]
Sobek S, Anderson N J, Bernasconi S M, et al. Low organic carbon burial efficiency in arctic lake sediments[J]. Journal of Geophysical Research:Biogeosciences, 2014, 119(6):1231-1243.