C3/C4 vegetation evolution recorded by lake sediments in the Huola basin, Northeast China since the Last Glacial Maximun
Ma Xueyun1,2,3, Wei Zhifu1,2, Wang Yongli4, Wang Gen1,2, Gong Juncheng1,2, Zhang Ting1,2,3, He Wei1,2,3, Yu Xiaoli1,2,3
1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu;
2. Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Chinese Academy of Sciences, Lanzhou 730000, Gansu;
3. University of Chinese Academy of Sciences, Beijing 100049;
4. Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029
The Huola River basin(52°57'N~53°03'N, 121°52'E~122°04'E), located in Heilongjiang Province, belongs to the northern part of the Daxing'anling permafrost region. The Gulian profile(53°00'38.88"N, 121°57'48.24"E) is developed in the Huola valley basin around the mountain at an elevation of 535 m. The thickness of this section is 300 cm with a gravel bottom. The lower part(300~70 cm) is typical lake sediments and the upper part (70~0 cm) is peat. A total of 150 samples were collected with an interval of 2 cm. Five charcoal samples were sent to the Australian Nuclear Science and Technology Center Ansto Accelerator Laboratory for AMS 14C dating. The characteristics of biomarkers extracted from the limnological sediments taken from Gulian Section of Huola basin in Northern Daxing'anling were systematically analyzed by gas chromatography-mass spectrometry (GC/MS) for the first time. Besides, Compound-specific carbon isotopic composition was tested by mass spectrometer (Trace GC, MAT 253). Combined with 14C dating, the paleovegetation and paleoclimatic changes since the Last Glacial Maximum period in the Daxing'anling region of Northeast China were reconstructed. The distribution of (nC27, nC29 and nC29) n-alkanes indicated that the long-chain n-alkanes of the lake sediments in the Gulian section of Huola Basin had obvious odd carbon advantages and the main peak carbon is mainly nC31 since the Late Glacial period, indicating that the organic matters were mainly derived from terrestrial plants. The n-alkanes index(nC27/nC31) had a distribution range of 0.43~1.01, suggesting that the input of herbs was dominated, and the input of woody plants was abundant. The stable carbon isotope records(-35.7 ‰ < δ13nC27 < -32.0 ‰, -36.7 ‰ < δ13nC29 < -32.4 ‰) of long-chain normal n-alkanes derived from terrestrial plants showed that the stable carbon isotope of the long-chain n-alkanes (nC27, nC29 and nC31) in the Gulian section was negative since the last glacial period. The binary model was used to estimate the relative biomass of C3/C4 plants. The results showed that C3 plants in the Daxing'anling region of Northeast China had an absolute advantage since the last glacial period. However, the proportion of C4 plants in the Holocene warm period relatively increased, and C4 plants showed an expansion trend, indicating that warm climate had an important contribution to the increase of C4 plants.
马雪云, 魏志福, 王永莉, 汪亘, 巩俊成, 张婷, 何薇, 玉晓丽. 末次冰盛期以来东北地区霍拉盆地湖泊沉积物记录的C3/C4植被演化[J]. 第四纪研究, 2018, 38(5): 1193-1202.
Ma Xueyun, Wei Zhifu, Wang Yongli, Wang Gen, Gong Juncheng, Zhang Ting, He Wei, Yu Xiaoli. C3/C4 vegetation evolution recorded by lake sediments in the Huola basin, Northeast China since the Last Glacial Maximun. Quaternary Sciences, 2018, 38(5): 1193-1202.
陈泮勤. 全球变化研究——一个新的国际前沿科学计划[J]. 第四纪研究, 1990,(1):68-75. Chen Panqin. A study of globe change-A new international frontal scientific program[J]. Quaternary Sciences, 1990,(1):68-75.
[2]
李玉成, 王苏民, 黄耀生. 气候环境变化的湖泊沉积学响应[J]. 地球科学进展, 1999, 14(4):99-103. Li Yucheng, Wang Sumin, Huang Yaosheng. The sediments responses to environmental and climatic change[J]. Advances in Earth Science, 1999, 14(4):99-103.
[3]
李明慧, 康世昌. 青藏高原湖泊沉积物对古气候环境变化的响应[J]. 盐湖研究, 2007, 15(1):63-72. Li Minghui, Kang Shichang. Responses of lake sediments to paleoenvironmental and paleoclimatic changes in Tibetan Plateau[J]. Journal of Salt Lake Research, 2007, 15(1):63-72.
[4]
韦朝阳, 万国江. 用湖泊沉积研究过去气候变化[J]. 地质地球化学, 1995,(1):54-57. Wei Zhaoyang, Wan Guojiang. Studying of past climate change with lake sediments[J]. Geological Geochemistry, 1995, (1):54-57.
[5]
蒲阳, 张虎才, 陈光杰, 等. 干旱盆地古湖相沉积物生物标志物分布特征及环境意义——以柴达木盆地为例[J]. 中国沙漠, 2013, 33(4):1019-1026. Pu Yang, Zhang Hucai, Chen Guangjie, et al. Distribution characteristics and environmental significances of biomarkers in paleolake sediments of arid basin:A case study in the Qaidam Basin[J]. Journal of Desert Research, 2013, 33(4):1019-1026.
[6]
张恩楼, 孙伟伟, 刘恩峰, 等. 末次冰盛期以来洱海沉积物元素碳同位素特征与区域植被组成变化[J]. 第四纪研究, 2017, 37(5):1027-1036. Zhang Enlou, Sun Weiwei, Liu Enfeng, et al. Vegetation change reconstructed by a stable isotope record of elemental carbon from Lake Erhai, Southwest China since the Last Glacial Maximum[J]. Quaternary Sciences, 2017, 37(5):1027-1036.
[7]
刘思丝, 黄小忠, 强明瑞, 等. 孢粉记录的青藏高原东北部更尕海地区中晚全新世植被和气候变化[J]. 第四纪研究, 2016, 36(2):247-256. Liu Sisi, Huang Xiaozhong, Qiang Mingrui, et al. Vegetation and climate change during the Mid-Late Holocene reflected by the pollen record from Lake Genggahai, northeastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2):247-256.
[8]
王欢业, 刘卫国, 张传伦, 等. 青海湖钻孔沉积物中的羟基甘油二烷基甘油四醚类化合物及其环境意义[J]. 第四纪研究, 2017, 37(5):1151-1160. Wang Huanye, Liu Weiguo, Zhang Chuanlun, et al. Hydroxylated glycerol dialkyl glycerol tetraethers in Lake Qinghai sediments and their paleoclimate implications[J]. Quaternary Sciences, 2017, 37(5):1151-1160.
[9]
韩鹏, 刘兴起. 内蒙古中东部查干淖尔湖流域7000年以来的气候演变[J]. 第四纪研究, 2017, 37(6):1381-1390. Han Peng, Liu Xingqi. The climate evolution inferred from Chagan-Nuur in middle-east part of Inner Mongolia since the last 7000 years[J]. Quaternary Sciences, 2017, 37(6):1381-1390.
[10]
Meyers P A, Ishiwatari R. Lacustrine organic geochemistry-An overview of indicators of organic matter sources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7):867-900.
[11]
Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy:A new tool for climatic assessment[J]. Nature, 1986, 320(6058):129-133.
[12]
张俊辉, 夏敦胜, 张英, 等. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展, 2012, 27(1):42-51. Zhang Junhui, Xia Dunsheng, Zhang Ying, et al. Advances in palaeoclimatic research recorded by peat in China since the last deglaciation[J]. Advances in Earth Science, 2012, 27(1):42-51.
[13]
洪冰, 林庆华, 朱咏煊, 等. 红原泥炭苔草的碳同位素组成与全新世季风变化[J]. 矿物岩石地球化学通报, 2003, 22(2):99-103. Hong Bing, Lin Qinghua, Zhu Yongxuan, et al. Carbon isotopic composition of the carex mulieensis remain of the Hongyuan Peat Bog in the eastern Tibetan Plateau and the Indian Ocean summer monsoon variation in the Holocene[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(2):99-103.
[14]
Bourdon S, Laggoun-défarge F, Disnar J R, et al. Organic matter sources and early diagenetic degradation in a tropical peaty marsh (Tritrivakely, Madagascar):Implications for environmental reconstruction during the sub-Atlantic[J]. Organic Geochemistry, 2000, 31(5):421-438.
[15]
牛蕊, 周立旻, 孟庆浩, 等. 贵州草海南屯泥炭记录的中全新世以来的气候变化[J]. 第四纪研究, 2017, 37(6):1357-1369. Niu Rui, Zhou Limin, Meng Qinghao, et al. The paleoclimate variations of the Nantun peat in the Caohai area since the Middle Holocene[J]. Quaternary Sciences, 2017, 37(6):1357-1369.
[16]
周云鹏, 胡忠行, 张曼, 等. 浙江望东篛亚高山沼泽泥炭磁性特征及其环境意义[J]. 第四纪研究, 2017, 37(6):1348-1356. Zhou Yunpeng, Hu Zhongxing, Zhang Man, et al. Magnetic properties of the Wangdongyang subalpine peatland in Zhejiang Province, Eastern China and its paleoenvironmental implications[J]. Quaternary Sciences, 2017, 37(6):1348-1356.
[17]
李亮, 马春梅, 鹿化煜, 等. 江西中部玉华山沼泽泥炭记录的过去两千年气候变化初步研究[J]. 第四纪研究, 2017, 37(3):548-559. Li Liang, Ma Chunmei, Lu Huayu, et al. A preliminary study of the climate change since 2 ka archived by a peat core from Yuhua Mountain in the middle Jiangxi Province[J]. Quaternary Sciences, 2017, 37(3):548-559.
[18]
李帅, 李鸿凯, 王升忠, 等. 基于有壳变形虫的大兴安岭洛古河泥炭沼泽古水位定量重建[J]. 第四纪研究, 2017, 37(6):1403-1411. Li Shuai, Li Hongkai, Wang Shengzhong, et al. The quantitative reconstruction of the paleowater table of Luoguhe peatland in Daxing'anling Mountains based on testate amoebae assemblages[J]. Quaternary Sciences, 2017, 37(6):1403-1411.
[19]
吕晓霞, 翟世奎. 长江口沉积物中正构烷烃的分布特征及其环境指示意义[J]. 环境科学学报, 2008, 28(6):1221-1226. Lü Xiaoxia, Zhai Shikui. The distribution and environmental significance of n-alkanes in the Changjiang River estuary sediment[J]. Acta Scientiae Circumstantiae, 2008, 28(6):1221-1226.
[20]
崔琳琳, 王旭, 沈吉, 等. 末次盛冰期以来泸沽湖沉积记录的正构烷烃分布特征和单体碳同位素组成及其古植被意义[J]. 第四纪研究, 2015, 35(4):871-880. Cui Linlin, Wang Xu, Shen Ji, et al. Changes in distribution and compound-specific carbon isotope compositions of n-alkanes as recorded in Lugu Lake sediments from Southwestern China since Last Glacial Maximum and implications for paleovegetation evolution[J]. Quaternary Sciences, 2015, 35(4):871-880.
[21]
苑金鹏, 钟宁宁, 吴水平, 等. 土壤中多环芳烃的稳定碳同位素特征及其对污染源示踪意义[J]. 环境科学学报, 2005, 25(1):81-85. Yuan Jinpeng, Zhong Ningning, Wu Shuiping, et al. Stable carbon isotopic composition of polycyclic aromatic hydrocarbons in soil and its implications for the pollutants tracing[J]. Acta Scientiae Circumstantiae, 2005, 25(1):81-85.
[22]
蒲阳, 杨虎才, 雷国良, 等. 青藏高原东北部柴达木盆地古湖泊沉积物正构烷烃记录的MIS 3晚期气候变化[J]. 中国科学:地球科学, 2010, 40(5):624-631. Pu Yang, Yang Hucai, Lei Guoliang, et al. Climate variability recorded by n-alkanes of paleolake sediment in Qaidam Basin on the northeast Tibetan Plateau in late MIS 3[J]. Science China:Earth Sciences, 2010, 40(5):624-631.
[23]
欧杰, 王延华, 杨浩, 等. 正构烷烃及单体碳同位素记录的石臼湖生态环境演变研究[J]. 环境科学, 2013, 34(2):484-493. Ou Jie, Wang Yanhua, Yang Hao, et al. Eco-environmental evolution inferred from n-alkanes and δ13C records in the sediments of Shijiu Lake[J]. Environmental Science, 2013, 34(2):484-493.
[24]
赖旭龙, 杨洪. 古代生物分子在第四纪研究中的应用[J]. 第四纪研究, 2003, 23(5):457-470. Lai Xulong, Yang Hong. Ancient biomolecules and their applications in Quaternary science[J]. Quaternary Sciences, 2003, 23(5):457-470.
[25]
刘卫国, 王政, 李祥忠. 内源贡献对青海湖碳同位素指标量化的影响[J]. 第四纪研究, 2016, 36(3):623-629. Liu Weiguo, Wang Zheng, Li Xiangzhong. The contribution of aquatic plants to sedimentary n-alkanes δ13C values using to qualify compositions of terrigenous plants in Lake Qinghai on the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(3):623-629.
[26]
刘晶晶, 张江勇, 陈云如, 等. 基于叶蜡正构烷烃重建的南海及周边地区植被类型[J]. 第四纪研究, 2016, 36(3):553-563. Liu Jingjing, Zhang Jiangyong, Chen Yunru, et al. Vegetation changes recorded by leaf-wax n-alkanes around the South China Sea[J]. Quaternary Sciences, 2016, 36(3):553-563.
[27]
谢树成, 易轶, 梁斌, 等. 泥炭分子化石单体碳氢同位素的古气候意义[J]. 矿物岩石地球化学通报, 2003, 22(1):8-13. Xie Shucheng, Yi Yi, Liang Bin, et al. Paleoclimate implication from compound-specific δ13C and δD of molecular fossils in peat deposits[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1):8-13.
[28]
Zheng Yanhong, Zhou Weijian, Meyers P A, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit:Indicators of Holocene climate changes in West China[J]. Organic Geochemistry, 2007, 38(11):1927-1940.
[29]
洪冰, 刘丛强, 林庆华, 等. 哈尼泥炭δ18O记录的过去14000年温度演变[J]. 中国科学(D辑), 2009, 39(5):626-637. Hong Bing, Liu Congqiang, Lin Qinghua, et al. Temperature evolution from the δ18O record of Hani peat, Northeast China, in the last 14000 years[J]. Science in China(Series D), 2009, 39(5):626-637.
[30]
王志国. 吉林金川泥炭纤维素稳定碳同位素组成序列与东北季风区五千多年来的环境变迁[J]. 矿物岩石地球化学通报, 1998, 17(1):52-54. Wang Zhiguo. Reconstruction of past 5000-year humidity changes of Northeast China using δ13C values of peat cellulose in Jinchuan region, Jilin Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1998, 17(1):52-54.
[31]
Wang Gen, Wang Yongli, Wei Zhifu, et al. Climate conditions and relative abundance of C3 and C4 vegetation during the past 40 ka inferred from lake sediments in Wudalianchi, Northeast China[J]. Journal of Paleolimnology, 2017, 58(2):243-256.
[32]
Sun Weiwei, Zhang Enlou, Liu Enfeng, et al. Glacial-interglacial vegetation changes in Northeast China inferred from isotopic composition of pyrogenic carbon from Lake Xingkai sediments[J]. Organic Geochemistry, 2018, 121(3):80-88.
[33]
汪亘, 王永莉, 孟培, 等. 东北地区五大连池湖相沉积物正构烷烃和单体碳同位素特征及其古植被意义[J]. 第四纪研究, 2015, 35(4):890-900. Wang Gen, Wang Yongli, Meng Pei, et al. Chemical and compound-specific carbon isotopic characteristics of n-alkanes in the Qingshi lacustrine sediments, Wudalianchi, Northeast China, and their paleovegetation significances[J]. Quaternary Sciences, 2015, 35(4):890-900.
[34]
吴健, 沈吉. 兴凯湖沉积物粒度特征揭示的27.7 ka BP以来区域古气候演化[J]. 湖泊科学, 2010, 22(1):110-118. Wu Jian, Shen Ji. Paleoclimate evolution since 27.7 ka BP reflected by grain size variation of a sediment core from Lake Xingkai, Northeastern Asia[J]. Journal of Lake Sciences, 2010, 22(1):110-118.
[35]
陈皎杰, 刘焱光, 葛淑兰, 等. 末次盛冰期以来兴凯湖的古环境演变——基于地磁场长期变化的年龄框架[J]. 第四纪研究, 2014, 34(3):528-539. Chen Jiaojie, Liu Yanguang, Ge Shulan, et al. Paleoenvironment evolution of the Lake Khanka since the Last Glacial Maximum:Age model reconstructed by secular variation of geomagnetic field[J].Quaternary Sciences, 2014, 34(3):528-539.
[36]
刘强, 李倩, 旺罗, 等. 21 ka B.P. 以来大兴安岭中段月亮湖沉积物全岩有机碳同位素组成变化及其古气候意义[J]. 第四纪研究, 2010, 30(6):1069-1077. Liu Qiang, Li Qian, Wang Luo, et al, Stable carbon isotope record of bulk organic matter from a sediment core at Moon Lake in the middle part of the Daxing'an Mountain Range, Northeast China during the last 21 ka[J]. Quaternary Sciences, 2010, 30(6):1069-1077.
[37]
刘强, 刘嘉麒, 陈晓雨, 等. 18.5 ka B.P. 以来东北四海龙湾玛珥湖全岩有机碳同位素记录及其古气候环境意义[J]. 第四纪研究, 2005, 25(6):711-721. Liu Qiang, Liu Jiaqi, Chen Xiaoyu, et a 1. Stable carbon isotope record of bulk organic matter from the Sihailongwan Maar Lake, Northeast China during the past 18.5 ka[J]. Quaternary Sciences, 2005, 25(6):711-721.
[38]
郭东信, 黄以职, 王家澄, 等. 大兴安岭北部霍拉河盆地地质构造在冻土形成中的作用[J]. 冰川冻土, 1989, 11(3):215-222. Guo Dongxin, Huang Yizhi, Wang Jiacheng, et al. Function of geologic structure in the formation of permafrost conditions in Huola River Basin, north Da Hinggan Ling[J]. Journal of Glaciology and Geocryology, 1989, 11(3):215-222.
[39]
袁秀芝, 周海龙, 桂翰林. 漠河农业气候特点及对农业生产的影响[J]. 黑龙江气象, 2008, 25(3):37-38. Yuan Xiuzhi, Zhou Hailong, Gui Hanlin. Characteristics of Mohe agricultural climate and its impact on agricultural production[J]. Heilongjiang Meteorology, 2008, 25(3):37-38.
[40]
Corrigan D, Kloos C, O Connor C S, et al. Alkanes from four species of Sphagnum moss[J]. Phytochemistry, 1973, 12(1):213-214.
[41]
Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780):1322-1335.
[42]
Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 2010, 3(3):259-265.
[43]
Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contribution to lacustrine sediments-Ⅱ[J]. Organic Geochemistry, 1987, 11(6):513-527.
[44]
Rieley G, Collier R J, Jones D M, et al. The biogeochemistry of Ellesmere Lake, UK-Ⅰ:Source correlation of leaf wax inputs to the sedimentary lipid record[J]. Organic Geochemistry, 1991, 17(6):901-912.
[45]
Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic mocrophytes[J]. Organic Geochemistry, 2000, 31(7):745-749.
[46]
Jeng W L. Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments[J]. Marine Chemistry, 2006, 102(3):242-251.
[47]
伍婧, 刘强. 晚冰期以来月亮湖孢粉记录反映的古植被与古气候演化[J]. 地球科学——中国地质大学学报, 2012, 37(5):947-954. Wu Jing, Liu Qiang. Pollen-recorded vegetation and climate changes from Moon Lake since Late Glacial[J]. Earth Science-Journal of China University of Geosciences, 2012, 37(5):947-954.
[48]
Collister J W, Rieley G, Stem B, et al. Compound-specific δ13C analysis of leaf lipids from plants with differing carbon dioxide metabolisms[J]. Organic Geochemistry, 1994, 21(6-7):619-627.
[49]
Zhang Z H, Zhao M X, Lu H, et a 1. Lower temperature as the main cause of C4 plant declines during the glacial periods on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2003, 214(3-4):467-481.
[50]
饶志国, 贾国东, 朱照宇, 等. 中国东部表土总有机质碳同位素和长链正构烷烃碳同位素对比研究及其意义[J]. 科学通报, 2008, 53(17):2077-2084. Rao Zhiguo, Jia Guodong, Zhu Zhaoyu, et al. Comparative study on carbon isotope and long-chain normal paraffin carbon isotope of total organic matter in topsoil of Eastern China and its significance[J]. Chinese Science Bulletin, 2008, 53(17):2077-2084.
[51]
饶志国, 陈发虎, 张晓, 等. 末次冰期以来全球陆地植被中C3/C4植物相对丰度时空变化基本特征及其可能的驱动机制[J]. 科学通报, 2012, 57(18):1633-1645. Rao Zhiguo, Chen Fahu, Zhang Xiao, et al. Temporal and spatial variation of relative abundance of C3/C4 plants in global terrestrial vegetation since the last glacial period and its possible driving mechanism[J]. Chinese Science Bulletin, 2012, 57(18):1633-1645.
[52]
Ehleringer J R. Photosynthesis and photorespiration:Biochemistry, physiology, and ecological implications[J]. Hortscience, 1979, 14(3):217-222.
[53]
Brincat D, Yamada K, Ishiwatari R, et al. Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments[J]. Organic Geochemistry, 2000, 31(4):287-294.
[54]
Ehleringer J R, Cook C S. Carbon and oxygen isotope ratios of ecosystem respiration along an Oregon conifer transect:Preliminary observations based on small-flask sampling[J]. Tree Physiology, 1998, 18(8-9):513-519.