Spatial variation characteristics of sediment size and its environmental indication significance in Lake Yilong, Yunnan Province
Zhang Longwu1, Zhang Hucai1,2, Chang Fenqin2, Duan Lizeng2, Hu Jingjiu1, Li Ting1, Cai Meng1, Zhang Yang1
1. Key Laboratory of Plateau Lake Ecology & Global Change, College of Tourism and Geography Science, Yunnan Normal University, Kunming 650500, Yunnan;
2. Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan
Abstract:Lake Yilong (23°38'~23°42'N, 102°30'~102°38'E), a shallow lake located in the southeastern part of Yunnan Province is one of main Nine-Plateau-Lakes in Yunnan Plateau. The grain size analyses is carried on 40 modern deposition samples taken from different positions of the lake. Taking into account the geographical background and human activity characteristics in the drainage area, the special distribution characteristics of sediment grain size and their variation trends, influence factors were discussed. The result showed that three types of surface sediments could be recognized, such as clayey silt, silty clay, and sand-silt clay. The surface sediments include clayey silt and silty clay, and a few samples are sand-silt clay. The modern sediments was mainly composed of silt (4~63 μm) accounting for 57.08%~82.41%, the clay (< 4 μm) accounted for 11.22%~35.58%, and the content of sand component (> 63 m) was the lowest, ranging from 0.16% to 25.80%. Additionally, the particle size showed a significant spatial pattern, and the silt showed gradually increased trend from the middle zone of the lake to the northwest, southwest and southeast. Meanwhile, the clay displayed the two high-value centers in the north of the study area, gradually declining to the northwest, southwest and southeast. The phenomenon may be controlled by fault zone cross the central part of the lake, resulting in a boundary and separate the lake into two parts, northwest part and a southeast part. The grain size distribution pattern of sediments in the northwest lake area is affected by both natural environment and human activities, showing that the main types of sediments are clayey silt and silty clay, of which clayey silt is the main type. The southeastern deep-water area is affected by human disturbance weakly, and it can be regarded as the suitable place to understand the material transport process, to discuss hydrodynamic characteristics, and to reconstruct lake evolution history in Lake Yilong.
刘亚生, 常凤琴, 张虎才, 等. 云南腾冲青海泊沉积物物化参数的特点、环境意义及末次冰消期以来气候环境变化[J]. 第四纪研究, 2015, 35(4):922-933. Liu Yasheng, Chang Fengqin, Zhang Hucai, et al. Environmental significance of physicochemical parameters of sediment and climate changes since the last deglaciation at Qinghai Lake of Tengchong in Yunnan Province[J]. Quaternary Sciences, 2015, 35(4)922-933.
[2]
赵增友, 袁道先, 石胜强, 等. 孢粉、炭屑揭示的黔西高原MIS 3b期间古植被、古气候演变[J]. 生态学报, 2012, 32(15):4811-4818. Zhao Zengyou, Yuan Daoxian, Shi Shengqiang, et al. Paleovegetation and paleoclimatic evolution during MIS 3b in the Western Guizhou Plateau revealed by palynology and carbon dust[J]. Acta Ecologica Sinica, 2012, 32(15):4811-4818.
[3]
殷志强, 秦小光, 吴金水, 等. 湖泊沉积物粒度多组分特征及其成因机制研究[J]. 第四纪研究, 2008, 28(2):345-353. Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments[J]. Quaternary Sciences, 2008, 28(2):345-353.
[4]
陈荣彦, 宋学良, 张世涛, 等. 滇池700年来气候变化与人类活动的湖泊环境响应研究[J]. 盐湖研究, 2008, 16(2):7-12. Chen Rongyan, Song Xueliang, Zhang Shitao, et al. Dianchi Lake sediment records of climate changes and humane activities in the past 700 years[J]. Journal of Salt Lake Research, 2008, 16(2):7-12.
[5]
周静, 王苏民, 吕静. 洱海地区一万多年以来气候环境演化的湖泊沉积记录[J]. 湖泊科学, 200315(2):104-111. Zhou Jing, Wang Sumin, Lü Jing. Climatic and environmental changes from the sediment record, Erhai Lake over the past 10000 years[J]. Journal of Lake Sciences, 2003, 15(2):104-111.
[6]
王小雷, 杨浩, 赵其国, 等. 云南抚仙湖近现代环境变化的沉积物粒度记录[J]. 沉积学报, 2010, 28(4):776-782. Wang Xiaolei, Yang Hao, Zhao Qiguo, et al. Recent environmental change inferred from grain size records in Fuxian Lake, Yunnan Province[J]. Acta Sedimentologica Sinica, 2010, 28(4):776-782.
[7]
郑茜, 张虎才, 明庆忠, 等. 泸沽湖记录的西南季风区15000 a B. P. 以来植被与气候变化[J]. 第四纪研究, 2014, 34(6):1314-1326. Zheng Qian, Zhang Hucai, Ming Qingzhong, et al. Vegetation and climate change since 15000 a B. P. recorded by Lugu Lake in the southwest monsoon region[J]. Quaternary Sciences, 2014, 34(6):1314-1326.
[8]
陈敬安, 万国江, 黄荣贵, 等. 云南程海沉积物粒度研究[J]. 环境科学进展, 1999, 7(4):76-82. Chen Jing'an, Wan Guojiang, Huang Ronggui. Study of sediment particle sizes in Lake Chenghai, Yunnan Province[J]. Progress of Environmental Science, 1999, 7(4):76-82.
[9]
Zhang W, Ming Q, Shi Z, et al. Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China[J]. PLoS ONE, 2014, 9(7):e102167.
[10]
陈思思, 张虎才, 常凤琴, 等. 异龙湖湖泊沉积对流域人类活动的响应[J]. 山地学报, 2016, 34(3):274-281. Chen Sisi, Zhang Hucai, Chang Fengqin, et al. Human Activities Indicated by the sediments of Yilong Lake[J]. Mountain Research, 2016, 34(3):274-281.
[11]
王苏民, 余源盛, 吴瑞金, 等. 岱海湖泊环境与气候变化[M]. 合肥:中国科学技术大学出版社, 1990:12-18. Wang Sumin, Yu Yuansheng, Wu Ruijin, et al. Lake Environment and Climate Change in Daihai Lake[M]. Hefei:China University of Science and Technology Press, 1990:12-18.
[12]
万国江. 环境质量的地球化学原理[M]. 北京:中国环境科学出版社, 1988:1-26. Wan Guojiang. Geochemical Principles of Environmental Quality[M]. Beijing:China Environmental Science Press, 1988:1-26.
[13]
李原, 李任伟, 尚榆民, 等. 云南洱海的环境沉积学研究——表层沉积物的粒度分布、水流方向和能量[J]. 沉积学报, 1999,17(A12):769-774. Li Yuan, Li Renwei, Shang Yumin, et al. The environment sedimentological study on Erhai Lake, Yunnan Province-Sediments particle size distribution, flow direction and energy distribution[J]. Acta Sedimentologica Sinica, 1999,17(A12):769-774.
[14]
王苏民, 窦鸿身, 陈克造, 等. 中国湖泊志[M]. 北京:科学出版社, 1998:379-381. Wang Sumin, Dou Hongshen, Chen Kezao, et al. The Annals of Lakes in China[M]. Beijing:Science Press, 1998:379-381.
[15]
赵磊. 云南异龙湖生态系统稳态转换过程与关键灾变因子反演研究[D]. 北京:中国科学院生态环境研究中心博士论文, 2013:28-38. Zhao Lei. The Regime Shifts and Inversion of Catastrophic Driving Factors in the Ecosystems of Yilong Lake, Yunnan[D]. Beijing:The Doctoral Dissertation of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 2013:28-38.
[16]
Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research, 1954, 24(3):151-158.
[17]
Cressie N. The origins of kriging[J]. Mathematical Geology, 1990, 22(3):239-252.
[18]
Terry J P, Goff J. Megaclasts:Proposed revised nomenclature at the coarse end of the Udden-Wentworth grain-size scale for sedimentary particles[J]. Journal of Sedimentary Research, 2014, 84(3-4):192-197.
[19]
曾海鳌. 外源对太湖河口沉积物有机质贡献的同位素示踪[J]. 海洋地质与第四纪地质, 2009, 29(1):119-124. Zeng Hai'ao. Isotopic tracer of external contribution to organic matter in the sediments of Taihu estuary[J]. Marine Geology & Quaternary Geology, 2009, 29(1):119-124.
[20]
管章志. 长江下游流域环境变化的粘土矿物表征及其意义[D]. 上海:华东师范大学硕士论文, 2007:1-69. Guan Zhangzhi. The Significance of Clay Minerals Characteristics & the Environmental & Changes in Lower Reaches of the Yangtze River[D]. Shanghai:The Master's Dissertation of East China Normal University, 2007:1-69.
[21]
杨曦光, 黄海军, 严立文, 等. 近岸水体表层悬浮泥沙平均粒径遥感反演[J]. 武汉大学学报(信息科学版), 2015, 40(2)164-169. Yang Xiguang, Huang Haijun, Yan Liwen, et al. Average grain size inversion of suspended sediment in offshore waters[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2)164-169.
[22]
吴汉, 常凤琴, 张虎才, 等. 泸沽湖表层沉积物粒度空间分布特征及其影响因素[J]. 沉积学报, 2016, 34(4):679-687. Wu Han, Chang Fengqin, Zhang Hucai, et al. Grain-size distribution patterns of the surface sediments and their influential factors in Lake Lugu[J]. Acta Sedimentologica Sinica, 2016, 34(4):679-687.
[23]
秦亚超. 南黄海西部日照至连云港海域表层沉积物粒度特征及其指示意义[J]. 第四纪研究, 2017, 37(6):1412-1428. Qin Yachao. Grain-size characteristics of bottom sediments and its implications offshore between Rizhao and Lianyungang in the western South Yellow Sea[J]. Quaternary Sciences, 2017, 37(6):1412-1428.
[24]
范佳伟, 肖举乐, 温锐林, 等. 达里湖沉积粒度组分-湖面状况定量模型[J]. 第四纪研究, 2016, 36(3):612-622. Fan Jiawei, Xiao Jule, Wen Ruilin, et al. A model for the linkage between grain-size component in the Dali Lake sediments and lake level status[J]. Quaternary Sciences, 2016, 36(3):612-622.
[25]
张晓帆, 冯英进, 胡亚平. 沉积岩粒度分析专家系统[J]. 沉积学报, 1995, 13(1):126-132. Zhang Xiaofan, Feng Yingjin, Hu Yaping. Grain-size analysis expert system for sedimentary rock[J]. Acta Sedimentologica Sinica, 1995, 13(1):126-132.
[26]
马龙, 吴敬禄, 温军会, 等. 乌梁素海湖泊沉积物粒度特征及其环境指示意义[J]. 生态学报, 2013, 32(9):2707-2719. Ma Long, Wu Jinglu, Wen Junhui, et al. Grain size characteristics and its environmental significance of lacustrine sediment recorded in Wuliangsu Lake, Inner Mongolia[J]. Acta Ecologica Sinica, 2013, 32(9):2707-2719.
[27]
史正涛, 明庆忠, 张虎才, 等. 云南高原典型湖泊演化及环境变化初步考察[J]. 地质力学学报, 2004, 10(4):344-350. Shi Zhengtao, Ming Qingzhong, Zhang Hucai, et al. Investigation of the evolution and environment change of typical lakes in Yunnan Province[J]. Journal of Geomechanics, 2004, 10(4):344-350.
[28]
史正涛, 明庆忠, 张虎才, 等. 云南高原典型湖泊现代过程及环境研究进展[J]. 云南地理环境研究, 2005, 17(1):24-26. Shi Zhengtao, Ming Qingzhong, Zhang Hucai, et al. A study review on the modern processes and environmental evolution of the typical Lakes in Yunnan[J]. Yunnan Geographic Environment Research, 2005, 17(1):24-26.
[29]
谭金凤, 肖霞云, 李艳玲. 滇西北格贡错那卡湖沉积记录揭示的晚全新世气候变化[J]. 第四纪研究, 2018, 38(4):900-911. Tan Jinfeng, Xiao Xiayun, Li Yanling. Late Holocene climatic change revealed by sediment records in Gegongcuonaka Lake, northwestern Yunnan Province[J]. Quaternary Sciences, 2018, 38(4):900-911.
[30]
王忠臣, 钱亦兵, 张海燕, 等. 东天山喀尔里克山北坡淖毛湖盆地土壤粒度分布特征及成因[J]. 冰川冻土, 2010, 32(5):1035-1043. Wang Zhongchen, Qian Yibing, Zhang Haiyan, et al. Size distribution and origin of the soils on the north slopes of the Karlik Mountains-Nom basin in the east Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2010, 32(5):1035-1043.
[31]
李华勇, 张虎才, 常凤琴, 等. 云南高原湖泊表层沉积物粒度特征及环境指示意义[J]. 沉积学报, 2016, 35(3):499-507. Li Huayong, Zhang Hucai, Chang Fengqin, et al. The grain size distribution characteristics of surface sediments from plateau Lakes in Yunnan Province and their environmental significances[J]. Acta Sedimentologica Sinica, 2016, 35(3):499-507.
[32]
叶远达, 徐海, 蓝江湖, 等. 云南程海沉积物粒度对水深的指示意义[J]. 第四纪研究, 2018, 38(4):1007-1016. Ye Yuanda, Xu Hai, Lan Jianghu, et al. Sedimentary grain size at Lake Chenghai, Yunnan Province:Indicator for water depth[J]. Quaternary Sciences, 2018, 38(4):1007-1016.
[33]
史小丽, 秦伯强. 近百年来长江中游网湖沉积物粒度特征及其环境意义[J]. 海洋地质与第四纪地质, 2009, 29(2):117-122. Shi Xiaoli, Qin Boqiang. Grain-size characteristics and their environmental significance of Wanghu Lake sediments in the middle reach of Yangtze River[J]. Marine Geology & Quaternary Geology, 2009, 29(2):117-122.
[34]
邓颖, 陈光杰, 刘术, 等. 基于沉积物与文献记录的茈碧湖水文波动与近现代生态环境变化[J]. 第四纪研究, 2018, 38(4):912-925. Deng Ying, Chen Guangjie, Liu Shu, et al. Sediment and historical records of hydrological fluctuation, recent environmental and ecological changes in Cibi Lake of northwest Yunnan[J]. Quaternary Sciences, 2018, 38(4):912-925.
[35]
梁钰莹, 李冬玲, 沙龙滨, 等. 浙江湘湖早-中全新世的硅藻记录及沉积环境演变[J]. 第四纪研究, 2018, 38(4):842-853. Liang Yuying, Li Dongling, Sha Longbin, et al. Early to mid-Holocene sedimentary environment evolution in Xianghu Lake area, Zhejiang Province, based on a diatom record[J]. Quaternary Sciences, 2018, 38(4):842-853.
[36]
周绮娴, 杨小强, 李剑, 等. 晚更新世以来长江三角洲长尺度气候干旱事件——来自沉积物环境磁学的记录[J]. 热带地理, 2016, 36(3):427-437. Zhou Qixian, Yang Xiaoqiang, Li Jian, et al. Long scale climatic drought events in the Yangtze River delta since the Late Pleistocene:Environmental magnetic records from the sediment[J]. Tropical Geography, 2016, 36(3):427-437.
[37]
郭超, 马玉贞, 刘杰瑞, 等. 过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化[J]. 第四纪研究, 2016, 36(2):405-419. Guo Chao, Ma Yuzhen, Liu Jierui, et al. Climatic change recorded by grain size in the past about 2000 years from Yanzhog Yumco Lake, Tibet[J]. Quaternary Sciences, 2016, 36(2):405-419.
[38]
何薇, 汪亘, 王永莉, 等. 四川邛海湖泊沉积物记录的过去30 cal.ka B.P.以来的古气候环境特征. 第四纪研究, 2018, 38(5):1179-1192. He Wei, Wang Gen, Wang Yongli, et al. Characteristics of climate and environment over the past 30 cal.ka B.P. recorded in lacustrine deposits of the Qionghai Lake, Sichuan Province. Quaternary Sciences, 2018, 38(5):1179-1192.
[39]
Serruya C."Lerman, A.[Ed]1978. Lakes:Chemistry, geology, physics. Springer-Verlag, New York, Heidelberg, Berlin, x+363 p.$39.80"[J]. Limnology and Oceanography, 1980, 25(2):385-386.
[40]
Dearing J A. Sedimentary indicators of lake-level changes in the humid temperate zone:A critical review[J]. Journal of Paleolimnology, 1997, 18(1):1-14.
[41]
Campbell C. Late Holocene lake sedimentology and climate change in southern Alberta, Canada[J]. Quaternary Research, 1998, 49(1):96-101.
[42]
陈敬安, 万国江, 张峰, 等. 不同时间尺度下的湖泊沉积物环境记录——以沉积物粒度为例[J]. 中国科学(D辑), 2003, 33(6):564-568. Chen Jing'an, Wan Guojiang, Zhang Feng, et al. Environmental records of lake sediments at different time scales-A case study of sediment grain size[J]. Science China(Series D), 2003, 33(6):564-568.
[43]
宓莹, 黄昌春, 杨浩, 等. 太湖梅梁湾地区人类活动对湖泊沉积环境的影响[J]. 亚热带资源与环境学报, 2014, 9(4):26-35. Mi Ying, Huang Changchun, Yang Hao, et al. Effects of human activities on sedimentary records in the Meiliang Bay of Taihu[J]. Journal of Subtropical Resources and Environment, 2014, 9(4):26-35.
[44]
付霞, 张家武, 王林, 等. 近期人类活动对湖泊沉积记录的影响——以托素湖为例[J]. 第四纪研究, 2016, 36(6):1456-1465. Fu Xia, Zhang Jiawu, Wang Lin, et al. Recent human impacts on sedimentary record:A case from Lake Toson[J]. Quaternary Sciences, 2016, 36(6):1456-1465.
[45]
李沈丽. 异龙湖流域生态环境的综合治理[J]. 林业调查规划, 2009, 34(2):108-111. Li Shenli. Ecological environmental integrated control for Yilonghu watershed[J]. Forest Inventory and Planning, 2009, 34(2):108-110.
[46]
韦红波, 李锐, 杨勤科. 我国植被水土保持功能研究进展[J]. 植被生态学报, 2002, 26(4):489-496. Wei Hongbo, Li Rui, Yang Qinke. Research advances of vegetation effect on soil and water conservation in China[J]. China Journal of Plant Ecology, 2002, 26(4):489-496.