End-member analysis of grain-size in the east of Qinghai Lake and its environmental implications
Bai Min1,2, Lu Ruijie1,2, Ding Zhiyong1,2, Wang Lindong1,2
1. MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing 100875;
2. State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875
摘要 青海湖湖东地区广泛分布着风成沉积物,区域内典型风成沉积剖面的年代数据和环境代用指标准确记录了区域古环境变化。沉积物粒度端元分析方法能够将复杂的粒度数据分离出多个具有特定指示意义的粒度端元组分,广泛应用于古环境的重建研究。基于多次野外综合考察,选取青海湖湖东沙地厚度为500 cm的全新世典型风成砂-古土壤剖面,采用粒度端元分析方法对粒度数据进行分离,筛选出3个代表不同沉积动力特征的端元组分。通过分析各端元的粒度分布特征,并结合色度、磁化率和有机质指标进行对比分析发现,端元1与区域暖湿气候条件下的风化成壤作用有关,可以间接指示区域的水分条件;端元2和端元3代表了近地面风力的强弱,共同指示区域风沙活动的强弱。结合剖面年代和其他代用指标以及已有研究结果,可将研究区全新世以来的气候变化大致分为4个阶段:9.5 ka B.P.以前,气候整体以冷干为主;9.5~3.5 ka B.P.,气候温暖湿润,成壤作用明显增强;3.5~1.5 ka B.P.,气候经历暖湿-冷干的转变;1.5 ka B.P.以来,气候总体冷干。
Abstract:The Qinghai Lake Basin, located in the northeast of Qinghai-Tibet Plateau, is an ideal region for studying palaeoenvironmental changes due to its special geographical location and sensitive response to climate change. In this paper, we obtained a typical aeolian sand-paleosoil profile on the eastern edge of the east sandy land of Qinghai Lake, named DST3 (36°46'12.07"N, 100°53'3.86"E; 3549 m a. s. l.; ca. 500 cm in thickness). Using AMS14C and Optically Stimulated Luminescence (OSL) chronometry to determine the age of the profile, the ages of the profile is 0~10.6 ka B. P. At the same time, the climatic proxies such as the grain-size, chromaticity, magnetic susceptibility and organic matter of the sediment of the profile were measured, and using the End-Member unmixing method to decompose the grain-size data into 3 End-Members. Among them, the End-Member 1 (peak value is 11.2 μm) consists of a silt-sized (2~63 μm) main component, which is a near-surface suspended component, and its content is the highest in the palaeosol layer (48.7%). Combined with the support of other climate proxies, we think that the End-Member 1 is related with the pedogenesis of aeolian deposits, and indirectly indicates the dry and wet changes in the area. End-Member 3 (peak value is 126.7 μm) is the coarsest component in the profile, and the main component of the grain size is fine sand (125~250 μm), which belongs to the near-surface jump component, and its content is the highest in the aeolian sand layer (55.1%), combined with the support of other climate proxies, we think that End-Member 3 can indicate the strength of the regional aeolian activity. End-Member 2 (peak value is 111.5 μm) is dominated by very fine sand (63~125 μm) and fine sand, and contains a small amount of silt, which is a near-surface suspension and jump component. Its content is the highest in sandy loess layer (65.2%). End-Member 2 and the chromaticity parameter a*have a similar change trend in the vertical direction of the profile, indicating that the End-Member 2 is controlled by the strength of the wind, but it is not completely consistent with the environment indicated by End-Member 3. Therefore, we think that End-Member 2 may be a near-source deposition under the action of lower-intensity near-surface winds, which together with End-Member 3 indicates the strength of regional aeolian activity.
In order to explore the characteristics of the Holocene climate change in the study area, we combined the existing records of paleoenvironmental proxy records, such as summer insolation, content of total organic carbon in sediments and pollen concentration of trees in Qinghai Lake, etc. The Holocene climate and environmental changes in the study area is roughly divided into four phases: (1) Before 9.5 ka B. P., the climate was generally cold and dry, with a tendency toward warm and humid. The wind force was weakened, and the effect of pedogenesis was improved. (2) In the period of 9.5~3.5 ka B. P., the conditions of hydrothermal combination were better. The climate was warm and humid, and the pedogenesis effect was relatively strong. (3) The climate tended to be cold and dry during the period of 3.5~1.5 ka B. P., regional aeolian activity began to increase, and the intensity of pedogenesis weakened. (4) Since 1.5 ka B. P., the climate has further deteriorated and the aeolian activity has intensified.
白敏, 鲁瑞洁, 丁之勇, 王琳栋. 青海湖湖东沙地粒度端元分析及其指示意义[J]. 第四纪研究, 2020, 40(5): 1203-1215.
Bai Min, Lu Ruijie, Ding Zhiyong, Wang Lindong. End-member analysis of grain-size in the east of Qinghai Lake and its environmental implications. Quaternary Sciences, 2020, 40(5): 1203-1215.
徐树建, 丁新潮, 倪志超. 山东埠西黄土剖面沉积特征及古气候环境意义[J]. 地理学报, 2014, 69(11):1707-1717. Xu Shujian, Ding Xinchao, Ni Zhichao. The sedimentary characteristics of Buxi loess profile in Shandong Province and their paleoclimatic and palaeoenvironment significance[J]. Acta Geographica Sinica, 2014, 69(11):1707-1717.
[2]
Sun M, Zhang X, Tian M, et al. Loess deposits since Early Pleistocene in Northeast China and implications for desert evolution in East China[J]. Journal of Asian Earth Sciences, 2018, 155:164-173. doi:10.1016/j. jseaes.2017.09.013.
[3]
孙有斌, 高抒, 李军. 边缘海陆源物质中环境敏感粒度组分的初步分析[J]. 科学通报, 2003, 48(1):83-86. Sun Youbin, Gao Shu, Li Jun. Primary analysis on the sensitive grain-size of terrigenous sediment to environments in the marginal sea[J]. Chinese Science Bulletin, 2003, 48(1):83-86.
[4]
Liu X, Vandenberghe J, An Z, et al. Grain size of Lake Qinghai sediments:Implications for riverine input and Holocene monsoon variability[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449:41-51. doi:10.1016/j.palaeo.2016.02.005.
[5]
王琳栋, 杨太保, 梁烨, 等. 会宁地区全新世黄土沉积粒度特征及其古气候意义[J]. 干旱区研究, 2016, 33(6):1150-1156. Wang Lindong, Yang Taibao, Liang Ye, et al. Grain size characteristics in the loess-paleosol at Huining section and its signification to palaeoclimate during Holocene[J]. Arid Zone Research, 2016, 33(6):1150-1156.
[6]
Qiang M, Jin Y, Liu X, et al. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau:Variability, processes, and climatic implications[J]. Quaternary Science Reviews, 2016, 132:57-73. doi:10.1016/j.quascirev.2015.11.010.
[7]
Lu R, Jia F, Gao S, et al. Holocene aeolian activity and climatic change in Qinghai Lake basin, northeastern Qinghai-Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 430:1-10. doi:10.1016/j.palaeo.2015.03.044.
[8]
董诗培. 干旱沙漠地区沉积物粒度组分分离及其环境指示意义[D]. 兰州:兰州大学硕士学位论文, 2019:1-2. Dong Shipei. Unmixing Grain Size from Sediments and Its Environmental Implications in the Arid Region of Northwestern China[D]. Lanzhou:The Master's Degree Thesis of Lanzhou University, 2019:1-2.
[9]
程良清, 宋友桂, 李越, 等. 粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用[J]. 沉积学报, 2018, 36(6):1148-1156. Cheng Liangqing, Song Yougui, Li Yue, et al. Preliminary application of grain size End Member Model for dust source tracing of Xinjiang loess and paleoclimate reconstruction[J]. Acta Sedimentologica Sinica, 2018, 36(6):1148-1156.
[10]
Dietze E, Hartmann K, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China[J]. Sedimentary Geology, 2012, 243-244:169-180. doi:10.1016/j.sedgeo.2011.09.014.
[11]
Weltje G J. End-member modeling of compositional data:Numerical-statistical algorithms for solving the explicit mixing problem[J]. Mathematical Geology, 1997, 29(4):503-549.
[12]
Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152(3-4):263-277.
[13]
Paterson G A, Heslop D. New methods for unmixing sediment grain size data[J]. Geochemistry, Geophysics, Geosystems, 2015, 16:4494-4506. doi:10.1002/2015GC006070.
[14]
赵松, 常凤鸣, 李铁刚, 等. 粒度端元法在东海内陆架古环境重建中的应用[J]. 海洋地质与第四纪地质, 2017, 37(3):187-196. Zhao Song, Chang Fengming, Li Tiegang, et al. The application of grain-size end member algorithm to paleoenvironmental reconstruction on inner shelf of East China Sea[J]. Marine Geology & Quaternary Geology, 2017, 37(3):187-196.
[15]
Vandenberghe J. Grain size of fine-grained windblown sediment:A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30. doi:10.1016/j.earscirev.2013.03.001.
[16]
聂军胜, 李曼. 柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义[J]. 第四纪研究, 2017, 37(5):1017-1026. Nie Junsheng, Li Man. A grain size study on Late Miocene Huaitoutala section, NE Qaidam Basin, and implications for Asian monsoon evolution[J]. Quaternary Sciences, 2017, 37(5):1017-1026.
[17]
刘兴起, 姚波, 杨波. 青藏高原北部可可西里库赛湖沉积物及风成物的粒度特征[J]. 第四纪研究, 2010, 30(6):1193-1198. Liu Xingqi, Yao Bo, Yang Bo. Grain size distribution of aeolian and lacustrine sediments of Kusai Lake in the Hoh Xil region of the northern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2010, 30(6):1193-1198.
[18]
韩鹏, 刘兴起. 内蒙古中东部查干淖尔湖流域7000年以来的气候演变[J]. 第四纪研究, 2017, 37(6):1381-1390. Han Peng, Liu Xingqi. The climate evolution inferred from Chagan-Nuur in middle-east part of Inner Mongolia since the last 7000 years[J]. Quaternary Sciences, 2017, 37(6):1381-1390.
[19]
张晓东, 季阳, 杨作升, 等. 南黄海表层沉积物粒度端元反演及其对沉积动力环境的指示意义[J]. 中国科学:地球科学, 2015, 45(10):1515-1523. Zhang Xiaodong, Ji Yang, Yang Zuosheng, et al. End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments[J]. Science China:Earth Sciences, 2015, 45(10):1515-1523.
[20]
许腾, 朱立平, 王君波, 等. 青藏高原北部冰前湖沉积记录的中晚全新世冰川活动[J]. 第四纪研究, 2019, 39(3):717-730. Xu Teng, Zhu Liping, Wang Junbo, et al. Glacial activity since the Mid-Late Holocene reconstructed by the proglacial Lake Buruo Co, northern Tibetan Plateau[J]. Quaternary Sciences, 2019, 39(3):717-730.
[21]
An Z, Colman S M, Zhou W, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2:619. doi:10.1038/srep00619.
[22]
Colman S M, Yu S Y, An Z, et al. Late Cenozoic climate changes in China's western interior:A review of research on Lake Qinghai and comparison with other records[J]. Quaternary Science Reviews, 2007, 26(17-18):2281-2300.
[23]
刘兴起, 王苏民, 沈吉. 青海湖QH-2000钻孔沉积物粒度组成的古气候古环境意义[J]. 湖泊科学, 2003, 15(2):112-117. Liu Xingqi, Wang Sumin, Shen Ji. The grainsize of the core QH-2000 in Qinghai Lake and its implication for paleoclimate and paleoenvironment[J]. Journal of Lake Sciences, 2003, 15(2):112-117.
[24]
Ji J, Shen J, Balsam W, et al. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the Late Glacial as interpreted from visible reflectance of Qinghai Lake sediments[J]. Earth and Planetary Science Letters, 2005, 233(1-2):61-70.
[25]
Lister S, Kelts K, Chen K Z, et al. Lake Qinghai, China:Closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene[J]. Palaeogeography, Palaeclimatology, Palaeoecology, 1991, 84(1-4):141-162.
[26]
王建国, 马海州, 谭红兵, 等. 青海湖南岸黑马河黄土剖面碳酸盐含量与记录的古气候变化[J]. 盐湖研究, 2005, 13(4):5-8. Wang Jianguo, Ma Haizhou, Tan Hongbing, et al. Change of carbonate content and record on palaeoclimate fluctuations in Heimahe loess section on southern Qinghai Lake shore[J]. Journal of Salt Lake Research, 2005, 13(4):5-8.
[27]
Liu X J, Colman S M, Brown E T, et al. Abrupt deglaciation on the northeastern Tibetan Plateau:Evidence from Lake Qinghai[J]. Journal of Paleolimnology, 2014, 51(2):223-240.
[28]
刘向军, 赖忠平, Madsen David B, 等. 晚第四纪青海湖高湖面研究[J]. 第四纪研究, 2018, 38(5):1166-1178. Liu Xiangjun, Lai Zhongping, Madsen David B, et al. Late Quaternary highstands of Qinghai Lake, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2018, 38(5):1166-1178.
[29]
曾方明, 杨欢, 卞昊昆. 青海湖地区全新世风尘堆积的GDGTs化合物及其环境指示意义[J]. 第四纪研究, 2018, 38(5):1233-1243. Zeng Fangming, Yang Huan, Bian Haokun. GDGTs compounds of the Holocene eolian deposits in Qinghai Lake area and their paleoenvironmental implications[J]. Quaternary Sciences, 2018, 38(5):1233-1243.
[30]
李秀美, 侯居峙, 王明达, 等. 季风与西风对青藏高原全新世气候变化的影响:同位素证据[J]. 第四纪研究, 2019, 39(3):678-686. Li Xiumei, Hou Juzhi, Wang Mingda, et al. Influence of monsoon and westerlies on Holocene climate change in the Tibetan Plateau:Isotopic evidence[J]. Quaternary Sciences, 2019, 39(3):678-686.
[31]
Chen F, Wu D, Chen J, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs:A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154:111-129. doi:10.1016/j.quascirev.2016.10.021.
[32]
徐叔鹰, 徐德馥. 青海湖东岸的风沙堆积[J]. 中国沙漠, 1983, 3(3):11-17. Xu Shuying, Xu Defu. A primary observation of aeolian sand deposits on eastern shore of the Qinghai Lake[J]. Journal of Desert Research, 1983, 3(3):11-17.
[33]
张登山, 田丽慧, 鲁瑞洁, 等. 青海湖湖东沙地风沙沉积物的粒度特征[J]. 干旱区地理, 2013, 36(2):203-211. Zhang Dengshan, Tian Lihui, Lu Ruijie, et al. Grain-size features of aeolian deposits in the eastern shore of Qinghai Lake[J]. Arid Land Geography, 2013, 36(2):203-211.
[34]
丁之勇, 鲁瑞洁, 刘畅, 等. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3):281-292. Ding Zhiyong, Lu Ruijie, Liu Chang, et al. Temporal change characteristics of climatic and its relationships with atmospheric circulation patterns in Qinghai Lake basin[J]. Advances in Earth Science, 2018, 33(3):281-292.
[35]
吕志强. 青海湖湖东沙地风成沉积记录的风沙活动与气候变化研究[D]. 北京:北京师范大学硕士学位论文, 2018:17-63. Lü Zhiqiang. Aeolian Activities and Climate Change Recorded by the Aeolian Deposits in Hudong Sandy, Qinghai Lake[D]. Beijing:The Master's Degree Thesis of Beijing Normal University, 2018:17-63.
[36]
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4):1869-1887.
[37]
Blaauw M. Methods and code for ‘classical’ age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518.
[38]
吕志强, 鲁瑞洁, 刘小槺, 等. 青海湖湖东沙地沉积记录的全新世以来风沙活动变化[J]. 干旱区地理, 2018, 41(3):536-544. Lü Zhiqiang, Lu Ruijie, Liu Xiaokang, et al. Holocene aeolian activities on sedimentary record at the east of Qinghai Lake[J]. Arid Land Geography, 2018, 41(3):536-544.
[39]
Zhang X, Wang H, Xu S, et al. A basic End-Member Model algorithm for grain-size data of marine sediments[J]. Estuarine, Coastal and Shelf Science, 2020, 236:106656. doi:10.1016/j.ecss.2020.106656.
[40]
Pye K. Aeolian Dust and Dust Deposits[M]. London:Academic Press, 1987:1-256.
[41]
王千锁, 宋友桂, 李吉均, 等. 末次冰期-间冰期旋回朝那黄土颜色特征及古气候意义[J]. 地理科学, 2015, 35(11):1489-1494. Wang Qiansuo, Song Yougui, Li Jijun, et al. Characteristics of color in Chaona section and its paleoclimatic significance during the last glacial-interglacial cycle[J]. Scientia Geographica Sinica, 2015, 35(11):1489-1494.
[42]
刘荔昀, 鲁瑞洁, 刘小槺. 风成沉积物色度记录的毛乌素沙漠全新世以来气候变化[J]. 中国沙漠, 2019, 39(6):83-89. Liu Liyun, Lu Ruijie, Liu Xiaokang. Climate change in the Mu Us Desert since Holocene based on soil chromaticity[J]. Journal of Desert Research, 2019, 39(6):83-89.
[43]
付旭东, 周广胜, 张新时. 浑善达克沙地沙丘剖面颜色变化的古气候意义[J]. 沉积学报, 2016, 34(1):70-78. Fu Xudong, Zhou Guangsheng, Zhang Xinshi. Color variations of paleosol-sand profiles across Otindag Sandy Land and its paleoclimatic implications[J]. Acta Sedimentologica Sinica, 2016, 34(1):70-78.
[44]
杜婧, 鲁瑞洁, 刘小槺, 等. 青海湖湖东沙地全新世风成沉积物磁化率特征及其环境意义[J]. 海洋地质与第四纪地质, 2018, 38(2):175-184. Du Jing, Lu Ruijie, Liu Xiaokang, et al. Magnetic susceptibility of aeolian sediments deposited since Holocene in the east of Qinghai Lake and its environmental implications[J]. Marine Geology & Quaternary Geology, 2018, 38(2):175-184.
[45]
刘秀铭, 刘东生, 夏敦胜, 等. 中国与西伯利亚黄土磁化率古气候记录-氧化和还原条件下的两种成土模式分析[J]. 中国科学(D辑:地球科学), 2007, 37(10):1382-1391. Liu Xiuming, Liu Dongsheng, Xia Dunsheng, et al. The analysis of two different pedogenesis models in reductive and oxidative conditions record by Chinese and Siberia loess[J]. Science in China(Series D:Earth Sciences), 2007, 37(10):1382-1391.
[46]
马兴悦, 吕镔, 赵国永, 等. 川西高原理县黄土磁学特征及其影响因素[J]. 第四纪研究, 2019, 39(5):1307-1319. Ma Xingyue, Lü Bin, Zhao Guoyong, et al. Magnetic properties and their influence factors of Lixian loess in western Sichuan Plateau[J]. Quaternary Sciences, 2019, 39(5):1307-1319.
[47]
楚纯洁, 赵景波, 周金风. 毛乌素沙地中部黄土-古土壤剖面沉积特征与地层划分[J]. 第四纪研究, 2018, 38(3):623-635. Chu Chunjie, Zhao Jingbo, Zhou Jinfeng. Sedimentary characteristics and stratigraphic division of the loess-paleosol section in Wushen County, the central Mu Us dune field in North China[J]. Quaternary Sciences, 2018, 38(3):623-635.
[48]
An Z, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years[J]. Quaternary Research, 1991, 36(1):29-36.
[49]
王发刚, 王启基, 王文颖, 等. 土壤有机碳研究进展[J]. 草业科学, 2008, 25(2):48-54. Wang Fagang, Wang Qiji, Wang Wenying, et al. Research progress on soil organic matter[J]. Pratacultural Science, 2008, 25(2):48-54.
[50]
马雪云, 魏志福, 王永莉, 等. 末次冰盛期以来东北地区霍拉盆地湖泊沉积物记录的C3/C4植被演化[J]. 第四纪研究, 2018, 38(5):1193-1202. Ma Xueyun, Wei Zhifu, Wang Yongli, et al. C3/C4 vegetation evolution recorded by lake sediments in the Huola basin, Northeast China since the Last Glacial Maximun[J]. Quaternary Sciences, 2018, 38(5):1193-1202.
[51]
郑邦, 周斌, 王可, 等. 晚全新世东海泥质区物源输入、源区植被变化及其影响因素:来自MD06-3039A孔的正构烷烃记录[J]. 第四纪研究, 2018, 38(5):1293-1303. Zheng Bang, Zhou Bin, Wang Ke, et al. Changes of provenance input and source vegetation changes and their impact factors since Late Holocene based on n-alkanes-records from core MD06-3039A in the muddy area of the East China Sea[J]. Quaternary Sciences, 2018, 38(5):1293-1303.
[52]
Bai Y, Wu J, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau[J]. Ecology, 2008, 89(8):2140-2153.
[53]
黄成敏, 龚子同. 土壤发生和发育过程定量研究进展[J]. 土壤, 2000, 32(3):145-150,166. Huang Chengmin, Gong Zitong. Progress in quantitative study on soil genesis and development[J]. Soils, 2000, 32(3):145-150,166.
[54]
牛光明, 强明瑞, 宋磊, 等. 5000 a来柴达木盆地东南缘风成沉积记录的冬季风演化[J]. 中国沙漠, 2010, 30(5):1031-1039. Niu Guangming, Qiang Mingrui, Song Lei, et al. Change of Eastern Asian winter monsoon recorded by aeolian deposits over the past 5000 years at the southeastern margin of Qaidam Basin[J]. Journal of Desert Research, 2010, 30(5):1031-1039.
[55]
汪海斌, 陈发虎, 张家武. 黄土高原西部地区黄土粒度的环境指示意义[J]. 中国沙漠, 2002, 22(1):21-26. Wang Haibin, Chen Fahu, Zhang Jiawu. Environmental significance of grain size of loess-palesol sequence in western part of Chinese Loess Plateau[J]. Journal of Desert Research, 2002, 22(1):21-26.
[56]
隆浩, 王乃昂, 马海州, 等. 腾格里沙漠西北缘湖泊沉积记录的区域风沙特征[J]. 沉积学报, 2007, 25(4):626-631. Long Hao, Wang Nai'ang, Ma Haizhou, et al. Eolian activity and environment evolution history recorded by the Qingtu Lake, NW Tengger Desert[J]. Acta Sedimentologica Sinica, 2007, 25(4):626-631.
[57]
刘冰, 靳鹤龄, 孙忠, 等. 共和盆地开额泥炭剖面粒度敏感组分提取与全新世气候环境变化[J]. 海洋地质与第四纪地质, 2013, 33(4):125-134. Liu Bing, Jin Heling, Sun Zhong, et al. Extraction of sensitive grain-size component from the KE peat deposit of the Gonghe Basin and its implication for Holocene climatic and environmental change[J]. Marine Geology & Quaternary Geology, 2013, 33(4):125-134.
[58]
鄂崇毅, 曹广超, 侯光良, 等. 青海湖江西沟黄土记录的环境演变[J]. 海洋地质与第四纪地质, 2013, 33(4):193-200. E Chongyi, Cao Guangchao, Hou Guangliang, et al. The environmental change recorded in Jiangxigou loess sections in Qinghai Lake region[J]. Marine Geology & Quaternary Geology, 2013, 33(4):193-200.
[59]
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317.
[60]
Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years[J]. Quaternary International, 2005, 136(1):131-140.
[61]
Liu X J, Lai Z, Madsen D, et al. Last deglacial and Holocene lake level variations of Qinghai Lake, north-eastern Qinghai-Tibetan Plateau[J]. Journal of Quaternary Science, 2015, 30(3):245-257.
[62]
侯光良, 魏海成, 鄂崇毅, 等. 青藏高原东北缘全新世人类活动与环境变化——以青海湖江西沟2号遗迹为例[J]. 地理学报, 2013, 68(3):380-388. Hou Guangliang, Wei Haicheng, E Chongyi, et al. Human activities and environmental change in Holocene in the northeastern margin of Qinghai-Tibet Plateau:A case study of JXG2 relic site in Qinghai Lake[J]. Acta Geographica Sinica, 2013, 68(3):380-388.
[63]
高尚玉, 王贵勇, 哈斯, 等. 末次冰期以来中国季风区西北边缘沙漠演化研究[J]. 第四纪研究, 2001, 21(1):66-71. Gao Shangyu, Wang Guiyong, Ha Si, et al. A case study on desert evolution in the northwestern fringe of monsoon area, China since the Last Glacial epoch[J]. Quaternary Sciences, 2001, 21(1):66-71.
[64]
Feng Z D, An C B, Wang H B. Holocene climatic and environmental changes in the arid and semi-arid areas of China:A review[J]. The Holocene, 2006, 16(1):119-130.
[65]
Yu L P, Lai Z P. OSL chronology and palaeoclimatic implications of aeolian sediments in the eastern Qaidam Basin of the northeastern Qinghai-Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 337-338:120-129. doi:10.1016/j.palaeo.2012.04.004.
[66]
刘思丝, 黄小忠, 强明瑞, 等. 孢粉记录的青藏高原东北部更尕海地区中晚全新世植被和气候变化[J]. 第四纪研究, 2016, 36(2):247-256. Liu Sisi, Huang Xiaozhong, Qiang Mingrui, et al. Vegetation and climate change during the Mid-Late Holocene reflected by the pollen record from Lake Genggahai, northeastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2):247-256.