Evalution of shallow loess landslide stability in typical loess hilly region: A case study of Zhidan County in Yan'an area of Shaanxi Province
Yang Wenlu1,2, Qiu Haijun1,2,3, Pei Yanqian1,2, Hu Sheng1,2,3, Cao Mingming1
1. College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, Shaanxi;
2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi'an 710127, Shaanxi;
3. Institute of Earth Surface System and Hazards, Northwest University, Xi'an 710127, Shaanxi
The geological environment of the loess hilly region is fragile, and it is easy to induce shallow loess landslides during the rainy season. Zhidan County is a typical loess hilly region, where the loess landslide is widely distributed and the shallow loess landslides account for 85% of the total number of landslides. The research area is located in Zhidan County of Shaanxi Province, where the geological environment condition is poor and shallow landslides account for 80% of the total landslides. Evaluation of shallow landslides stability is not only conductive to understand the occurrence and development of shallow landslide, but also of great significance for disaster prevention and regional planning. In this paper, 96 shallow landslides were acquired through field investigation, aerial survey by UAVs and interpretation by satellite image. The basic physical and mechanical parameters were obtained through laboratory experiments. The SINMAP model was used to evaluate the stability of shallow landslide under different rainfall conditions in the study area. Then the area of stability regions, the number of landslide points and landslide density under different rainfall levels were analyzed. The simulation results of SINMAP model show that the overall stability of the study area is relatively high. When the precipitation value is 8.6 mm, 15 mm, 25 mm, 50 mm and 100 mm, the area falling in instable classes (including high instable, instable and potentially instable)accounts for 9.12%, 18.93%, 23.17%, 30.94% and 38.67% of the total area respectively, and the unstable area does not exceed half of the area of the watershed. The landslide density of the high instable class is the largest, followed by the instable and potential instable class. The areas expand in instable classes with the increase of precipitation values, and the areas in high instable classes located in the place with steep slope and intensive fluvial erosion has a small change in area. The stability of shallow landslide depends a great extent on the local topography conditions:the elevation is between 1302~1606 m, the slope is between 20°~51°, and the largest number of shallow landslides is in the westward and northwest slope. Finally, the stability simulation results by SINMAP model is verified through landslide field investigation. SINMAP model provides a powerful tool to predict the stability of rainfall induced shallow loess landslides. It not only evaluates the stability of existing landslide, but also predicts the potential landslide in the future under different rainfall conditions, which will be helpful to prevent and mitigate the loss caused by landslide disaster and provide reference for reasonable urban planning and road siting.
杨文璐, 邱海军, 裴艳茜, 胡胜, 曹明明. 典型黄土丘陵区浅层黄土滑坡稳定性评价——以延安市志丹县为例[J]. 第四纪研究, 2019, 39(2): 408-419.
Yang Wenlu, Qiu Haijun, Pei Yanqian, Hu Sheng, Cao Mingming. Evalution of shallow loess landslide stability in typical loess hilly region: A case study of Zhidan County in Yan'an area of Shaanxi Province. Quaternary Sciences, 2019, 39(2): 408-419.
袁宝印, 汤国安, 周力平, 等. 新生代构造运动对黄土高原地貌分异与黄河形成的控制作用[J]. 第四纪研究, 2012, 32(5):829-838. Yuan Baoying, Tang Guo'an, Zhou Liping, et al. Control action on the geomorphic differentiation in Loess Plateau and the formation of Yellow River by Cenozoic tectogenesis[J]. Quaternary Sciences, 2012, 32(5):829-838.
[2]
丁辉, 张茂省, 李林. 西北黄土高原区滑坡遥感解译研究——以陕西延安、宁夏彭阳等地为例[J]. 第四纪研究, 2011, 31(6):1077-1085. Ding Hui, Zhang Maoxing, Li Lin. Interpreting landslides in the northwestern Loess Plateau using remote sensing images[J]. Quaternary Sciences, 2011, 31(6):1077-1085.
[3]
张茂省, 李同录. 黄土滑坡诱发因素及其形成机理研究[J]. 工程地质学报, 2011, 19(4):530-540. Zhang Maoxing, Li Tonglu. Triggering factors and forming mechanism of loess landslides[J]. Journal of Engineering Geology, 2011, 19(4):530-540.
[4]
杨少辉. 黄土丘陵区地质灾害发育特征及规律研究——以黄陵县为例[D]. 西安:长安大学硕士论文, 2010:1-45. Yang Shaohui. Study on the Growing Characteristics and Rules of the Geological Hazards on Loess Plateau-Taking Huangling County as An Example[D]. Xi'an:The Master's Thesis of Chang'an University, 2010:1-45.
[5]
Zhang M, Jie L. Controlling factors of loess landslides in Western China[J]. Environmental Earth Sciences, 2010, 59(8):1671-1680.
[6]
邱海军, 胡胜, 崔鹏, 等. 黄土滑坡灾害空间格局及其空间尺度依赖性研究[J]. 第四纪研究, 2017, 37(2):307-318. Qiu Haijun, Hu Sheng, Cui Peng, et al. Pattern analysis of loess landslides and their scale dependency[J]. Quaternary Sciences, 2017, 37(2):307-318.
[7]
辛星, 张帆宇. 三维确定性模型在浅层黄土滑坡稳定性预测中的应用[J]. 工程科学学报, 2018, 40(4):397-406. Xin Xing, Zhang Fanyu. Application of a 3D deterministic model for predicting shallow loess landslide stability[J]. Chinese Journal of Engineering, 2018, 40(4):397-406.
[8]
黄玉华, 冯卫, 李政国. 陕北延安地区2013年"7.3"暴雨特征及地质灾害成灾模式浅析[J]. 灾害学, 2014, 29(2):54-59. Huang Yuhua, Feng Wei, Li Zhengguo. Characteristics and geological disaster mode of the rainstorm happened on July 3.2013 in Yan'an area[J]. Journal of Catastrophology, 2014, 29(2):54-59.
[9]
彭令, 牛瑞卿, 陈丽霞. GIS支持下三峡库区秭归县滑坡灾害空间预测[J]. 地理研究, 2010, 29(10):1889-1898. Peng Ling, Niu Ruiqing, Chen Lixia. Landslide hazard spatial prediction in Zigui County of the Three Gorges Reservoir area based on GIS[J]. Geographical Research, 2010, 29(10):1889-1898.
[10]
李世海, 刘天苹, 刘晓宇. 论滑坡稳定性分析方法[J]. 岩石力学与工程学报, 2009, 28(S2):3309-3324. Li Shihai, Liu Tianping, Liu Xiaoyu. Analysis method for landslide stability[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2):3309-3324.
[11]
陈国华. 滑坡稳定性评价方法对比研究[D]. 北京:中国地质大学硕士论文, 2006:8-31. Chen Guohua. Comparative Research of Landslide Stability's Evaluation Methods[D]. Beijing:The Master's Thesis of China University of Geoscience, 2006:8-31.
[12]
殷跃平, 张作辰, 黎志恒, 等. 兰州皋兰山黄土滑坡特征及灾度评估研究[J]. 第四纪研究, 2004, 24(3):302-310. Yin Yueping, Zhang Zuochen, Li Zhiheng, et al. Occurrence and hazard assessment on loess landslide of Gaolanshan in Lanzhou[J]. Quaternary Sciences, 2004, 24(3):302-310.
[13]
吴树仁, 董诚, 石菊松, 等. 地质灾害信息系统研究——以重庆市丰都县为例[J]. 第四纪研究, 2003, 23(6):683-691. Wu Shuren, Dong Cheng, Shi Jusong, et al. Study of geological hazard information system:An example from the Fengdu County in the Chongqing City[J]. Quaternary Sciences, 2003, 23(6):683-691.
[14]
曹瑜, 吴文祥, 刘嘉麒, 等. 黄土高原的地理信息系统(GIS)试研究[J]. 第四纪研究, 2001, 21(2):108-113. Cao Yu, Wu Wenxiang, Liu Jiaqi, et al. Preliminary study on Loess Plateau with GIS[J]. Quaternary Sciences, 2001, 21(2):108-113.
[15]
Lee J H, Park H J. Assessment of shallow landslide susceptibility using the transient infiltration flow model and GIS-based probabilistic approach[J]. Landslides, 2016, 13(5):885-903.
[16]
Baum R L, Coe J A, Godt J W, et al. Regional landslide-hazard assessment for Seattle, Washington, USA[J]. Landslides, 2005, 2(4):266-279.
[17]
Xie Mowen, Zhou Guoyun, Esaki T. GIS component based 3D landslide hazard assessment system:3D slope GIS[J]. Chinese Geographical Science, 2003, 13(1):66-72.
[18]
Wu W, Sidle R C. A distributed slope stability model for steep forested basins[J]. Water Resources Research, 1995, 31(8):2097-2110.
[19]
Montgomery D R, Dietrich W E. A physically based model for the topographic control on shallow landsliding[J]. Water Resources Research, 1994, 30(4):1153-1171.
[20]
Liu C, Hu M, Lu P, et al. Assessment of regional shallow landslide stability based on airborne laser scanning data in the Yingxiu area of Sichuan Province(China)[J]. European Journal of Remote Sensing, 2016, 49:835-860.
[21]
Dias A A V, Gunathilake A A J K. Evaluation of Sensitivity of the WAA and SINMAP Models (Static) for Landslide Susceptibility Risk Mapping in Sri Lanka[M]. Boston:Springer International Publishing, 2014:167-173.
[22]
Edirisooriya K V D, Vitanage N S, Uluwaduge P, et al.Understanding disaster risk and mitigation special reference to Ratnapura district[J]. Procedia Engineering, 2018, 212:1034-1039.
[23]
Protong S, Carling P A, Leyland J. Climate change and landslide risk assessment in Uttaradit Province, Thailand[J]. Engineering Journal, 2018, 22(1):243-255.
[24]
Zydroń T, Bucala A, Demczuk P. Analysis of rainfall-induced shallow landslides in Jamne and Jaszcze stream valleys (Polish Carpathians)-Preliminary results[J]. Annals of Warsaw University of Life Sciences-SGGW Land Reclamation, 2016, 48(1):27-40.
[25]
庄建琦, 彭建兵, 张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版), 2013, 43(3):867-876. Zhuang Jianqi, Peng Jianbing, Zhang Liyong. Risk assessment and prediction of the shallow landslide at different precipitation in Loess Plateau[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(3):867-876.
[26]
魏兴丽, 何建勋, 于国强. 不同降雨特征条件下舟曲县地质灾害危险性区划[J]. 水土保持通报, 2016, 36(3):224-229. Wei Xinli, He Jianxun, Yu Guoqiang. Risk zoning of regional geo-hazards under different rainfall characteristics in Zhouqu County[J]. Bulletin of Soil and Water Conservation, 2016, 36(3):224-229.
[27]
裴艳茜, 邱海军, 胡胜, 等. 中巴经济走廊地质灾害敏感性分析[J]. 第四纪研究, 2018, 38(6):1369-1383. Pei Yanqian, Qiu Haijun, Hu Sheng, et al. Susceptibility analysis of geo-hazards in China-Pakistan Economic Corridor[J]. Quaternary Sciences, 2018, 38(6):1369-1383.
[28]
宿星, 孟兴民, 王思源, 等. 陇中黄土高原典型地区滑坡特征参数统计及发育演化机制研究——以天水市为例[J]. 第四纪研究, 2017, 37(2):319-330. Su Xing, Meng Xingmin, Wang Siyuan, et al. Statistics of characteristic prameters and evaluationary mechanism of landslides in typical area of Longzhong Loess Plateau:A case study of Tianshui City[J]. Quaternary Sciences, 2017, 37(2):319-330.
胡胜, 邱海军, 王新刚, 等. 基于高分辨地形的黄土滑坡特征参数提取及其应用意义[J]. 第四纪研究, 2018, 38(2):367-379. Hu Sheng, Qiu Haijun, Wang Xingang, et al. Extracting characteristic parameters of loess landslides based on high-resolution topography and its application prospect[J]. Quaternary Sciences, 2017, 37(2):367-379.
[31]
Zhuang J, Peng J, Wang G, et al. Distribution and characteristics of landslide in Loess Plateau:A case study in Shaanxi Province[J]. Engineering Geology, 2018, 236:89-96.
[32]
曹林昌, 白建义. 志丹县志[M]. 西安:陕西人民出版社, 1996:13-20. Cao Linchang, Bai Jianyi. Annals of Zhidan County[M]. Xi'an:Shaanxi People's Publishing House, 1996:13-20.
[33]
景娇. 陕北黄土高原高速黄土滑坡成因机理及稳定性研究[D]. 西安:长安大学硕士论文, 2014:7-15. Jing Jiao. Study on the Genetic Mechanism and Stability of the High-Speed Loess Slope in Loess Plateau in Northern Shaanxi[D]. Xi'an:The Master's Thesis of Chang'an University, 2014:7-15.
[34]
张乘千. 延安市降雨与黄土滑坡相关性分析[D]. 西安:长安大学硕士论文, 2014:17, 41-46. Zhang Shengqian. Study on Correlation between Rainfall and Loess Landslides in Yan'an[D]. Xi'an:The Master's Thesis of Chang'an University, 2014:17, 41-46.
[35]
Qiu H, Cui P, Regmi A D, et al. The effects of slope length and slope gradient on the size distributions of loess slides:Field observations and simulations[J]. Geomorphology, 2018, 300:69-76.
[36]
Pack R T, Tarboton D G, Goodwin C N. GIS based landslide susceptibility mapping with SINMAP[C]//Bay J A. Proceedings of the 34th Symposium on Engineering Geology and Geotechnical Engineering(34), 1999:219-231.
[37]
武利. 基于SINMAP模型的区域滑坡危险性定量评估及模型验证[J]. 地理与地理信息科学, 2012, 28(2):35-39. Wu Li. A SINMAP-based quantitative assessment and model verification of regional landslide hazard[J]. Geography and Geo-Information Science, 2012, 28(2):35-39.
[38]
王刘华. 延安地区典型滑坡的形成机理研究[D]. 西安:长安大学博士学位论文, 2014:28-41. Wang Liuhua. The Research on the Formation Mechanism of the Typical Landslide in Yan'an Area[D]. Xi'an:The Doctor's Thesis of Chang'an University, 2014:28-41.
[39]
康超, 谌文武, 张帆宇, 等. 确定性模型在黄土沟壑区斜坡稳定性预测中的应用[J]. 岩土力学, 2011, 32(1):207-210. Kang Chao, Zhan Wenwu, Zhang Fanyu, et al. Application of deterministic model to analyzing stability of hillslope of loess gully area[J]. Rock and Soil Mechanics, 2011, 32(1):207-210.
[40]
殷志强, 许强, 赵无忌, 等. 黄河上游夏藏滩巨型滑坡演化过程及形成机制[J]. 第四纪研究, 2016, 36(2):474-483. Yin Zhiqiang, Xu Qiang, Zhao Wuji, et al. Study on the developmental characteristic, evolution processes and forming mechanism of Xiazangtan super large scale landslide of the upper reaches of Yellow River[J]. Quaternary Sciences, 2016, 36(2):474-483.
[41]
金家梁, 王盈, 袁仁茂, 等. 基于确定性系数方法的龙门山地区地震滑坡影响因子敏感性分析——以汶川地震与芦山地震诱发滑坡为例[J]. 第四纪研究, 2018, 38(2):355-366. Jin Jialiang, Wang Ying, Yuan Renmao, et al. Susceptibility analysis on factors of co-seismic landslides in the Longmenshan area based on the certainty factor method-Case study of the Wenchuan and Lushan earthquake-induced landslides[J]. Quaternary Sciences, 2018, 38(2):355-366.
[42]
杨冬冬, 胡胜, 邱海军, 等. 基于模糊层次分析法对"一带一路"重要区域地质灾害危险性评价——以关中经济区为例[J]. 第四纪研究, 2017, 37(3):633-644. Yang Dongdong, Hu Sheng, Qiu Haijun, et al. Danger assessment of geological disasters in important region of "The Belt and Road" based on FAHP-A case study of Guanzhong economic region[J]. Quaternary Sciences, 2017, 37(3):633-644.
[43]
Nery T D, Vieira B C. Susceptibility to shallow landslides in a drainage basin in the Serra do Mar, Slo Paulo, Brazil, predicted using the SINMAP mathematical model[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2):369-378.
[44]
Terhorst B, Kreja R. Slope stability modelling with SINMAP in a settlement area of the Swabian Alb[J]. Landslides, 2009, 6(4):309-319.