Environmental changes reflected by core sediments since late glacial in Mapam Yumco, southwest Tibet of China
Zhu Shaohang1,3, Zhu Liping1,2,3, Wang Junbo1,2, Ju Jianting1, Ma Qingfeng1, Chen Hao1,3, Xu Teng1,3, Kai Jinlei1,3
1. Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101;
2. CAS Center for Excellence in Tibetan Plateau Earth System, Beijing 100101;
3. University of Chinese Academy of Sciences, Beijing 100049
Mapam Yumco, located in the southwest of Tibetan Plateau, is one of the ideal areas to study the evolution of Indian monsoon. A 4.69 m long core was obtained at a depth of 75 m at Mapam Yumco using a piston sampler. The core age was determined by 210Pb and AMS14C dating. According to the element content(XRF scanning), total organic carbon(TOC), total inorganic carbon(TIC) and total nitrogen(TN) et al, lake environment changes since 14 cal.ka B. P. were reconstructed. The results showed that during the deglaciation period(14~12 cal.ka B. P.), TOC and TIC showed that the lake environment was relatively warm and wet on the whole. 12.0~11.4 cal.ka B. P., runoff was significantly weakened under the influence of the YD event. In the Early and Middle Holocene(11.4~3.4 cal.ka B. P.), the overall environment of the lake area was still warm and humid, and the climate fluctuated. There were two cold events(10.2~9.8 cal.ka B. P. and about 8.2 cal.ka B. P.), and 7.4~6.6 cal.ka B. P., showing a warm period. In the Late Holocene(3.4~0 cal.ka B. P.), the lake environment as a whole tended to be arid, accompanied by two periods of relative humidity(2.6~2.0 cal.ka B. P. and 1.4~1.0 cal.ka B. P.). The changes in the environment of Mapam Yumco show that since the late glacial period(14.0~3.4 cal.ka B. P.), the Indian monsoon brought more precipitation and the glacier melt water had increased under the influence of solar radiation, and the environment in the lake area is relatively humid, which is conducive to the survival of endogenous organisms on the whole. In the Late Holocene(3.4~0 cal.ka B. P.), the solar radiation in the Northern Hemisphere decreased in the summer, the Indian monsoon weakened and lake environment developed towards aridification.
朱少航, 朱立平, 王君波, 鞠建廷, 马庆峰, 陈浩, 许腾, 开金磊. 西藏玛旁雍错沉积揭示的晚冰期以来环境变化[J]. 第四纪研究, 2019, 39(3): 602-614.
Zhu Shaohang, Zhu Liping, Wang Junbo, Ju Jianting, Ma Qingfeng, Chen Hao, Xu Teng, Kai Jinlei. Environmental changes reflected by core sediments since late glacial in Mapam Yumco, southwest Tibet of China. Quaternary Sciences, 2019, 39(3): 602-614.
冯松, 汤懋苍. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43(6):633. Feng Song, Tang Maocang. New evidence for the Qinghai-Xizang(Tibet)Plateau as a pilot region of climatic fluctuation in China[J]. Chinese Science Bulletin, 1998, 43(20):1745-1749.
[2]
姚檀栋. 普若岗日冰原科学考察[J]. 中国科学院院刊, 2001, 16(3):229-232. Yao Tandong. A scientific expedition to the Puruo Gunri ice field[J]. Bulletin of Chinese Academy of Science, 2001, 16(3):229-232.
[3]
姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题[J]. 科学通报, 2000, 45(1):98-105. Yao Tandong, Liu Xiaodong, Wang Ninglian. The range of climate change in the Tibetan Plateau[J]. Chinese Science Bulletin, 2000, 45(1):98-105.
[4]
张小龙, 徐柏青, 李久乐, 等. 青藏高原西南部塔若错湖泊沉积物记录的近300年来气候环境变化[J]. 地球科学与环境学报, 2012, 34(1):79-90. Zhang Xiaolong, Xu Baiqing, Li Jiule, et al. Climatic and environmental changes over the past about 300 years recorded by lake sediments in Taro Co, Southwestern Tibetan Plateau[J]. Journal of Earth Sciences and Environment, 2012, 34(1):79-90.
[5]
Yao T D, Valerie M D, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau:Observations and simulations[J]. Reviews of Geophysics, 2013, 51(4):525-548.
[6]
Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3):351-364.
[7]
An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2(8):619-626. doi:10.1038/srep00619.
[8]
Yan D D, Wünnemann B. Late Quaternary water depth changes in Hala Lake, northeastern Tibetan Plateau, derived from ostracod assemblages and sediment properties in multiple sediment records[J]. Quaternary Science Reviews, 2014, 95:95-114. doi:10.1016/j.quascirev.2014.04.030.
[9]
Wünnemann B, Yan D D, Andersen N, et al. A 14 ka high-resolution δ18O lake record reveals a paradigm shift for the process-based reconstruction of hydroclimate on the northern Tibetan Plateau[J]. Quaternary Science Reviews, 2018, 200:65-84. https://doi.org/10.1016/j.quascirev.2018.09.040.
[10]
Opitz S, Wünnemann B, Aichner B, et al. Late Glacial and Holocene development of Lake Donggi Cona, north-eastern Tibetan Plateau, inferred from sedimentological analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 337-338(4):159-176.
[11]
Song L, Qiang M R, Lang L L, et al. Changes in palaeoproductivity of Genggahai Lake over the past 16 ka in the Gonghe basin, northeastern Qinghai-Tibetan Plateau[J]. Chinese Science Bulletin, 2012, 57(20):2595-2605.
[12]
Herzschuh U, Zhang C, Mischke S, et al. A Late Quaternary lake record from the Qilian Mountains(NW China):Evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker, and isotope data[J]. Global and Planetary Change, 2005, 46(1-4):361-379.
[13]
Aichner B, Herzschuh U, Wilkes H, et al. δD values of n-alkanes in Tibetan lake sediments and aquatic macrophytes-A surface sediment study and application to a 16 ka record from Lake Koucha[J]. Organic Geochemistry, 2010, 41(8):779-790.
[14]
Herzschuh U, Winter K, Wünnemann B, et al. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra[J]. Quaternary International, 2006, 154(5):113-121.
[15]
Zhu L P, Lü X M, Wang J B, et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM[J]. Scientific Reports, 2015, 5(5):1-8.
[16]
Gyawali A R, Wang J B, Ma Q F, et al. Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 516:101-112. doi:10.1016/j.palaeo.2018.11.033.
[17]
Kramer A, Herzschuh U, Mischke S, et al. Holocene treeline shifts and monsoon variability in the Hengduan Mountains(southeastern Tibetan Plateau), implications from palynological investigations[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 2010, 286(1-2):23-41.
[18]
Zhang C, Mischke S. A late glacial and Holocene lake record from the Nianbaoyeze Mountains and inferences of lake, glacier and climate evolution on the eastern Tibetan Plateau[J]. Quaternary Science Reviews, 2009, 28(19):1970-1983.
[19]
Hong Y T, Hong B, Lin Q H, et al. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene[J]. Earth and Planetary Science Letters, 2003, 211(3-4):371-380.
[20]
黄翡. 西藏佩枯错13000-5000 a B. P. 植被与环境[J]. 古生物学报, 2000, 39(3):104-111. Huang Fei. Vegetation and climate between 13 to 5 ka B. P. in Peiku Co, Tibet[J]. Acta Micropalaeontologica Sinica, 2000, 39(3):104-111.
[21]
Nishimura M, Matsunaka T, Morita Y, et al. Paleoclimatic changes on the southern Tibetan Plateau over the past 19,000 years recorded in Lake Pumoyum Co, and their implications for the southwest monsoon evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 396(3):75-92.
[22]
Wang R L, Scarpitta S C, Zhang S C, et al. Later Pleistocene/Holocene climate conditions of Qinghai-Xizhang Plateau(Tibet)based on carbon and oxygen stable isotopes of Zabuye Lake sediments[J]. Earth and Planetary Science Letters, 2002, 203(1):461-477.
[23]
Guo Y, Zhu L P, Ma Q F, et al. Holocene lake level fluctuations and environmental changes at Taro Co, southwestern Tibet, based on ostracod-inferred water depth reconstruction[J]. The Holocene, 2015, 26(1):29-43.
[24]
郭柳平, 叶庆华, 姚檀栋, 等. 基于GIS的玛旁雍错流域冰川地貌及现代冰川湖泊变化研究[J]. 冰川冻土, 2007, 29(4):517-524. Guo Liuping, Ye Qinghua, Yao Tandong, et al. The glacial landforms and the changes of glacier and lake area in the Mapam Yumco basin in Tibetan Plateau based on GIS[J]. Journal of Glaciology and Geocryology, 2007, 29(4):517-524.
[25]
关志华, 陈传友, 区裕雄, 等. 西藏河流与湖泊[M]. 北京:科学出版社, 1984:170-171. Guan Zhihua, Chen Chuanyou, Ou Yuxiong, et al. The River and Lake of Tibet[M]. Beijing:Science Press, 1984:170-171.
[26]
王君波, 彭萍, 马庆峰, 等. 西藏玛旁雍错和拉昂错水深、水质特征及现代沉积速率[J]. 湖泊科学, 2013, 25(4):609-616. Wang Junbo, Peng Ping, Ma Qingfeng, et al. Investigation of water depth, water quality and modern sedimentation rate in Mapam Yumco and La'ang Co, Tibet[J]. Journal of Lake Sciences, 2013, 25(4):609-616.
[27]
田立德, 姚檀栋, 文蓉, 等. 青藏高原西部纳木那尼冰芯同位素记录的气候意义初探[J]. 第四纪研究, 2012, 32(1):46-52. Tian Lide, Yao Tandong, Wen Rong, et al. A primary recognition on the climatic significance of ice core isotope record in Naimona'nyi of west Tibetan Plateau[J]. Quaternary Sciences, 2012, 32(1):46-52.
[28]
杨逸畴, 李炳元, 伊泽生, 等. 西藏地貌[M]. 北京:科学出版社, 1982:184. Yang Yichou, Li Bingyuan, Yi Zesheng, et al. The Landforms of Tibet[M]. Beijing:Science Press, 1982:184.
[29]
叶庆华, 姚檀栋, 郑红星, 等. 西藏玛旁雍错流域冰川与湖泊变化及其对气候变化的响应[J]. 地理研究, 2008, 27(5):1178-1190. Ye Qinghua, Yao Tandong, Zheng Hongxing, et al. Glacier and lake co-variations and their responses to climate change in the Mapam Yumco basin on Tibet[J]. Geographical Research, 2008, 27(5):1178-1190.
[30]
拉巴, 边多, 次珍, 等. 西藏玛旁雍错流域湖泊面积变化及成因分析[J]. 干旱区研究, 2012, 29(6):992-996. La Ba, Bian Duo, Ci Zhen, et al. Study on the change of Lake Area and Its Causes in the Mapangyong Co basin in Tibet[J]. Arid Zone Research, 2012, 29(6):992-996.
[31]
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine 13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2009, 55(4):1869-1887.
[32]
Kasper T, Haberzettl T, Doberschütz S, et al. Indian Ocean Summer Monsoon(IOSM)-Dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central Tibetan Plateau(China)[J]. Quaternary Science Reviews, 2012, 39(3):73-85.
[33]
Hou J Z, Tian Q, Liang J, et al. Climatic implications of hydrologic changes in two lake catchments on the central Tibetan Plateau since the last glacial[J]. Journal of Paleolimnology, 2017, 58(2):257-273.
[34]
Kastner S, Ohlendorf C, Haberzettl T, et al. Southern hemispheric westerlies control the spatial distribution of modern sediments in Laguna Potrok Aike, Argentina[J]. Journal of Paleolimnology, 2010, 44(4):887-902.
[35]
Huang L, Zhu L P, Wang J B, et al. Glacial activity reflected in a continuous lacustrine record since the early Holocene from the proglacial Laigu Lake on the southeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 456:37-45. doi:10.1016/j.palaeo.2016.05.019.
[36]
马雪洋. 青藏高原东北部哈拉湖沉积物记录的末次盛冰期以来的高分辨率气候环境变化[D]. 兰州:兰州大学博士论文, 2017:70-72. Ma Xueyang. High-resolution Climatic and Environmental Change since the LGM Recorded by Lake Hala, Northeastern Tibetan Plateau[D]. Lanzhou:The Doctoral Dissertation of Lanzhou University, 2017:70-72.
[37]
Liu X, Colman S M, Brown E T, et al. Abrupt deglaciation on the northeastern Tibetan Plateau:Evidence from Lake Qinghai[J]. Journal of Paleolimnology, 2014, 51(2):223-240.
[38]
Hodell D A, Brenner M, Kanfoush S L, et al. Paleoclimate of Southwestern China for the past 50,000 yr inferred from lake sediment records[J]. Quaternary Research, 1999, 52(3):369-380.
[39]
Yao Z J, Wang R, Liu Z F, et al. Spatial-temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet[J]. Journal of Geographical Sciences, 2015, 25(6):687-700.
[40]
Meyers P A, Ishiwatari R. Lacustrine organic geochemistry-An overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7):867-900.
[41]
Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3-4):289-302.
[42]
贾红娟, 汪敬忠, 秦小光, 等. 罗布泊地区晚冰期至中全新世气候特征及气候波动事件[J]. 第四纪研究, 2017, 37(3):510-521. Jia Hongjuan, Wang Jingzhong, Qin Xiaoguang, et al. Climate and abrupt events record in the Lop Nur region from Late Glacial to the Middle Holocene[J]. Quaternary Sciences, 2017, 37(3):510-521.
[43]
谭金凤, 肖霞云, 李艳玲. 滇西北格贡错那卡湖沉积记录揭示的晚全新世气候变化[J]. 第四纪研究, 2018, 38(4):900-911. Tan Jinfeng, Xiao Xiayun, Li Yanling. Late Holocene climatic change revealed by sediment records in Gegongcuonaka Lake, northwestern Yunnan Province[J]. Quaternary Sciences, 2018, 38(4):900-911.
[44]
田庆春, 杨太保, 石培宏. 可可西里地区湖泊深钻揭示的中更新世以来环境变化[J]. 第四纪研究, 2018, 38(5):1101-1110. Tian Qingchun, Yang Taibao, Shi Peihong. Paleoclimate change since the Middle Pleistocene recorded by lake sediments in Hoh Xil[J]. Quaternary Sciences, 2018, 38(5):1101-1110.
[45]
朱立平, 王君波, 林晓, 等. 西藏纳木错深水湖芯反映的8.4 ka以来气候环境变化[J]. 第四纪研究, 2007, 27(4):588-597. Zhu Liping, Wang Junbo, Lin Xiao, et al. Environmental changes reflected by core sediments since 8.4 ka in Nam Co, central Tibet of China[J]. Quaternary Sciences, 2007, 27(4):588-597.
[46]
朱立平, 王君波, 陈玲, 等. 藏南沉错湖泊沉积多指标揭示的2万年以来环境变化[J]. 地理学报, 2004, 59(4):514-524. Zhu Liping, Wang Junbo, Chen Ling, et al. 20000-year environmental change reflected by multidisciplinary lake sediments in Chen Co, Southern Tibet[J]. Acta Geographica Sinca, 2004, 59(4):514-524.
[47]
李久乐, 徐柏青, 林树标, 等. 青藏高原南部枪勇错冰前湖泊沉积记录的近千年来冰川与气候变化[J]. 地球科学与环境学报, 2011, 33(4):402-411. Li Jiule, Xu Baiqing, Lin Shubiao, et al. Glacier and climate changes over the past millennium recorded by proglacial sediment sequence from Qiangyong Lake, southern Tibetan Plateau[J]. Journal of Earth Sciences and Environment, 2011, 33(4):402-411.
[48]
Kramer A, Herzschuh U, Mischke S, et al. Holocene treeline shifts and monsoon variability in the Hengduan Mountains(southeastern Tibetan Plateau), implications from palynological investigations[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 286(1):23-41.
[49]
Kasper T, Haberzettl T, Wang J B, et al. Hydrological variations on the central Tibetan Plateau since the Last Glacial Maximum and their teleconnection to inter-regional and hemispheric climate variations[J]. Journal of Quaternary Science, 2015, 30(1):70-78.
[50]
Dykoski C A, Edwards R L, Hai C, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1):71-86.
[51]
Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews, 1991, 10(4):297-317.
[52]
Annette K, Ulrike H, Steffen M, et al. Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile[J]. Quaternary Research, 2010, 73(2):324-335.
[53]
Zhao Y, Yu Z C, Chen F H. Spatial and temporal patterns of Holocene vegetation and climate changes in arid and semi-arid China[J]. Quaternary International, 2008, 194(1):6-18.
[54]
曾方明, 杨欢, 卞昊昆. 青海湖地区全新世风尘堆积的GDGTs化合物及其环境指示意义[J]. 第四纪研究, 2018, 38(5):1233-1243. Zeng Fangming, Yang Huan, Bian Haokun. GDGTs compounds of the Holocene eolian deposits in Qinghai Lake area and their paleoenvironmental implications[J]. Quaternary Sciences, 2018, 38(5):1233-1243.
[55]
段克勤, 姚檀栋, 王宁练, 等. 青藏高原中部全新世气候不稳定性的高分辨率冰芯记录[J]. 中国科学:地球科学, 2012, 42(9):1441-1449. Duan Keqin, Yao Tandong, Wang Ninglian, et al. The unstable Holocene climatic change recorded in an ice core from the central Tibetan Plateau[J]. Science China:Earth Sciences, 2012, 42(9):1441-1449.
[56]
马庆峰, 朱立平, 吕新苗, 等. 花粉揭示的青藏高原西南部塔若错全新世以来植被与气候变化[J]. 科学通报, 2014, 59(26):2630-2642. Ma Qingfeng, Zhu Liping, Lü Xinmiao, et al. Pollen-inferred Holocene vegetation and climate histories in Taro Co, southwestern Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59(26):2630-2642.
[57]
李炳元, 王苏民, 朱立平, 等. 12 ka前后青藏高原湖泊环境[J]. 中国科学(D辑), 2001,31(增刊):258-263. Li Bing yuan, Wang Sumin, Zhu Liping, et al. 12 ka BP lake environment on the Tibetan Plateau[J]. Science in China(Series D), 2001,44(Suppl.):324-331.