Application of XRF core scanning method in Late Holocene environment change study derived from a peat core from southwestern Guizhou, Southwestern China
Yang Huan1, Zeng Mengxiu1, Peng Haijun2, Li Kai3, Li Fengquan1, Zhu Lidong1, Deng Bolong4, Liao Mengna3, Ni Jian3
1. College of Geography and Environment Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang;
2. State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou;
3. College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang;
4. Wetland Protection Center of Guizhou Province, Guiyang 550001, Guizhou
Abstract:X-ray fluorescence (XRF) core scanning is a method that has been widely used in loess, marine and lacustrine sediments. The application of this method in peat needs to be further enhanced. In this study, a 300-cm peat drilling core XY1801 (25.28°N, 104.82°E; 1317 m. a.s.l.) from Xingyi peatland in karst region, southwestern Guizhou Province was selected to scan with high resolution XRF. Furthermore, the water content, chromaticity (L*, a*, b*) and carbonate content in Xingyi peat were also measured. Based on the analysis of contents and ratios of Rb, Ti, Zr, Al, Si, Ca, Sr, Mg, chromaticity, humification and other proxies of Xingyi peat, and in combination of the principal component analysis method, this paper discussed the material source of elements, the environmental significances of element contents/ratios, and the recorded paleoenvironment evolution history in and around Xingyi peatland during Late Holocene. Based on the chronological framework constructed by AMS14C dating, the results are shown below. (1) XRF core scanning analysis can achieve ideal results in the research of Xingyi peat, and the element records greatly corresponding to the data obtained by traditional methods. The content of Ca from XRF core scanning coincides well with the carbonate content measured by gas volume method. Furthermore, the variation trend of L* and b* obtained by XRF core scanning and colorimeter is also coincident. The correlation coefficient of L* observed from these two methods is 0.99 (P< 0.01), and that of b* is 0.91 (P< 0.01). Moreover, the measured results of a* from these two methods have slightly different due to the influence of sample characteristics and the difference during experimental process. However, the numerical similarity of a* is still high, the correlation coefficient is 0.92 at the 0.01 significance level. (2) Through the analysis of the contents of geochemical elements in Xingyi peat, carbonate weathering process and weathering profiles in karst region, it can be found that the sources of geochemical elements in Xingyi peat are mainly from proximal material. Geochemical elements separated out from the surrounding carbonate and eventually deposited in the peatland during the processes of weathering, leaching, transporting, depositing and illuviation. (3) The correlation coefficient between Sr/Ca ratio and Ca element content is-0.38 (P< 0.01), and the correlation coefficient of Sr/Ca ratio and Sr element content is-0.03 (P< 0.01), indicating that Ca element content has more significant influence on Sr/Ca ratio; the correlation between Si/Al ratio and Si element content in Xingyi peat (R2=0.33, P<0.01) is higher than that between Si/Al ratio and Al element content (R2=-0.02, P<0.01), thus the ratio is more obviously affected by Si element; the Rb/Sr ratio is also more related to Rb element. It can be concluded that the climate is dry when Sr/Ca ratio is in high value, and the ratios of Rb/Sr and Si/Al are in low values; and vice versa. (4) Based on the comparative analysis of Ca, Mg, Al, Si, Rb/Sr, Si/Al, Sr/Ca, LOI, humification degree and carbon accumulation rate in Xingyi peat, it is found that the precipitation in Xingyi area decreased during 3270~2700 cal. a B. P, increased steadily during 2700~2300 cal.a B. P., and decreased continuously during 2300~1670 cal.a B. P. (5) Through the principal component analysis of the main elements in Xingyi peat, it can be observed that the first principal component (F1) of Xingyi peat includes Al, Si, Mg, is as ideal index can be considered as a comprehensive factor reflecting precipitation and runoff in the basin; the second principal component (F2) includes Sr, Ca and other elements, is closely related to carbonate input and bedrock in and around of the surrounding karst landform area; the third principal component (F3) includes Rb, Zr and Ti, is related to stable particles. (6) The climate evolution history reconstructed from Xingyi peat is consistent with G.bulloides percentage in Hole 723A from the Arabian Sea and several paleoenvironmental records from southwestern monsoon-dominated region, which all reflect that the climate environment is generally dry during the Late Holocene. Interestingly, the records of Xingyi peat reflect that 2700~2300 cal.a B. P. was a humid period lasting for nearly 400 years, which are also supported by many previous researches, while are not significant in some sporopollen records. XRF core scanning and the research of Xingyi peat in karst area is helpful to deepen the understanding of the paleoclimate in subtropical Southwest China, and extend the utilization of XRF core scanning in peat record.
杨欢, 曾蒙秀, 彭海军, 李凯, 李凤全, 朱丽东, 邓伯龙, 廖梦娜, 倪健. 基于XRF岩芯扫描的贵州喀斯特地区晚全新世泥炭古环境研究[J]. 第四纪研究, 2020, 40(5): 1154-1169.
Yang Huan, Zeng Mengxiu, Peng Haijun, Li Kai, Li Fengquan, Zhu Lidong, Deng Bolong, Liao Mengna, Ni Jian. Application of XRF core scanning method in Late Holocene environment change study derived from a peat core from southwestern Guizhou, Southwestern China. Quaternary Sciences, 2020, 40(5): 1154-1169.
陈宇亮, 郑洪波. XRF岩芯扫描在第四纪沉积物研究中的应用[J]. 海洋地质前沿, 2014, 30(4):51-59. Chen Yuliang, Zheng Hongbo. The application of XRF core scanning to Quaternary sediments[J]. Marine Geology Frontiers, 2014, 30(4):51-59.
[2]
Liang L, Sun Y, Yao Z, et al. Evaluation of high-resolution elemental analyses of Chinese loess deposits measured by X-ray fluorescence core scanner[J]. Catena, 2012, 92:75-82.doi:10.1016/j.catena.2011.11.010.
[3]
Tian J, Xin X, Ma W, et al. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea[J]. Paleoceanography, 2011, 26(4):PA4202. doi:10.1029/2010PA002045.
[4]
吴东, 刘焱光, Eiríksson Jón, 等. 3万年以来挪威海南部冰岛-苏格兰溢流变化及其对海冰活动的响应[J]. 第四纪研究, 2019, 39(4):845-862. Wu Dong, Liu Yanguang, Eiríksson Jón, et al. Changes of Iceland-Scotland overflow water in Southern Norwegian Sea and the responses to sea ice activities since 30 ka B. P.[J]. Quaternary Sciences, 2019, 39(4):845-862.
[5]
Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123):74-77.
[6]
雷国良, 张虎才, 常凤琴, 等. 湖泊沉积物XRF元素连续扫描与常规ICP-OES分析结果的对比及校正——以兹格塘错为例[J]. 湖泊科学, 2011, 23(2):287-294. Lei Guoliang, Zhang Hucai, Chang Fengqin, et al. Comparison and correction of element measurements in lacustrine sediments using X-ray fluorescence core-scanning with ICP-OES Method:A case study of Zigetang Co[J]. Journal of Lake Sciences, 2011, 23(2):287-294.
[7]
崔巧玉, 赵艳. 大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变[J]. 第四纪研究, 2019, 39(6):1346-1356. Cui Qiaoyu, Zhao Yan. Climatic abrupt events implied by lacustrine sediments of Arxan Crater Lake, in the central Great Khingan Mountains, NE China during Holocene[J]. Quaternary Sciences, 2019, 39(6):1346-1356.
[8]
赵永涛, 安成邦, 赵家驹, 等. 亚洲内陆干旱区巴里坤湖记录的H1突变事件[J]. 第四纪研究, 2019, 39(4):916-926. Zhao Yongtao, An Chengbang, Zhao Jiaju, et al. Vegetation and climate history in the arid inland area during the H1:Multi-proxy data of the Balikun Lake[J]. Quaternary Sciences, 2019, 39(4):916-926.
[9]
马巧红, 钟巍, 薛积彬, 等. 晚更新世晚期以来雷州半岛北部泥炭腐殖化度的古气候意义[J]. 热带地理, 2008, 28(6):498-503. Ma Qiaohong, Zhong Wei, Xue Jibin, et al. Palaeoclimatic significance of the peat humification degree in northern Leizhou Peninsula since Late-Pleistocene[J]. Tropical Geography, 2008, 28(6):498-503.
[10]
李泉, 赵艳. 青藏高原东部若尔盖盆地泥炭发育记录的全新世气候突变[J]. 第四纪研究, 2019, 39(6):1323-1332. Li Quan, Zhao Yan. Abrupt climatic changes in the Holocene recorded by the history of peat formation in Zoigé Basin on the eastern Tibetan Plateau[J]. Quaternary Sciences, 2019, 39(6):1323-1332.
[11]
李凯, 金伊丽, 谭斌, 等. 浙江景宁县大仰湖沼泽泥炭地形成过程及气候背景[J]. 第四纪研究, 2019, 39(6):1384-1392. Li Kai, Jin Yili, Tan Bin, et al. Development and climatic background of Dayanghu marsh peat from Jingning County, Zhejiang Province[J]. Quaternary Sciences, 2019, 39(6):1384-1392.
[12]
Longman J, Veres D, Wennrich V. Utilisation of XRF core scanning on peat and other highly organic sediments[J]. Quaternary International, 2019, 514:85-96. doi:10.1016/j.quaint.2018.10.015.
[13]
Kern O A, Koutsodendris A, Mächtle B, et al. XRF core scanning yields reliable semiquantitative data on the elemental composition of highly organic-rich sediments:Evidence from the Füramoos peat bog(Southern Germany)[J]. Science of the Total Environment, 2019, 697:110-134. doi:10.1016/j.scitotenv.2019.134110.
[14]
Chagué-Goff C, Chan J C H, Goff J, et al. Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands[J]. Island Arc, 2016, 25(5):333-349.
[15]
Chawchai S, Chabangborn A, Kylander M, et al. Lake Kumphawapi-An archive of Holocene palaeoenvironmental and palaeoclimatic changes in northeast Thailand[J]. Quaternary Science Reviews, 2013, 68:59-75. doi:10.1016/j.quascirev.2013.01.030.
[16]
Chawchai S, Kylander M E, Chabangborn A, et al. Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat[J]. Boreas, 2016, 45(1):180-189.
[17]
Sharifi A, Pourmand A, Canuel E A, et al. Abrupt climate variability since the last deglaciation based on a high-resolution, multi-proxy peat record from NW Iran:The hand that rocked the cradle of civilization[J]. Quaternary Science Reviews, 2015, 123:215-230. doi:10.1016/j.quascirev.2015.07.006.
[18]
Turner J N, Holmes N, Davis S R, et al. A multiproxy(micro-XRF, pollen, chironomid and stable isotope)lake sediment record for the Lateglacial to Holocene transition from Thomastown Bog, Ireland[J]. Journal of Quaternary Science, 2015, 30(6):514-528.
[19]
Camuera J, Jiménez-Moreno G, Ramos-Román M J, et al. Orbital-scale environmental and climatic changes recorded in a new~200,000-year-long multiproxy sedimentary record from Padul, southern Iberian Peninsula[J]. Quaternary Science Reviews, 2018, 198:91-114. doi:10.1016/j.quascirev.2018.08.014.
[20]
Ramos-Román M J, Jiménez-Moreno G, Camuera J, et al. Millennial-scale cyclical environment and climate variability during the Holocene in the western Mediterranean region deduced from a new multi-proxy analysis from the Padul record(Sierra Nevada, Spain)[J]. Global and Planetary Change, 2018, 168:35-53. doi:10.1016/j.gloplacha.2018.06.003.
[21]
赵恕. 季风与贵州的雨季[J]. 气象学报, 1965, 35(1):96-106. Zhao Shu. Monsoons and rainy season in Kweichow[J]. Acta Meteorologica Sinica, 1965, 35(1):96-106.
[22]
Dykoski C A, Edwards R L, Hai C, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1):71-86.
[23]
王健, 程海, 赵景耀, 等. 小冰期多尺度气候波动:贵州董哥洞高分辨率石笋记录[J]. 第四纪研究, 2019, 39(3):775-785. Wang Jian, Cheng Hai, Zhao Jingyao, et al. Climate variability during the Little Ice Age characterized by a high resolution stalagmite record from Dongge Cave, Guizhou[J]. Quaternary Sciences, 2019, 39(3):775-785.
[24]
覃嘉铭, 袁道先, 程海, 等. 贵州都匀七星洞石笋剖面晚更新世高分辨率的气候地层学[J]. 第四纪研究, 2004, 24(3):318-324. Qin Jiaming, Yuan Daoxian, Cheng Hai, et al. A high resolution Late Pleistocene climato-stratigraphy of 4 stalagmites from Qixing Cave, Duyun, Guizhou[J]. Quaternary Sciences, 2004, 24(3):318-324.
[25]
郑景云, 卞娟娟, 葛全胜, 等. 1981-2010年中国气候区划[J]. 科学通报, 2013, 58(30):3088-3099. Zheng Jingyun, Bian Juanjuan, Ge Quansheng, et al. The climate regionalization in China for 1981-2010[J]. Chinese Science Bulletin, 2013, 58(30):3088-3099.
[26]
兰安军, 张百平, 熊康宁, 等. 黔西南脆弱喀斯特生态环境空间格局分析[J]. 地理研究, 2003, 22(6):733-741. Lan Anjun, Zhang Baiping, Xiong Kangning, et al. Spatial pattern of the fragile karst environment in southwest Guizhou Province[J]. Geographical Research, 2003, 22(6):733-741.
[27]
黄威廉, 屠玉麟. 贵州植被区划[J]. 贵州师范大学学报(自然科学版), 1983, (1):26-47. Huang Weilian, Tu Yulin. Vegetation regionalization in Guizhou[J]. Journal of Guizhou Normal University(Natural Sciences), 1983, (1):26-47.
[28]
戴传固, 陈建书, 王雪华. 贵州省地质系列图及综合研究——新一代《贵州省区域地质志》[J]. 科技成果管理与研究, 2014, (5):50-55. doi:10.3772/j.issn.1673-6516.2014.05.017. Dai Chuangu, Chen Jianshu, Wang Xuehua. The Guizhou geological map series and integrative study on geology in Guizhou Province-A new vision of "Guizhou Regional Geology"[J]. Management and Research on Scientific & Technological Achievements, 2014, (5):50-55. doi:10.3772/j.issn.1673-6516.2014.05.017.
[29]
李兴中. 晚新生代贵州高原喀斯特地貌演进及其影响因素[J]. 贵州地质, 2001, 18(1):29-36. Li Xingzhong. Evolution of karst geomorphology of upper-Cenozoic and its influential factors in Guizhou Plateau[J]. Guizhou Geology, 2001, 18(1):29-36.
[30]
杨欢, 曾蒙秀, 彭海军, 等. 晚全新世黔西南喀斯特地区兴义泥炭高分辨率腐殖化度记录研究[J]. 沉积学报, 2019:1-14. doi:10.14027/j.issn.1000-0550.2019.107. Yang Huan, Zeng Mengxiu, Peng Haijun, et al. High-resolution humification record of Xingyi peat since the Late Holocene in karst region, southwestern Guizhou[J]. Acta Sedimentologica Sinica, 2019:1-14. doi:10.14027/j.issn.1000-0550.2019.107.
[31]
Blaauw M, Christen J. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3):457-474.
[32]
Löwemark L, Chen H F, Yang T N, et al. Normalizing XRF-scanner data:A cautionary note on the interpretation of high-resolution records from organic-rich lakes[J]. Journal of Asian Earth Sciences, 2011, 40(6):1250-1256.
[33]
Loring D H, Asmund G. Geochemical factors controlling accumulation of major and trace elements in Greenland coastal and fjord sediments[J]. Environmental Geology, 1996, 28(1):2-11.
[34]
何报寅, 张穗, 蔡述明. 近2600年神农架大九湖泥炭的气候变化记录[J]. 海洋地质与第四纪地质, 2003, 23(2):109-115. He Baoyin, Zhang Sui, Cai Shuming. Climatic changes recorded in peat from the Dajiu Lake basin in Shennongjia since the last 2600 years[J]. Marine Geology & Quaternary Geology, 2003, 23(2):109-115.
[35]
Longman J, Veres D, Ersek V, et al. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact[J]. Climate of the Past, 2017, 13(7):897-917.
[36]
Schittek K, Mächtle B, Schäbitz F, et al. Holocene environmental changes in the highlands of the southern Peruvian Andes(14°S) and their impact on pre-Columbian cultures[J]. Climate of the Past, 2015, 11(1):27-44.
[37]
吴艳宏, 李世杰. 湖泊沉积物色度在短尺度古气候研究中的应用[J]. 地球科学进展, 2004, 19(5):789-792. Wu Yanhong, Li Shijie. Significance of lake sediment color for short time scale climate variation[J]. Advances in Earth Science, 2004, 19(5):789-792.
[38]
马学慧, 蔡省垣, 王荣芬. 我国泥炭基本性质的区域分异[J]. 地理科学, 1991, 11(1):30-41. Ma Xuehui, Cai Xingyuan, Wang Rongfen. Regional differentiation of basic properties of peat in China[J]. Scientia Geographica Sinica, 1991, 11(1):30-41.
[39]
曾艳, 陈敬安, 朱正杰, 等. 湖泊沉积物Rb/Sr比值在古气候/古环境研究中的应用与展望[J]. 地球科学进展, 2011, 26(8):805-810. Zeng Yan, Chen Jing'an, Zhu Zhengjie, et al. Advance and prospective of Rb/Sr ratios in lake sediments as an index of paleoclimate/paleoenvironment[J]. Advances in Earth Sciences, 2011, 26(8):805-810.
[40]
王云飞, 胡文英, 张秀珠. 云南湖泊的碳酸盐沉积[J]. 海洋与湖沼, 1989, 20(2):122-130. Wang Yunfei, Hu Wenying, Zhang Xiuzhu. Carbonate sediments in lakes of Yunnan, China[J]. Oceanologia et Limnologia Sinica, 1989, 20(2):122-130.
[41]
张坤, 季宏兵, 褚华硕, 等. 黔西南喀斯特地区红色风化壳的物源及元素迁移特征[J]. 地球与环境, 2018, 46(3):257-266. Zhang Kun, Ji Hongbing, Chu Huashuo, et al. Material sources and element migration characteristics of red weathering crusts in southwestern Guizhou[J]. Earth and Environment, 2018, 46(3):257-266.
[42]
张莉, 季宏兵, 高杰, 等. 贵州碳酸盐岩风化壳主元素、微量元素及稀土元素的地球化学特征[J]. 地球化学, 2015, 44(4):323-336. Zhang Li, Ji Hongbing, Gao Jie, et al. Geochemical characteristics of major, trace and rare earth elements in typical carbonate weathered profiles of Guizhou Plateau[J]. Geochimica, 2015, 44(4):323-336.
[43]
李锐, 高杰, 张莉, 等. 黔北白云岩红色风化壳元素地球化学特征[J]. 中国岩溶, 2014, 33(4):396-404. Li Rui, Gao Jie, Zhang Li, et al. Element geochemical characteristics of red weathering crust from dolomite, north Guizhou, China[J]. Carsologica Sinica, 2014, 33(4):396-404.
[44]
陈武, 任明强, 芦正艳, 等. 贵州典型喀斯特区土壤地球化学特征研究[J]. 中国岩溶, 2010, 29(3):246-252. Chen Wu, Ren Mingqiang, Lu Zhengyan, et al. Research on the property of soil geochemistry in typical karst area in Guizhou Province[J]. Carsologica Sinica, 2010, 29(3):246-252.
[45]
林进也, 朱立军. 贵州岩溶地区红土的地球化学特征及其意义[J]. 贵州工业大学学报, 1997, 26(2):31-36. Lin Jinye, Zhu Lijun. Geochemical characteristics and significance of laterite in karst area of Guizhou[J]. Journal of Guizhou University of Technology, 1997, 26(2):31-36.
[46]
李景阳, 朱立军, 王朝富, 等. 碳酸盐岩风化壳及喀斯特成土作用研究[J]. 贵州地质, 1996, 13(2):139-145. Li Jingyang, Zhu Lijun, Wang Chaofu, et al. Weathering crust of carbonate rocks and process of karst soil formation[J]. Guizhou Geology, 1996, 13(2):139-145.
[47]
李景阳, 王朝富, 樊廷章. 试论碳酸盐岩风化壳与喀斯特成土作用[J]. 中国岩溶, 1991, 10(1):29-38. Li Jingyang, Wang Chaofu, Fan Tingzhang. Weathering crust of carbonate rocks and process of karst earth formation[J]. Carsologica Sinica, 1991, 10(1):29-38.
[48]
耿安松, 文启忠. 陕西洛川黄土中碳酸盐的某些地球化学特征[J]. 地球化学, 1988, (3):267-275. doi:10.19700/j.0379-1726.1988.03.008. Geng Ansong, Wen Qizhong. Some geochemical characteristics of carbonates in Luochuan loess, Shaanxi Province[J]. Geochimica, 1988, (3):267-275. doi:10.19700/j.0379-1726.1988.03.008.
[49]
陈骏, 仇纲, 季峻峰, 等. 最近130 ka黄土高原夏季风变迁的Rb和Sr地球化学证据[J]. 科学通报, 1996, 41(21):1963-1966. Chen Jun, Qiu Gang, Lu Huayu, et al. Geohistorical evidences of Rb and Sr element of summer monsoon variation in the Loess Plateau during the last 130000 years[J]. Chinese Science Bulletin, 1996, 41(21):1963-1966.
[50]
刘丛强. 生物地球化学过程与地表物质循环:西南喀斯特土壤-植被系统生源要素循环[M]. 北京:科学出版社, 2009:123-150. Liu Congqiang. Biogeochemical Processes and Cycling of Nutrients in the Earth's Surface:Cycling of Nutrients in Soil-Plant Systems of Karstic Environment, Southwest China[M]. Beijing:Science Press, 2009:123-150.
[51]
孔凡翠, 杨瑞东, 沙占江. 贵州草海赵家院子晚更新世泥炭层地球化学特征及其环境意义[J]. 地质论评, 2013, 59(4):716-730. Kong Fancui, Yang Ruidong, Sha Zhanjiang. Geochemical characteristics and sedimentary environment of the Epipleistocene peat on Zhaojiayuanzi sediment column in Caohai Basin, Guizhou Province[J]. Geological Review, 2013, 59(4):716-730.
[52]
孔凡翠, 杨瑞东, 韩晓彤, 等. 贵州威宁窑上组沉积物物源特征及沉积控制因素分析[J]. 现代地质, 2011, 25(3):464-475. Kong Fancui, Yang Ruidong, Han Xiaotong, et al. Analysis of sediment provenance and sedimentary control factors in Yaoshang Formation, Weining County in Guizhou Province[J]. Geoscience, 2011, 25(3):464-475.
[53]
牟保磊. 元素地球化学[M]. 北京:北京大学出版社, 1999:5-171. Mou Baolei. Element Geochemistry[M]. Beijing:Peking University Press, 1999:5-171.
[54]
陈诗越, 王苏民, 金章东, 等. 青藏高原中部湖泊沉积物中Zr/Rb值及其环境意义[J]. 海洋地质与第四纪地质, 2003, 23(4):35-38. Chen Shiyue, Wang Sumin, Jin Zhangdong, et al. Variation of Zr/Rb ratios in lacustrine sediments of the central Tibetan Plateau and its environment implications[J]. Marine Geology & Quaternary Geology, 2003, 23(4):35-38.
[55]
张晓楠, 张灿, 吴铎, 等. 基于XRF岩芯扫描的中国西部湖泊沉积物元素地球化学特征[J]. 海洋地质与第四纪地质, 2015, 35(1):163-174. Zhang Xiaonan, Zhang Can, Wu Duo, et al. Element geochemical characteristics of lake sediments measured by X-ray Fluorescence core scanner in Northwest China[J]. Marine Geology & Quaternary Geology, 2015, 35(1):163-174.
[56]
沈德福, 李世杰, 蔡德所, 等. 桂林岩溶湿地沉积物地球化学元素变化的环境影响因子分析[J]. 高校地质学报, 2010, 16(4):517-526. Shen Defu, Li Shijie, Cai Desuo, et al. Element geochemistry of lake sediments from Sihu Lake in Guilin karst wetland region and its environmental effect[J]. Geological Journal of China Universities, 2010, 16(4):517-526.
[57]
陈敬安, 万国江. 云南洱海沉积物粒度组成及其环境意义辨识[J]. 矿物学报, 1999, 19(2):175-182. Chen Jing'an, Wan Guojiang. Sediment particle size distribution and its environmental significance in Lake Erhai, Yunnan Province[J]. Acta Mineralogica Siniea, 1999, 19(2):175-182.
[58]
虎贵朋, 韦刚健, 马金龙, 等. 粤北碳酸盐岩化学风化过程中的元素地球化学行为[J]. 地球化学, 2017, 46(1):33-45. Mao Guipeng, Wei Gangjian, Ma Jinlong, et al. Mobilization and re-distribution of major and trace elements during the process of moderate weathering of carbonates in northern Guangdong, South China[J]. Geochimica, 2017, 46(1):33-45.
[59]
张风雷, 季宏兵, 魏晓, 等. 黔中白云岩风化剖面微量元素的地球化学特征[J]. 地球与环境, 2014, 42(5):611-619. Zhang Fenglei, Ji Hongbing, Wei Xiao, et al. Geochemical characteristics of trace elements in a dolomite weathering profile in central Guizhou Province[J]. Earth and Environment, 2014, 42(5):611-619.
[60]
季宏兵, 欧阳自远, 王世杰, 等. 白云岩风化剖面的元素地球化学特征及其对上陆壳平均化学组成的意义——以黔北新蒲剖面为例[J]. 中国科学(D辑), 1999, 29(6):504-513. Ji Hongbing, Ouyang Ziyuan, Wang Shijie, et al. Element geochemistry of weathering profile of dolomitize and its implications for the average chemical composition of the upper-continental crust-Case study from the Xinpu profile, northern Guizhou Province, China[J]. Science in China(Series D), 1999, 29(6):504-513.
[61]
魏志强, 钟巍, 陈永强, 等. 亚热带季风区湖沼流域表生地球化学元素研究——以江西定南大湖为例[J]. 地理科学进展, 2015, 34(7):909-917. Wei Zhiqiang, Zhong Wei, Chen Yongqiang, et al. Supergene geochemical elements of swampy basin in the subtropical monsoon region:A case study of Dingnan Dahu in Jiangxi Province[J]. Progress in Geography, 2015, 34(7):909-917.
[62]
吴永红, 郑祥民, 周立旻. 太湖8000年来沉积物元素变化特征及古环境指示[J]. 盐湖研究, 2015, 23(1):16-21. Wu Yonghong, Zhen Xiangmin, Zhou Limin. Variation of elements in sedimentary and paleoenvironment indicators during the last 8000 years in Taihu Lake[J]. Journal of Salt Lake Research, 2015, 23(1):16-21.
[63]
金章东, 张恩楼. 湖泊沉积物Rb/Sr比值的古气候含义[J]. 科学技术与工程, 2002, 2(3):20-22. Jin Zhangdong, Zhang Enlou. Paleoclimate implication of Rb/Sr ratios from lake sediments[J]. Science Technology and Engineering, 2002, 2(3):20-22.
[64]
马春梅, 朱诚, 郑朝贵, 等. 中国东部山地泥炭高分辨率腐殖化度记录的晚冰期以来气候变化[J]. 中国科学(D辑), 2008, 38(9):1078-1091. Ma Chunmei, Zhu Chen, Zheng Chaogui, et al. High-resolution humification records of climate changes since late-glacial from the peat in Eastern China[J]. Science in China(Series D), 2008, 38(9):1078-1091.
[65]
张坤, 季宏兵, 褚华硕, 等. 利用Rb/Sr值、有机碳氮同位素及14C重建贵州喀斯特地区古环境变化[J]. 地球与环境, 2018, 46(2):107-113. Zhang Kun, Ji Hongbing, Chu Huashuo, et al. Reconstruct paleoenvironmental changes based on the results of Rb/Sr, δ13 Corg, δ15 Norg and 14C in Guizhou karst area[J]. Earth and Environment, 2018, 46(2):107-113.
[66]
张愈, 马春梅, 赵宁, 等. 浙江天目山千亩田泥炭晚全新世以来Rb/Sr记录的干湿变化[J]. 地层学杂志, 2015, 39(1):97-107. Zhang Yu, Ma Chunmei, Zhao Ning, et al. Late Holocene Rb/Sr ratios as a paleoclimate proxy in the Qianmutian peat of Tianmu Mountains, Zhejiang Province[J]. Journal of Stratigraphy, 2015, 39(1):97-107.
[67]
Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J]. Nature, 2003, 421(6921):354-357.
[68]
蔡演军, 彭子成, 安芷生, 等. 贵州七星洞全新世石笋的氧同位素记录及其指示的季风气候变化[J]. 科学通报, 2001, 46(16):1398-1402. Cai Yanjun, Peng Zicheng, An Zhisheng, et al. The oxygen isotopic record of the Holocene stalagmite and its indication of monsoon climate variation in Qixingdong of Guizhou[J]. Chinese Science Bulletin, 2001, 46(16):1398-1402.
[69]
Hong B, Hong Y, Uchida M, et al. Abrupt variations of Indian and East Asian summer monsoons during the last deglacial stadial and interstadial[J]. Quaternary Science Reviews, 2014, 97:58-70. doi:10.1016/j.quascirev.2014.05.006.
[70]
杜荣荣, 陈敬安, 曾艳, 等. 贵州白鹇湖沉积物中孢粉记录的5.5 ka B. P. 以来的气候变化[J]. 生态学报, 2013, 33(12):3783-3791. Du Rongrong, Chen Jing'an, Zeng Yan, et al. Climate change recorded mainly by pollen from Baixian Lake during the last 5.5 ka B. P.[J]. Acta Ecologica Sinica, 2013, 33(12):3783-3791.
[71]
郑茜, 张虎才, 明庆忠, 等. 泸沽湖记录的西南季风区15000 a B. P. 以来植被与气候变化[J]. 第四纪研究, 2014, 34(6):1314-1326. Zheng Qian, Zhang Hucai, Ming Qingzhong, et al. Vegetational and environmental changes since 15 ka B. P. recorded by Lake Lugu in the southwest monsoon domain region[J]. Quaternary Sciences, 2014, 34(6):1314-1326.
[72]
Gao Y, Xiong K, Quan M, et al. Holocene climate dynamics derived from pollen record of Jiulongchi wetland in Fanjing Mountain, Southwest China[J]. Quaternary International, 2019, 513:1-7. doi:10.1016/j.quaint.2019.01.009.
[73]
Xiao X, Haberle S G, Shen J, et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, Southwestern China[J]. Quaternary Science Reviews, 2014, 86:35-48. doi:10.1016/j.quascirev.2013.12.023.
[74]
牛蕊, 周立旻, 孟庆浩, 等. 贵州草海南屯泥炭记录的中全新世以来的气候变化[J]. 第四纪研究, 2017, 37(6):1357-1369. Niu Rui, Zhou Limin, Meng Qinghao, et al. The paleoclimate variations of the Nantun peat in the Caohai area since the middle Holocene[J]. Quaternary Sciences, 2017, 37(6):1357-1369.
[75]
顾兆炎, 刘嘉麒, 袁宝印, 等. 12000年来青藏高原季风变化——色林错沉积物地球化学的证据[J]. 科学通报, 1993, 38(1):61-64. Gu Zhaoyan, Liu Jiaqi, Yuan Baoyin, et al. The evolution of the Qinghai-Xizang Plateau monsoon:Evidence from the geochemistry of the sediments in Seling CoLake[J]. Chinese Science Bulletin, 1993, 38(1):61-64.
[76]
Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J]. Earth and Planetary Science Letters, 2003, 211(3):371-380.