Glacial activity since the mid-Late Holocene reconstructed by the proglacial Lake Buruo Co, northern Tibetan Plateau
Xu Teng1,3, Zhu Liping1,2,3, Wang Junbo1,2, Ju Jianting1, Ma Qingfeng1
1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101;
2. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101;
3. University of Chinese Academy of Sciences, Beijing 100049
Glaciers on the Tibetan Plateau(TP) are an important freshwater resource for majorities of populations in Asian. Therefore, it is important to understand past variations in glacier activity on the TP to assess their possible response to ongoing climatic warming. Buruo Co(34°20'~34°28'N, 85°42'~85°49'E, 5170 m a.s.l.) is situated between the the Buruogangri Mountain and Zangsegangri Mountain in the "cold and dry core" of the TP. Buruo Co is a closed proglacial mountain lake with a current surface area of 87.5 km2 and catchment area of 550.5 km2. The maximum water depth exceeds 100 m. There are many glacier tongues near the lake shoreline and the lake is mainly fed by water from melting snow and glacier ice. Thus, the sediment in Buruo Co is very sensitive to the glacier activity.
A 435 cm long core of Buruo Co(BRLC13-1) was obtained by piston corer, which was used for AMS14C dating and analysis of climate proxies including grain size, total organic carbon, total inorganic carbon(TIC), particle shapes of Quartz grains and the geochemical element content. Besides, a 65 cm long core(BRGC13-5) was obtained by gravity corer and used for 210Pb and 137Cs dating. Based on the CRS model, the age at 1 cm depth was -56 a B. P. while at the same depth the radiocarbon age is 3800 a B. P., indicating a carbon reservoir age of 3856 years. The age-depth frame was established by baysian model using 210Pb and 137Cs measurement and AMS14C data and the basal age of the BRLC13-1 is estimated to be 5216 cal.ka B. P. In this study, we analyzed the high resolution record and reconstructed the history of glacial activity since 5.2 cal.ka B. P. in Buruo Co catchment. We suppose that the increase in fine franction of sidements indicate the glacier advancce, and the TIC reflect the changes in lake level. The result shows that the retreating glaciers released large amounts of freshwater during 5.2~4.0 cal.ka B. P. During 4.0~1.3 cal.ka B. P., the Westerlies were gradually enhanced and the climate became colder and drier, in response, the glaciers advanced. Subsequently, during 1.3~0 cal.ka B. P., under relatively cold conditions, a large volume of glacial ice was maintained. Besides, according to the changes in fine franction of sediments, 4 episodes of glacial advance at Buruo Co catchment are detected:at 3.6~3.4 cal.ka B. P., 3.2~2.3 cal.ka B. P., 1.9~1.7 cal.ka B. P. and 0.4~0.1 cal.ka B. P. Which corresponds to Bond events in the North Atlantic and these cold events in Buruo Co were influenced by climatic oscillations in the North Atlantic, via the Westerlies. We also suppose that the summer solar insolation, solar activity and the migrations of the Intertropical Convergence Zone influence the climate on the north of TP.
Qiu J. China:The third pole[J]. Nature News, 2008, 454(7203):393-396.
[2]
Immerzeel W W, Van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984):1382-1385.
[3]
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9):924-931. Yao Tandong, Chen Fahu, Cui Peng, et al. From the Tibetan Plateau to the third and third poles[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9):924-931.
[4]
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015, 60(32):3025-3035+3021-3022. Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32):3025-3035+3021-3022.
[5]
Pritchard H D. Addendum:Editorial Expression of Concern:Asia's glaciers are a regionally important buffer against drought[J]. Nature, 2017, 550(7677):169-174.
[6]
田立德, 姚檀栋. 青藏高原冰芯高分辨率气候环境记录研究进展[J]. 科学通报, 2016, 61(9):926-937. Tian Lide, Yao Tandong. High-resolution climatic and environmental records from the Tibetan Plateau ice cores[J]. Chinese Science Bulletin, 2016, 61(9):926-937.
[7]
Yao T D, Thompson L G, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9):663-667.
[8]
姚檀栋, 余武生, 杨威, 等. 第三极冰川变化与地球系统过程[J]. 科学观察, 2016, 11(6):55-57. Yao Tandong, Yu Wusheng, Yang Wei, et al. Third-pole glacial change and earth system processes[J]. Science Focus, 2016, 11(6):55-57.
[9]
Liu K B, Yao Z J, Thompson L G. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau[J]. Geology, 1998, 26(2):135-138.
[10]
Thompson L G, Yao T D, Davis M E, et al. Tropical climate instability:The last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 1997, 276(5320):1821-1825.
[11]
Thompson L G, Yao T D, Davis M E, et al. Holocene climate variability archived in the Puruogangri ice cap on the central Tibetan Plateau[J]. Annals of Glaciology, 2006, 43(1):61-69.
[12]
易朝路. 第四纪冰川年代学以及新技术研究的现状、问题与趋势[J]. 第四纪研究, 2018, 38(3):537-561. Yi Chaolu. Progresses, problems and study trend in geochronology and other fields of Quaternary glaciations[J]. Quaternay Sciences, 2018, 38(3):537-561.
[13]
Owen L A, Finkel R C, Barnard P L, et al. Climatic and topographic controls on the style and timing of Late Quaternary glaciation throughout Tibet and the Himalaya defined by Be-10 cosmogenic radionuclide surface exposure dating[J]. Quaternary Science Reviews, 2005, 24(12):1391-1411.
[14]
Zhu H F, Xu P, Shao X M, et al. Little Ice Age glacier fluctuations reconstructed for the southeastern Tibetan Plateau using tree rings[J]. Quaternary International, 2013, 283:134-138. doi:10.1016/j.quaint.2012.04.011.
[15]
刘雯雯, 徐鹏, 朱海峰, 等. 藏东南地区树轮冰川学研究进展[J]. 第四纪研究, 2015, 35(5):1238-1244. Liu Wenwen, Xu Peng, Zhu Haifeng, et al. A review on dendroglaciology study in southeast Tibetean Plateau[J]. Quaternary Sciences, 2015, 35(5):1238-1244.
[16]
Dahl S O, Nesje A, Lie O, et al. Timing, equilibrium-line altitudes and climatic implications of two Early-Holocene glacier readvances during the Erdalen Event at Jostedalsbreen, Western Norway[J]. The Holocene, 2002, 12(1):17-25.
[17]
Karlén W. Lacustrine sediments and tree-limit variations as indicators of Holocene climatic fluctuations in Lappland, Northern Sweden[J]. Geografiska Annaler Series A:Physical Geography, 1976, 58(1):1-34.
[18]
Leonard E M. Varve studies at Hector Lake, Alberta, Canada, and the relationship between glacial activity and sedimentation[J]. Quaternary Research, 1986, 25(2):199-214.
[19]
Zhang C J, Mischke S. A Lateglacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2009, 28(19):1970-1983.
[20]
Liu X Q, Herzschuh U, Wang Y B, et al. Glacier fluctuations of Muztagh Ata and temperature changes during the Late Holocene in westernmost Tibetan Plateau, based on glaciolacustrine sediment records[J]. Geophysical Research Letters, 2014, 41(17):6265-6273.
[21]
Huang L, Zhu L P, Wang J B, et al. Glacial activity reflected in a continuous lacustrine record since the Early Holocene from the proglacial Laigu Lake on the southeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 456:37-45. doi:10.1016/j.palaeo.2016.05.019.
[22]
Zhang J F, Xu B Q, Turner F, et al. Long-term glacier melt fluctuations over the past 2500 yr in monsoonal High Asia revealed by radiocarbon-dated lacustrine pollen concentrates[J]. Geology, 2017, 45(4):359-362.
[23]
王苏民, 窦鸿身. 中国湖泊志[M]. 北京:科学出版社, 1998:420-421. Wang Sumin, Dou Hongshen. Annals of Lakes in China[M]. Beijing:Science Press, 1998:420-421.
[24]
刘田, 阳坤, 秦军, 等. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6):1449-1457. Liu Tian, Yang Kun, Qin Jun, et al. Construction and applications of time series of monthly precipitation at weather stations in the central and eastern Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 37(6):1449-1457.
[25]
李兰晖, 刘琼欢, 张镱锂, 等. 羌塘高原降水空间分布及其变化特征[J]. 地理研究, 2017, 36(11):2047-2060. Li Lanhui, Liu Qionghuan, Zhang Yili, et al. Spatial distribution and variation of precipitation in the Qiangtang Plateau[J]. Geographical Research, 2017, 36(11):2047-2060.
[26]
中国科学院青藏高原综合科学考察队. 西藏自然地理[M]. 北京:科学出版社, 1982:1-178. Qinghai-Tibet Plateau Comprehensive Scientific Investigation Team of Chinese Academy of Sciences. Physical Geography of Tibet[M]. Beijing:Science Press, 1988:1-178.
[27]
唐娟红. 藏北布若错超浅成花岗岩体地球化学特征及成因机制探讨[J]. 华南地质与矿产, 2013, 29(3):207-216. Tang Juanhong. Geochemical characteristicss and genetic mechanism of the Buruocuo super-shallow granite body in northern Tibet[J]. Geology and Mineral Resources of South China, 2013, 29(3):207-216.
[28]
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4):1869-1887.
[29]
Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(3):457-474.
[30]
陈钰, 刘兴起. 青藏高原可可西里库赛湖年纹层石英颗粒表面形态特征研究[J]. 湖泊科学, 2016, 28(5):1123-1133. Chen Yu, Liu Xingqi. Surface textural analysis of quartz grains from varved sediments of Lake Kusai in the Hohxil area, Tibetan Plateau[J]. Journal of Lake Sciences, 2016, 28(5):1123-1133.
[31]
王建丰, 雷天柱, 张生银, 等. 刘家峡水库表层沉积物微量元素地球化学特征[J]. 沉积与特提斯地质, 2018, 38(3):51-59. Wang Jianfeng, Lei Tianzhu, Zhang Shengyin, et al. Trace element geochemistry of the surface sediments in the Liujiaxia reservoir, Gansu[J]. Sedimentary Geology and Tethyan Geology, 2018, 38(3):51-59.
[32]
Mischke S, Weynell M, Zhang C, et al. Spatial variability of 14C reservoir effects in Tibetan Plateau lakes[J]. Quaternary International, 2013, 313:147-155. doi:10.1016/j.quaint.2013.01.030.
[33]
Ahlborn M, Haberzettl T, Wang J B, et al. Synchronous pattern of moisture availability on the southern Tibetan Plateau since 17.5 cal.ka BP-The Tangra Yumco Lake sediment record[J]. Boreas, 2016, 46(2):229-241.
[34]
Hendy C H, Hall B L. The radiocarbon reservoir effect in proglacial lakes:Examples from Antarctica[J]. Earth and Planetary Science Letters, 2006, 241:413-421. doi:10.1016/j.epsl.2005.11.045.
[35]
Bird B W, Polisar P J, Lei Y, et al. A Tibetan lake sediment record of Holocene Indian summer monsoon variability[J]. Earth and Planetary Science Letters, 2014, 399:92-102. doi:10.1016/j.epsl.2014.05.017.
[36]
范佳伟, 肖举乐, 温锐林, 等. 达里湖沉积粒度组分-湖面状况定量模型[J]. 第四纪研究, 2016, 36(3):612-623. Fan Jiawei, Xiao Jule, Wen Ruilin, et al. A model for the linkage between grain size component in the Dali Lake sediments and lake level status[J]. Quaternary Sciences, 2016, 36(3):612-623.
[37]
韩鹏, 刘兴起. 内蒙古中东部查干淖尔湖流域7000年以来的气候演变[J]. 第四纪研究, 2017, 37(6):1381-1390. Han Peng, Liu Xingqi. The climate evolution inferred from Chagan-Nuur in middle-east part of Inner Mongolia since the last 7000 years[J]. Quaternary Sciences, 2017, 37(6):1381-1390.
[38]
Zhu L P, Zhen X L, Wang J B, et al. A~30,000-year record of environmental changes inferred from Lake Chen Co, southern Tibet[J]. Journal of Paleolimnology, 2009, 42(3):343-358.
[39]
Mügler I, Gleixner G, Günther F, et al. A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, central Tibet[J]. Journal of Paleolimnology, 2010, 43(4):625-648.
[40]
郭超, 马玉贞, 刘杰瑞, 等. 过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化[J]. 第四纪研究, 2016, 36(2):405-419. Guo Chao, Ma Yuzhen, Liu Jierui, et al. Climatic change recorded by grain-size in the past about 2000 years from Yamzhog Yumco Lake, Tibet[J]. Quaternary Sciences, 2016, 36(2):405-419.
[41]
Boulton G. Boulder shapes and grain-size distributions of debris as indicators of transport paths through a glacier and till genesis[J]. Sedimentology, 1978, 25(6):773-799.
[42]
Matthews J A, Dahl S O, Nesje A, et al. Holocene glacier variations in central Jotunheimen, Southern Norway based on distal glaciolacustrine sediment cores[J]. Quaternary Science Reviews, 2000, 19(16):1625-1647.
[43]
Nesje A, Matthews J A, Dahl S O, et al. Holocene glacier fluctuations of flatebreen and winter-precipitation changes in the Jostedalsbreen region, Western Norvay, based on glaciolacustrine sediment records[J]. The Holocene, 2001, 11(3):267-280.
[44]
刘兴起, 姚波, 杨波. 青藏高原北部可可西里库赛湖沉积物及风成物的粒度特征[J]. 第四纪研究, 2010, 30(6):1193-1198. Liu Xingqi, Yao Bo, Yang Bo. Grain size distribution of aeolian and lacustrine sediments of Kusai Lake in the Hohxil region of the northern Qinghai Tibetan Plateau[J]. Quaternary Sciences, 2010, 30(6):1193-1198.
[45]
Zhang X N, Zhou A F, Wang X, et al. Unmixing grain-size distributions in lake sediments:A new method of endmember modeling using hierarchical clustering[J]. Quaternary Research, 2018, 89(1):365-373.
[46]
谢又予. 中国石英砂表面结构特征图谱[M]. 北京:海洋出版社, 1984:1-115. Xie Youyu. Atlas of Quartz Sand Surface Textures in China[M]. Beijing:China Ocean Press, 1984:1-115.
[47]
陈安东, 顾佳妮, 赵志中, 等. 云南大理点苍山末次冰期冰碛物石英砂扫描电镜形态特征分析[J]. 冰川冻土, 2016, 38(2):453-462. Chen Andong, Gu Jiani, Zhao Zhizhong, et al. Quartz grains SEM surface microtextures of Quaternary glacial sediments along the Diancang Mountain in Yunnan, Southwest China[J]. Journal of Glaciology and Geocryology, 2016, 38(2):453-462.
[48]
Vandenberghe J. Grain size of fine-grained windblown sediment:A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121(6):18-30.
[49]
Dobersch tz S, Frenzel P, Haberzettl T, et al. Monsoonal forcing of Holocene paleoenvironmental change on the central Tibetan Plateau inferred using a sediment record from Lake Nam Co(Xizang, China)[J]. Journal of Paleolimnology, 2014, 51(2):253-266.
[50]
田庆春, 杨太保, 石培宏. 可可西里地区湖泊深钻揭示的中更新世以来环境变化[J]. 第四纪研究, 2018, 38(5):1101-1110. Tian Qingchun, Yang Taibao, Shi Peihong. Paleoclimate change since the Middle Pleistocene recorded by lake sediments in Hoh Xil[J]. Quaternary Sciences, 2018, 38(5):1101-1110.
[51]
贾红娟, 汪敬忠, 秦小光, 等. 罗布泊地区晚冰期至中全新世气候特征及气候波动事件[J]. 第四纪研究, 2017, 37(3):510-521. Jia Hongjuan, Wang Jingzhong, Qin Xiaoguang, et al. Climate and abrupt events record in the Lop Nur region Late Glacial to the Middle Holocene[J]. Quaternary Sciences, 2017, 37(3):510-521.
[52]
朱立平, 王君波, 林晓, 等. 西藏纳木错深水湖芯反映的8.4 ka以来气候环境变化[J]. 第四纪研究, 2007, 27(4):588-597. Zhu Liping, Wang Junbo, Lin Xiao, et al. Environmental changes reflected by core sediments since 8.4 ka in Nam Co, central Tibet of China[J]. Quaternary Sciences, 2007, 27(4):588-597.
[53]
Zhu L P, Wu Y H, Wang J B, et al. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China[J]. The Holocene, 2008, 18(5):831-839.
[54]
Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the intertropical convergence zone through the Holocene[J]. Science, 2001, 293(5533):1304-1308.
[55]
Zhu L P, Ju J T, Wang Y, et al. Composition, spatial distribution, and environmental significance of water ions in Pumayum Co catchment, southern Tibet[J]. Journal of Geographical Sciences, 2010, 20(1):109-120.
[56]
Kramer A, Herzschuh U, Mischke S, et al. Holocene treeline shifts and monsoon variability in the Hengduan Mountains(southeastern Tibetan Plateau), implications from palynological investigations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286(1):23-41.
[57]
游超. 藏色岗日冰芯中生物质燃烧历史记录研究[D]. 北京:中国科学院大学博士论文, 2016:47-48. You Chao. Historical Biomass Burning Records in the Zangsegangri Ice Core[D]. Beijing:The Doctoral Thesis of University of Chinese Academy of Sciences, 2016:47-48.
[58]
强明瑞, 陈发虎, 周爱锋, 等. 苏干湖沉积物粒度组成记录尘暴事件的初步研究[J]. 第四纪研究, 2006, 26(6):915-922. Qiang Mingrui, Chen Fahu, Zhou Aifeng, et al. Preliminary study on dust storm events documented by grain size components of Sugan Lake sediments, north Qaidam Basin[J]. Quaternary Sciences, 2006, 26(6):915-922.
[59]
段克勤, 姚檀栋, 王宁练, 等. 青藏高原中部全新世气候不稳定性的高分辨率冰芯记录[J]. 中国科学:地球科学, 2012, 42(9):1441-1449. Duan Keqin, Yao Tandong, Wang Ninglian, et al. The unstable holocene climatic change recorded in an ice core from the central Tibetan Plateau[J]. Science China:Earth Sciences, 2012, 42(9):1441-1449.
[60]
Mischke S, Zhang C J. Holocene cold events on the Tibetan Plateau[J]. Global and Planetary Change, 2010, 72(3):155-163.
[61]
Shi X H, Kirby E, Furlong K P, et al. Rapid and punctuated Late Holocene recession of Silin Co, central Tibet[J]. Quaternary Science Reviews, 2017, 172:15-31. doi:10.1016/j.quascirev.2017.07.017.
[62]
Hudson A M, Quade J, Huth T E, et al. Lake level reconstruction for 12.8-2.3 ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau[J]. Quaternary Research, 2015, 83(1):66-79.
[63]
Herzschuh U, Winter K, Wünnemann B, et al. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra[J]. Quaternary International, 2006, 154(5):113-121.
[64]
刘思丝, 黄小忠, 强明瑞, 等. 孢粉记录的青藏高原东北部更尕海地区中晚全新世植被和气候变化[J]. 第四纪研究, 2016, 36(2):247-257. Liu Sisi, Huang Xiaozhong, Qiang Mingrui, et al. Vegetation and climate change during the mid-Late Holocene reflected by the pollen record from Lake Genggahai, northeastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2):247-256.
[65]
Wünnemann B, Demske D, Tarasov P, et al. Hydrological evolution during the last 15 kyr in the Tso Kar Lake basin(Ladakh, India), derived from geomorphological, sedimentological and palynological records[J]. Quaternary Science Reviews, 2010,29(9):1138-1155.
[66]
Zhang J W, Chen F H, Holmes J A, et al. Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China:A review and synthesis[J]. Quaternary Science Reviews, 2011, 30(15):1973-1987.
[67]
Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723):854-857.
[68]
Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549):2130-2136.
[69]
Mayewski P A, Rohling E E, Stager J C, et al. Holocene climate variability[J]. Quaternary Research, 2004, 62(3):243-255.
[70]
Yan D N, Xu H, Lan J H, et al. Solar activity and the westerlies dominate decadal hydroclimatic changes over arid Central Asia[J]. Global and Planetary Change, 2019, 173:53-60. doi:10.1016/j.gloplacha.2018.12.006.
[71]
Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3):351-364.
[72]
Berger A, Loutre M-F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317.
[73]
Steinhilber F, Beer J, Fröhlich C. Total solar irradiance during the Holocene[J]. Geophysical Research Letters, 2009, 36(19):308-308.
[74]
王绍武. 全新世北大西洋冷事件:年代学和气候影响[J]. 第四纪研究, 2009, 29(6):1146-1153. Wang Shaowu. Holocene cold events in the North Atlantic:Chronology and climatic impact[J]. Quaternary Sciences, 2009, 29(6):1146-1153.