1. Key Laboratory of Western China's Environmental Systems(Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu;
2. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, Hubei
Asian summer monsoon is one of the important components of the global monsoonal system, whose decreasing has strong effects on the environmental changes, ecology safety, economic development, as well as social stability in its domains. The boundary regions of the modern summer monsoon are ideal places to study the monsoon intensity. However, the continuous sequence of decreasing monsoon events during the Holocene is still lacking. Dalianhai Lake is the terminal lake of the Shazhuyu River in the Gonghe basin(35.5°~36.9°N, 98.8°~101.4°E), northeastern Tibetan Plateau, which is located in the margin area of modern Asian summer monsoon system. In 2012, a 200-m-long core DLH12A(36°14'25.2"N, 100°23'55.0"E; 2852 m a.s.l.) was obtained from dry lake bed. In the present study, we focus on the upmost 24.6 m sediments which are composed of greyish-brown clay or silty clay between 24.6 m and 17.0 m, and greyish silty clay in the 0-17 m interval. Seven layers of well sorted sand were found at the depth of 6.0 m, 12.9 m, 14.6 m, 16.5 m, 19.0 m, 23.0 m and 24.3 m. Based on AMS14C(accelerator mass spectrometry radiocarbon) dating results from 5 terrestrial plant remains and 8 bulk organic matter samples, and the applying of multi-steps and layers polynomial curve fitting, the age-depth chronology model of the studied core was successfully established for the period from 11.7~0 cal.ka B. P. Hydrological variations in the basin and decreasing events of the Asian summer monsoon were reconstructed based on analyzing of grain size(contents of > 63 μm particles) and SEM(scanning electron microscope) images of the sediments. The well-sorted sand layers in the studied sediments represent centennial-to millennial-scale decrease of the lake level, further indicating the decrease of precipitation and weakening of the Asian summer monsoon. All these events occurred during the period from 11700 cal.a B. P. to 9500 cal.a B. P. and since 6500 cal.a B. P.(11.6~11.3 cal.ka B. P., 10.4~9.5 cal.ka B. P., 6.4~6.0 cal.ka B. P., 4.6~4.4 cal.ka B. P., 3.7~3.4 cal.ka B. P., 3.1~2.9 cal.ka B. P. and 2.0~0.9 cal.ka B. P.). The abrupt weakening events of the Asian summer monsoon during the Holocene can be well compared with the ENSO events in the low altitude, indicating that the abrupt decreasing of Asian summer monsoon may be closely linked to the ENSO events during the Holocene.
Ditlevsen P D, Svensmark H, Johnsen S. Contrasting atmospheric and climate dynamics of the last-glacial and Holocene periods[J]. Nature, 1996, 379(6568):810-812.
[2]
Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates[J]. Science, 1997, 278(5341):1257-1266.
[3]
Bond G, Kromer B, Beer J, et al. Persistent solar influence on North Atlantic climate during the Holocene[J]. Science, 2001, 294(5549):213-2132.
[4]
Berkelhammer M, Sinha A, Stott L, et al. An abrupt shift in the Indian monsoon 4000 years ago[M]//Giosan Liviu, Fuller Q Dorian, Nicoll Kathleen eds. Climates, Landscapes, and Civilizations. Wiley:American Geophysical Union, Geophysical Monograph Series 198, 2012:75-87. doi:10.1029/2012GM001207.
[5]
Walker M J C, Berkelhammer M, Björck S, et al. Formal subdivision of the Holocene Series/Epoch:A discussion paper by a working group of INTIMATE(Integration of ice-core, marine and terrestrial records)and the subcommission on Quaternary stratigraphy(International Commission on Stratigraphy)[J]. Journal of Quaternary Science, 2012, 27(7):649-659.
[6]
Haug G H, Günther D, Peterson L C, et al. Climate and the collapse of Maya civilization[J]. Science, 2003, 299(5613):1731-1735.
[7]
Kathayat G, Cheng H, Sinha A, et al. The Indian monsoon variability and civilization changes in the Indian subcontinent[J]. Science Advances, 2017, 3(12):e1701296.
[8]
Weiss H, Courty M A, Wetterstrom W, et al. The genesis and collapse of third millennium north Mesopotamian civilization[J]. Science, 1993, 261(5124):995-1004.
[9]
Zhang P Z, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record[J]. Science, 2008, 322(5903):940-942.
[10]
Evans N P, Bauska T K, Gázquez-Sánchez F, et al. Quantification of drought during the collapse of the classic Maya civilization[J]. Science, 2018, 361(6401):498-501.
[11]
陈发虎, 朱艳, 李吉均, 等. 民勤盆地湖泊沉积记录的全新世千百度尺度夏季风快速变化[J]. 科学通报, 2001, 46(17):1414-1419. Chen Fahu, Zhu Yan, Li Jijun, et al. Abrupt Holocene changes of the Asian monsoon at millennial-and centennial-scales:Evidence from lake sediment document in Minqin Basin, NW China[J]. Chinese Science Bulletin, 2001, 46(17):1414-1419.
[12]
Xiao J L, Zhang S R, Fan J W, et al. The 4.2 ka event and its resulting cultural interruption in the Daihai Lake basin at the East Asian summer monsoon margin[J]. Quaternary International, 2018, https://doi.org/10.1016/j.quaint.2018.06.025.
[13]
Yang X P, Scuderi L A, Wang X L, et al. Groundwater sapping as the cause of irreversible desertification of Hunshandake sandy lands, Inner Mongolia, Northern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(3):702-706.
[14]
Wang Y J, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723):854-857.
[15]
Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J]. Earth and Planetary Science Letters, 2003, 211(3):371-380.
[16]
Clemens S C, Prell W L, Sun Y B. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons:Reinterpreting cave speleothem δ18O[J]. Paleoceanography, 2010, 25(PA4207):545-558.
[17]
Wang B, Wu Z W, Li J P, et al. How to measure the strength of the East Asian summer monsoon[J]. Journal of Climate, 2008, 21(17):4449-4463.
[18]
Zhou T J, Gong D Y, Li J, et al. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs[J]. Meteorologische Zeitschrift, 2009, 18(4):455-467.
[19]
Chen J H, Rao Z G, Liu J B, et al. On the timing of the East Asian summer monsoon maximum during the Holocene-Does the speleothem oxygen isotope record reflect monsoon rainfall variability?[J]. Science China:Earth Sciences, 2016, 59(12):2328-2338.
[20]
汪品先. 全球季风的地质演变[J]. 科学通报, 2009, 54(5):535-556. Wang Pinxian. Global monsoon in a geological perspective[J]. Chinese Science Bulletin, 2009, 54(5):535-556.
[21]
Chen J, Huang W, Jin L Y, et al. A climatological northern boundary index for the East Asian summer monsoon and its interannual variability[J]. Science China:Earth Sciences, 2018, 61(1):13-22.
[22]
Wu D, Chen F H, Li K, et al. Effects of climate change and local human activity on lake shrinkage in Gonghe Basin, northeastern Tibetan Plateau, during the past 60 years[J]. Journal of Arid Land, 2016, 8(4):479-491.
[23]
Cheng B, Chen F H, Zhang J W. Palaeovegetational and palaeoenvironmental changes since the last deglacial in Gonghe Basin, northeast Tibetan Plateau[J]. Journal of Geographical Sciences, 2013, 23(1):136-146.
[24]
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4):1869-1887.
[25]
Blaauw M, Methods and code for ‘classical’ age-modelling of radiocarbon sequences[J]. Quaternary Geochronology, 2010, 5(5):512-518.
[26]
Zhang J W, Ma X Y, Qiang M R, et al. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China[J]. Quaternary Science Reviews, 2016, 144:66-82. doi:10.1016/j.quascirev.2016.05.034.
[27]
Håkanson L, Jansson M. Principles of Lake Sedimentology[M]. Berlin Heidelberg, New York, Tokyo:Springer-Verlag, 1983:1-320.
[28]
Qiang M R, Liu Y Y, Jin Y X, et al. Holocene record of eolian activity from Genggahai Lake, northeastern Qinghai-Tibetan Plateau, China[J]. Geophysical Research Letters, 2014, 41(2):589-595.
[29]
谢义予. 中国石英砂表面结构特征图谱[M]. 北京:海洋出版社, 1984:1-148. Xie Yiyu. Atlas of Quarts Sand Surface Textural Features of China Micrographs[M]. Beijing:China Ocean Press, 1984:1-148.
[30]
Cardona J M, Mas J G, Bellón A S, et al. Surface textures of heavy-mineral grains:A new contribution to provenance studies[J]. Sedimentary Geology, 2005, 174(3):223-235.
[31]
Xiao J L, Chang Z G, Bin S, et al. Partitioning of the grain-size components of Dali Lake core sediments:Evidence for lake-level changes during the Holocene[J]. Journal of Paleolimnology, 2009, 42(2):249-260.
[32]
范佳伟, 肖举乐, 温锐林, 等. 达里湖沉积粒度组分-湖面状况定量模型[J]. 第四纪研究, 2016, 36(3):612-622. Fan Jiawei, Xiao Jule, Wen Ruilin, et al. A model for the linkage between grain-size component in the Dali Lake sediments and lake level status[J]. Quaternary Sciences, 2016, 36(3):612-622.
[33]
Chen F H, Qiang M R, Zhou A F, et al. A 2000-year dust storm record from Lake Sugan in the dust source area of arid China[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(5):2149-2160.
[34]
陈发虎, 张家武, 程波, 等. 青海共和盆地达连海晚第四纪高湖面与末次冰消期以来的环境变化[J]. 第四纪研究, 2012, 32(1):122-131. Chen Fahu, Zhang Jiawu, Cheng Bo, et al. Late Quaternary high lake levels and environmental changes since last deglacial in Dalianhai, Gonghe Basin in Qinghai Province[J]. Quaternary Sciences, 2012, 32(1):122-131.
[35]
Qiang M R, Chen F H, Song L, et al. Late Quaternary aeolian activity in Gonghe Basin, northeastern Qinghai-Tibetan Plateau, China[J]. Quaternary Research, 2013, 79(3):403-412.
[36]
Qiang M R, Jin Y X, Liu X X, et al. Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin, northeastern Qinghai-Tibetan Plateau:Variability, processes, and climatic implications[J]. Quaternary Science Reviews, 2016, 132:57-73. doi:10.1016/j.quascirev.2015.11.010.
[37]
Chen F H, Wu D, Chen J H, et al. Holocene moisture and East Asian summer monsoon evolution in the northeastern Tibetan Plateau recorded by Lake Qinghai and its environs:A review of conflicting proxies[J]. Quaternary Science Reviews, 2016, 154:111-129. doi:10.1016/j.quascirev.2016.10.021.
[38]
Stauch G, Lai Z P, Lehmkuhl F, et al. Environmental changes during the Late Pleistocene and the Holocene in the Gonghe Basin, north-eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 59:144-155. doi:10.1016/j.palaeo.2016.12.032.
[39]
Qiang M R, Song L, Chen F H, et al. A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai-Tibetan Plateau(China)[J]. Journal of Paleolimnology, 2013, 49(4):575-590.
[40]
韩鹏, 刘兴起. 内蒙古中东部查干淖尔湖流域7000年以来的气候演变[J]. 第四纪研究, 2017, 37(6):1381-1390. Han Peng, Liu Xingqi. The climate evolution inferred from Chagan-Nuur in middle-east part of Inner Mongolia since the last 7000 years[J]. Quaternary Sciences, 2017, 37(6):1381-1390.
[41]
申改慧, 丁国强, 阳小兰, 等. 白洋淀地区全新世以来的气候环境变化[J]. 第四纪研究, 2018, 38(3):756-768. Shen Gaihui, Ding Guoqiang, Yang Xiaolan, et al. Holocene climate and environmental change in the Baiyangdian area[J]. Quaternary Sciences, 2018, 38(3):756-768.
[42]
贾飞飞, 鲁瑞洁, 高尚玉. 毛乌素沙漠东南缘湖沼相沉积物粒度特征记录的12.2 cal.ka B. P. 以来的区域环境变化[J]. 第四纪研究, 2018, 38(5):1211-1220. Jia Feifei, Lu Ruijie, Gao Shangyu. Environmental changes recorded from grain-size characteristics of the lacustrine-peat sediments from southeastern margin of Mu Us Desert since 12.2 cal.ka B. P.[J]. Quaternary Sciences, 2018, 38(5):1211-1220.
[43]
An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2(8):619-625. doi:10.1038/srep00619.
[44]
Mischke S, Zhang C. Holocene cold events on the Tibetan Plateau[J]. Global and Planetary Change, 2010, 72(3):155-163.
[45]
陈发虎, 吴薇, 朱艳, 等. 阿拉善高原中全新世干旱事件的湖泊记录研究[J]. 科学通报, 2004, 49(1):1-9. Chen Fahu, Wu Wei, Zhu Yan, et al. Mid-Holocene drought event recorded in lacustrine sequences in the Alashan Platea[J]. Chinese Science Bulletin, 2004, 49(1):1-9.
[46]
朱艳, 陈发虎, 张家武, 等. 距今五千年左右环境恶化事件对我国新石器文化的影响及其原因的初步探讨[J]. 地理科学进展, 2001, 20(2):111-121. Zhu Yan, Chen Fahu, Zhang Jiawu, et al. A discussion on the effects of deteriorated environment event on the Neolithic culture of China, around 5000 a BP[J]. Progress in Geography, 2001, 20(2):111-121.
[47]
Shindell D T, Schmidt G A, Mann M E, et al. Solar forcing of regional climate change during the Maunder Minimum[J]. Science, 2001, 294(5549):2149-2152.
[48]
Alley R B, Ágústsdóttir A M. The 8k event:cause and consequences of a major Holocene abrupt climate change[J]. Quaternary Science Reviews, 2005, 24(10):1123-1149.
[49]
Maslin M, Pike J, Stickley C, et al. Evidence of Holocene climate variability in marine sediments[M]//Mackay A, Battarbee R W, Birks J, et al. Global Change in the Holocene. London, United Kingdom:Arnold, 2003:185-209.
[50]
Broecker W S. Does the trigger for abrupt climate change reside in the ocean or in the atmosphere?[J]. Science, 2003, 300(5625):1519-1522.
[51]
Clement A C, Seager R, Cane M A. Orbital controls on the El Niño/Southern Oscillation and the tropical climate[J]. Paleoceanography, 1999, 14(4):441-456.
[52]
Alley R B, Marotzke J, Nordhaus W D, et al. Abrupt climate change[J]. Science, 2003, 299(5615):2005-2010.
[53]
Steinhilber F, Abreu J A, Beer J, et al. 9,400 years of cosmic radiation and solar activity from ice cores and tree rings[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):5967-5971.
[54]
Hong Y T, Hong B, Lin Q H, et al. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12000 years and paleo-El Niño[J]. Earth and Planetary Science Letters, 2005, 231(1-4):337-346.
[55]
Wang X S, Chu G Q, Sheng M, et al. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation[J]. Earth and Planetary Science Letters, 2016, 451:22-30. doi:10.1016/j.epsl.2016.07.006.
[56]
Gupta A K, Anderson D M, Overpeck J T. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean[J]. Nature, 2003, 421(6921):354-357.
[57]
王绍武, 朱锦红. 全新世千年尺度气候振荡的年代学研究[J]. 气候变化研究进展, 2005, 1(4):157-160. Wang Shaowu, Zhu Jinhong. Studies of chronology of millennial time scale climate oscillations in the Holocene[J]. Advances in Climate Change Research, 2005, 1(4):157-160.
[58]
王绍武. 全新世夏季风[J]. 气候变化研究进展, 2010, 6(6):474-476. Wang Shaowu. Holocene summer monsoon[J]. Advances in Climate Change Research, 2010, 6(6):474-476.
[59]
Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912):162-165.
[60]
Rehfeld K, Münch T, Ho S L, et al. Global patterns of declining temperature variability from the Last Glacial Maximum to the Holocene[J]. Nature, 2018, 554(7692):356-359.
[61]
肖举乐, 蔡演军, 强明瑞, 等. 全新世亚洲季风变异与干旱演变及其驱动机制[J]. 中国基础科学, 2017, 5:12-17. doi:10.3969/j.issn.1009-2412.2017.05.003. Xiao Jule, Cai Yanjun, Qiang Mingrui, et al. Holocene Asian summer monsoon variability and arid environment evolution:Processes and mechanisms[J]. China Basic Science, 2017, 5:12-17. doi:10.3969/j.issn.1009-2412.2017.05.003.