Paleoclimate change since the Middle Pleistocene recorded by lake sediments in Hoh Xil
Tian Qingchun1, Yang Taibao2, Shi Peihong3
1. College of Geographical Science, Shanxi Normal University, Linfen 041000, Shanxi;
2. Institute of Glaciology and Ecogeography, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu;
3. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, Shaanxi
以青藏高原腹地可可西里地区湖泊沉积钻孔BDQ06(35°13'05"N,93°55'52"E;孔深106 m)为研究对象,基于古地磁测年建立的年代框架,通过对BDQ06孔沉积物粒度、总有机碳、有机碳同位素(δ13 Corg.)及C/N值等气候环境代用指标的分析,重建了可可西里地区中更新世以来的古气候古环境演化序列。根据各环境指标的变化特征将中更新世以来古气候演化划分为5个阶段:929~660 ka B.P.,气候以暖湿冷干交替变化为主;660~480 ka B.P.,与前一阶段相比气候暖湿程度降低;480~360 ka B.P.,气候较为干旱;360~160 ka B.P.,气候不稳定、波动幅度增大;160~5 ka B.P.,气候再次转为暖湿冷干的变化特征。929~610 ka B.P.期间气候出现4次明显的冷干时期,时间上与MIS 22、MIS 20、MIS 18和MIS 16阶段相对应,此后气候表现出明显的趋冷、趋干特征,可能主要受全球变冷的"中更新世革命"(MPT)的影响;360 ka B.P.开始出现频率增强的暖湿气候波动,说明气候不稳定,显示出明显的区域性特征;160 ka B.P.左右出现的较为干冷的时段,与倒数第二次冰期气候相一致,之后环境温度呈现出快速上升的趋势,气候演化进入末次间冰期-末次冰期模式,表现出全球气候一致的特征。整体上,BDQ06孔记录的气候环境演变特征与全球气候变化在冷暖事件上保持一致,但在持续时间、变化强度上存在一定区域性差异。
To understanding the Pleistocene climate changes in the Hoh Xil(HX) of the Tibetan Plateau, we retrieved a 106-m-long sediment core(BDQ06:35°13'05"N, 93°55'52"E) from a paleo-lake, which is located about 30 km apart from the Qingzang Road in the Qinghai Provence. We established the chronology frame of the core by paleomagnetic dating and by comparison paleoclimate index, namely total organic matter(TOC) and the clay particle percentage(<4 μm/%), with the LR04 benthic oxygen isotope stack curves. We reconstructed the regional paleoenvironmental changes based on multi-proxy indices records, including grain size, TOC, carbon isotope composition of bulk organic matter(δ13Corg.) and C/N ratios of the lacustrine sediments.
Our results indicate that the basal age of the core is about 929 ka B.P., and the paleoclimate changes in the HX can be divided into five stages:(1) 929~660 ka B.P., characterized by alternations of warm-humid and cold-dry phases; (2) 660~480 ka B.P., the warm-humid degree was weakened compared to stage 1; (3) 480~360 ka B.P., the climate was drier than before; (4) 360~160 ka B.P., the climate was instability with higher amplitude; (5) 160~5 ka B.P., the climate was alternatively dominated by warm-humid and cold-dry again.
In general, the fluctuating amplitudes of the climate are relatively higher in the HX, and there are three periods of abrupt climate transition occurred since 929 ka B.P. Among these periods, four obvious dry and cold climate events were observed from 929 ka B.P. to 610 ka B.P., corresponding to marine isotope stage(MIS) 22, 20, 18 and 16, respectively. After that, the climate became colder and drier, which may be mainly related to the global cooling during the period of "Mid Pleistocene Transition(MPT) ". From 360~160 ka B.P., the frequency of warm-humid climate fluctuation increases gradually, indicating that climate is instability and has a greater regional character. Then, the relatively dry-cold climate pattern become to appear around 160 ka B.P., coinciding with the climate scenarios during the penultimate ice age. At the end of this stage, the environmental temperature shows a rapid increasing trend. The climate evolution enters into the last glacial-interglacial period pattern, which is coincides with the fluctuations of the global climate changes. In conclusion, characteristics of climatic evolution recorded by core BDQ06 keep pace with global cold and humid climate events, but there are a certain regional differences existed in duration and intensity of climate variation in the HX area.
田庆春, 杨太保, 石培宏. 可可西里地区湖泊深钻揭示的中更新世以来环境变化[J]. 第四纪研究, 2018, 38(5): 1101-1110.
Tian Qingchun, Yang Taibao, Shi Peihong. Paleoclimate change since the Middle Pleistocene recorded by lake sediments in Hoh Xil. Quaternary Sciences, 2018, 38(5): 1101-1110.
李炳元. 青海可可西里地区自然环境[M]. 北京:科学出版社. 1996:1-14. Li Bingyuan. Natural Environment of Hoh Xil Region in Qinghai Province. Beijing:Science Press, 1996:1-14.
[2]
胡东生, 张华京, 李炳元, 等. 青藏高原腹地湖泊沉积序列与古气候变化[J]. 地质学报, 2000, 74(4):363-370. Hu Dongsheng, Zhang Huajing, Li Bingyuan, et al. Lacustrine sedimentary sequences and palaeoclimatic change in the Hinterland of the Qinghai-Tibet Plateau[J]. Acta Geologica Sinica, 2000, 74(4):363-370.
[3]
李世杰, 王小天, 夏威岚, 等. 青藏高原苟鲁错湖泊沉积记录的小冰期气候变化[J]. 第四纪研究, 2004, 24(5):578-584. Li Shijie, Wang Xiaotian, Xia Weilan, et al. The Little Ice Age climate fluctuations derived from lake sediments of Goulucuo, Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2004, 24(5):578-584.
[4]
倪振宇, 王永波, 刘兴起. 青藏高原北部库赛湖自生碳酸盐稳定同位素记录的晚全新世气候组合特征[J]. 第四纪研究, 2016, 36(4):961-969. Ni Zhenyu, Wang Yongbo, Liu Xingqi. Late Holocene climatic combination on the northern Tibetan Plateau based on stable isotope analysis of authigenic carbonate from Kusai Lake[J]. Quaternary Sciences, 2016, 36(4):961-969.
[5]
Liu Xingqi, Dong Hailiang, Yang Xiangdong, et al. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau[J].Earth and Planetary Science Letters, 2009, 280(1-4):276~284
[6]
杨波, 刘兴起, 王永波. 湖泊沉积物碳酸盐含量的XRD半定量分析[J]. 湖泊科学, 2014, 26(4):637~640 Yang Bo, Liu Xingqi, Wang Yongbo. Carbonate contents of lake sediments determined by XRD method[J]. Journal of Lake Sciences, 2014, 26(4):637-640.
[7]
李炳元, 李元芳, 孔昭宸, 等. 青海可可西里苟弄错地区近二万年来的环境变化[J]. 科学通报, 1994, 18(39):1727-1728. Li Bingyuan, Li Yuanfang, Kong Zhaochen, et al. 20000 years environmental changes of the Gounong Co in Hoh Xil of Qinghai Province[J]. Chinese Science Bulletin, 1994, 18(39):1727-1728.
[8]
胡东生. 可可西里地区湖泊水体中金富集规律的初步研究[J]. 科学通报. 1992,(16):1499-1502. Hu Dongsheng. The first step studies for the gold enrich regulation of lake water body in the Kekexili region[J]. Chinese Science Bulletin, 1992,(16):1499-1502.
[9]
马茹莹, 韩凤清, 马海州, 等. 青海可可西里盐湖水化学及硼同位素地球化学特征[J]. 地球学报, 2015, 36(1):60-66. Ma Ruying, Han Fengqing, Ma Haizhou, et al. Hydrochemical characteristics and boron isotope geochemistry of Brine in Hoh Xil, Qinghai Province[J]. Acta Geoscientica Sinica, 2015, 36(1):60-66.
[10]
Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution:Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 1989, 4(4):353-412.
[11]
Berger W H, Yasuda M K, Bickert T, et al. Quaternary time scale for the Ontong Java Plateau:Milankovitch template for Ocean Drilling Program site 806[J]. Geology, 1994, 22(5):463-467.
[12]
张以茀, 郑祥身. 青海可可西里地区地质演化[M]. 北京:科学出版社, 1996:9-15. Zhang Yifu, Zheng Xiangshen. Geological Evolution of the Kekexili Region of Qinghai. Beijing:Science Press, 1996:9-15.
[13]
Chen F H, Bloemendal J, Zhang P Z, et al. An 800 ka proxy record of climate from lake sediments of the Zoigê Basin, the eastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 151(4):307-320.
[14]
Morner N A, Lanser J P. Gothenburg magnetic flip[J]. Nature, 1974, 251(5474):408-409.
[15]
Langereis C G, Dekkers M J, de Lange G J, et al. Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes[J]. Geophysical Journal International 1997,129(1):75-94.
[16]
Cande S C, Kent D V. Revised calibration of geomagnetic polarity time scale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6093-6095.
[17]
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1):1-16. PA1003. doi:10.1029/2004PA001071.
[18]
Sly P G. Sedimentary processes in lake[M]//Lerman A. Lakes:Chemistry, Geology, Physics. New York:Springer-Verlag, 1978:65-90.
[19]
孙千里, 周杰, 肖举乐. 岱海沉积物粒度特征及其古气候意义[J]. 海洋地质与第四纪地质, 2001, 21(1):93-95. Sun Qianli, Zhou Jie, Xiao Jule. Grain size characteristics of Lake Daihai sediments and its paleaoenvironment significance[J]. Marine Geology & Quaternary Geology, 2001, 21(1):93-95.
[20]
Dearing J A. Sedimentary indicators of lake-level changes in the humid temperate zone:A critical review[J]. Journal of Paleolimnology, 1997, 18(1):1-14.
[21]
Digerfeldt G, Olsson S, Sandgren P. Reconstruction of lake-level changes in Lake Xinias, Central Greece during the last 40,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 158(1):65-82.
[22]
刘亚生, 常凤琴, 张虎才, 等. 云南腾冲青海湖泊沉积物物化参数的特点、环境意义及末次冰消期以来的气候环境变化[J]. 第四纪研究, 2015, 35(4):922-933. Liu Yasheng, Chang Fengqin, Zhang Hucai, et al. Environmental significance of physicochemical parameters of sediment and climate changes since the Late Glacial at Qinghai Lake of Tengchong County, Yunnan Province[J]. Quaternary Sciences, 2015, 35(4):922-933.
[23]
郭超, 马玉贞, 刘杰瑞, 等. 过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化[J]. 第四纪研究, 2016, 36(2):405-419. Guo Chao, Ma Yuzhen, Liu Jierui, et al. Climatic change recorded by grain-size in the past about 2000 years from Yamzhog Yumco Lake, Tibet[J]. Quaternary Sciences, 2016, 36(2):405-419.
[24]
Kashiwaya K, Yamanoto A, Fukuyama K. Time variations of erosional force and grain size in Pleistocene lake sediments[J]. Quaternary Research, 1987, 28(1):61-68.
[25]
Narcissi B, Anselmi B, Catalano F, et al. Lithostratigraphy of the 250,000 year record of lacustrine sediments from the Valle di Castilione Crater, Roma. Quaternary Science Reviews, 1992, 11(3):353-362.
[26]
田庆春, 杨太保, 张述鑫, 等. 青藏高原腹地湖泊沉积物磁化率及其环境意义[J]. 沉积学报, 2011, 29(1):143-150. Tian Qingchun, Yang Taibao, Zhang Shuxin, et al. Magnetic susceptibility and its environmental aignificance of lake sediments in Tibet Plateau[J]. Acta Sedimentologiaca Sinica, 2011, 29(1):143-150.
[27]
田庆春, 杨太保, 石培宏. 末次间冰期-末次冰期可可西里地区气候演化形式[J]. 地理研究, 2017, 36(2):336-344. Tian Qingchun, Yang Taibao, Shi Peihong. Climatic changes between the last interglacial age and the last glacial age in Hoh Xil area[J]. Geographical Research, 2017, 36(2):336-344.
[28]
Zhou W J, Xie S C, Meyers P A et al. Reconstruction of Late Glacial and Holocene climate evolution in Southern China from geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry, 2005, 36(9):1272-1284.
[29]
Shen Ji. Spatiotemporal variations of Chinese lakes and their driving mechanisms since the Last Glacial Maximum:A review and synthesis of lacustrine sediment archives[J].Chinese Science Bulletin, 2013, 58(1):17-31.
[30]
贾红娟, 汪敬忠, 秦小光, 等. 罗布泊地区晚冰期至中全新世气候特征及气候波动事件[J]. 第四纪研究, 2017, 37(3):510-521. Jia Hongjuan, Wang Jingzhong, Qin Xiaoguang, et al. Climate and abrupt events recorded in the Lop Nur region from late glacial to the Middle Holocene[J]. Quaternary Sciences, 2017, 37(3):510-521.
[31]
阳小兰, 张茹春, 张振, 等. 安固里淖湖近5000年来环境变化的孢粉及地球化学沉积记录[J]. 第四纪研究, 2017, 37(1):130-142. Yang Xiaolan, Zhang Ruchun, Zhang Zhen, et al. Environmental change since 5000 cal.a B.P. in the Anguli-Nuur Lake area based on palynological and geochemical records[J]. Quaternary Sciences, 2017, 37(1):130-142.
[32]
张平中, 王先彬, 陈践发, 等. 青藏高原RH孔沉积有机质δ13C和氢指数记录[J]. 中国科学(B辑), 1995, 25(6):450-463. Zhang Pingzhong, Wang Xianbin, Chen Jianfa, et al. The records about organic matter, 13C and hydrogen index in the RH core of Tibetan Plateau[J]. Science in China(Series B), 1995, 25(6):450-463.
[33]
黄麒, 孟昭强, 刘海玲, 等. 柴达木盆地查尔汗盐湖区古气候波动模式的初步研究[J]. 中国科学(B辑), 1990,(6):652-663. Huang Qi, Meng Zhaoqiang, Liu Hailing, et al. The preliminary study of ancient climate fluctuation patterns of Qarhan salt lake, Qaidam Basin[J]. Science in China(Series B), 1990,(6):652-663.
[34]
孙晓红, 赵艳, 李泉. 青藏高原东部若尔盖盆地全新世泥炭地发育和植被变化[J]. 中国科学:地球科学, 2017, 47(9):1097-1109. Sun Xiaohong, Zhao Yan, Li Quan. Holocene peatland debelopment and vegetation changes in the Zoigê Basin, eastern Tibetan Plateau[J]. Science China:Earth Sciences, 2017, 47(9):1097-1109.
[35]
孙诚诚, 周文旻, 郑祥民, 等. 青藏高原羊八井盆地全新世以来的泥炭记录[J]. 海洋地质与第四纪地质, 2016, 36(5):149-155. Sun Chengcheng, Zhou Wenmin, Zheng Xiangmin, et al. Peat record of Holocene climate change in the Yangbajing Basin, Tibet Plateau[J]. Marine Geology & Quaternary Geology, 2016, 36(5):149-155.
[36]
Degens D T. Biogeochemistry of stable carbon isotope[M]//Eglinton G. Organic Geochemistry. Berlin:Springer-Ver-lag, 1969:304-329.
[37]
Smith B N, Epstein S. Two categories of 13C/12C ratios for higher plants[J]. Plant Physiology, 1971, 47(3):380-384.
[38]
刘卫国, 王政, 李祥忠. 内源贡献对青海湖碳同位素指标量化的影响[J]. 第四纪研究, 2016, 36(3):623-629. Liu Weiguo, Wang Zheng, Li Xiangzhong. The contribution of aquatic plants to sedimentary n-alkanes δ13C values using to qualify compositions of terrigenous plants in Lake Qinghai on the northeastern Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(3):623-629.
[39]
陈敬安, 万国江, 汪福顺, 等. 湖泊现代沉积物碳环境记录研究[J]. 中国科学(D辑), 2002, 32(1):73-80. Chen Jing'an, Wan Guojiang, Wang Fushun, et al. A study on modern lake sedimentary carbon environmental records[J]. Science in China(Series D), 2002, 32(1):73-80.
[40]
郭兰兰, 冯兆东, 李心清, 等. 鄂尔多斯高原巴汗淖湖泊记录的全新世气候变化[J]. 科学通报, 2007, 32(5):584-590. Guo Lanlan, Feng Zhaodong, Li Xinqing, et al. Holocene climatic and environmental changes recorded in Baahar Nuur Lake core in the Ordos Plateau, Inner Mongolia of China[J]. Chinese Science Bulletin, 2007, 52(5):584-590.
[41]
田庆春, 杨太保, 石培宏. 可可西里古湖泊沉积物有机碳δ13C变化特征及其影响因素[J]. 沉积学报, 2016, 34(2):260-267. Tian Qingchun, Yang Taibao, Shi Peihong. Variation characterstics and influencing factors oraganic carbon isotope from palaeolake sediments in Hoh Xil area[J]. Acta Sedimentologiaca Sinica, 2016, 34(2):260-267.
[42]
吕厚远, 顾兆炎, 吴乃琴, 等. 海拔高度对青藏高原现代表土有机碳同位素组成的影响[J]. 第四纪研究, 2001, 21(5):399-406. Lü Houyuan, Gu Zhaoyan, Wu Naiqin, et al. Effect of altitude on the organic carbon-isotope composition of modern surface soils from Qinghai-Xizang Plateau[J]. Quaternary Sciences, 2001, 21(5):399-406.
[43]
Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6 Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3):5-1-5-21
[44]
Mudelsee M, Schulz M. The mid-Pleistocene climate transition:Onset of 100 ka cycle lags ice volume build-up by 280 ka[J]. Earth and Planetary Science Letters, 1997, 151(1-2):117-123.
[45]
Berger W H, Yasuda M K, Bickert T, et al. Quaternary time scale for the Ontong Java Plateau:Milankovitch template for Ocean Drilling Program Site 806[J]. Geology, 1994, 22(5):463-467.
[46]
施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原隆升与东亚环境变化[J]. 地理学报, 1999, 54(1):10-21. Shi Yafeng, Li Jijun, Li Bingyuan, et al. Uplift of the Qinghai-Xizang(Tibetan)Plateau and East Asia environmental change during Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1):10-21.
[47]
施雅风, 郑本兴, 李世杰, 等. 青藏高原中东部最大冰期的时代、高度与气候环境探讨[J]. 冰川冻土, 1995, 17(2):97-112. Shi Yafeng, Zhen Benxing, Li Shijie, et al. Studies on altitude and climatic environment in the middle and east parts of Tibetan Plateau during Quaternary Maximum Glaciation[J]. Journal of Glaciology and Geocryology, 1995, 17(2):97-112.
[48]
邬光剑, 潘保田, 管清玉, 等. 中更新世全球最大冰期与中国沙漠扩张[J]. 冰川冻土, 2002, 24(5):544-549. Wu Guangjian, Pan Baotian, Guan Qingyu, et al. The Maximum Glaciation and desert expansion in China during MIS 16[J]. Journal of Glaciology and Geocryology, 2002, 24(5):544-549.
[49]
薛滨, 王苏民, 王云飞. 湖泊深钻揭示的中更新世以来中国环境的区域分异及其与亚洲季风的关系[J]. 湖泊科学, 1998, 10(1):1-4. Xue Bin, Wang Sumin, Wang Yunfei. Regional differentiation of environment in China since mid-Pleistocene inferred from lake records and its relation with East Asia monsoon[J]. Journal of Lake Sciences, 1998, 10(1):1-4.
[50]
方小敏, 陈富斌, 施雅风, 等. 甘孜黄土与青藏高原冰冻圈演化[J]. 科学通报, 1996, 41(20):1865~1867 Fang Xiaomin, Chen Fubin, Shi Yafeng, et al. Ganzi loess and the evolution of the cryosphere on the Tibetan Plateau[J]. Chinese Science Bulletin, 1996, 41(20):1865-1867.
[51]
腾晓华, 韩文霞, 叶程程, 等. 柴达木盆地SG-1孔1.0 Ma以来碳酸盐同位素记录的亚洲内陆干旱化及成因[J]. 第四纪研究, 2013, 33(5):866-875. Teng Xiaohua, Han Wenxia, Ye Chengcheng, et al. Aridification of the Asian inland since 1.0 Ma:Evidences from carbonate isotope records of deep core from the Qaidam Basin[J]. Quaternary Sciences, 2013, 33(5):866-875.
[52]
王春虹, 李明慧, 方小敏, 等. 柴达木盆地西部SG-1钻孔中伊蒙混层结构特征及环境意义[J]. 第四纪研究, 2016, 36(4):917-925. Wang Chunhong, Li Minghui, Fang Xiaomin et al. Structural characteristic of mixed layer illite/smectite clay minerals of the SG-1 core in the western Qaidam Basin and its environmental significance[J]. Quaternary Sciences, 2016, 36(4):917-925.
[53]
方小敏, 史正涛, 杨胜利, 等. 天山黄土与古尔班通古特沙漠发育与北疆干旱化[J]. 科学通报, 2002, 47(7):540-545. Fang Xiaomin, Shi Zhengtao, Yang Shengli, et al. The development of Tianshan and loess and Gurbantunggut Desert and northern drought[J]. Chinese Science Bulletin, 2001, 47(7):540-545.
[54]
Wu Fuli, Fang Xiaomin, Ma Yuzhen, et al. A 11.5 Ma sporopollen record of paleoecologic environment evolution in the central Chinese Loess Plateau[J]. Chinese Science Bulletin, 2004, 49(3):295-302.
[55]
丁仲礼. 米兰科维奇冰期旋回理论:挑战与机遇[J]. 第四纪研究, 2006, 26(5):710-717. Ding Zhongli. The Milankovitch theory of Pleistocene glacial cycles:Challenges and changes[J]. Quaternary Sciences, 2006, 26(5):710-717.
[56]
谢冰晶, 程捷, 田明中. 浅析青藏高原隆升对第四纪的气候及生态环境的影响——以冈底斯中段为例[J]. 地质与勘探, 2011, 47(1):121-132. Xie Bingjing, Cheng Jie, Tian Mingzhong. Effects of Qinghai-Tibet Plateau uplift on climate and eco-environment during the Quaternary:A case analysis for the central section of Gangdise, Tibet[J]. Geology and Exploration, 2011, 47(1):121-132.
[57]
山发寿, 杜乃秋, 孔昭宸. 青海湖盆地35万年来的植被演化及环境变迁[J]. 湖泊科学, 1993, 5(1):9-17. Shan Fashou, Du Naiqiu, Kong Zhaochen. Vegetational and environmental changes in the last 350 ka in Erlang Jian, Qinghai Lake[J]. Journal of Lake Sciences, 1995, 5(1):9-17.
[58]
江德昕, 杨惠秋. 青海达布逊湖50万年以来气候变化的孢粉学证据[J]. 沉积学报, 2001, 19(1):101-105. Jiang Dexin, Yang Huiqiu. Palynological evidence for climatic changes in Dabuxun Lake of Qinghai Province during the past 500,000 years[J]. Acta Sedimentologiaca Sinica, 2001, 19(1):101-105.
[59]
沈吉, 吕厚远, 王苏民, 等. 错鄂孔深钻揭示的青藏高原中部2.8 Ma BP以来环境演化及其对构造事件响应[J]. 中国科学(D辑), 2004, 34(4):582-589. Shen Ji, Lü Houyuan, Wang Sumin, et al. A 2.8 Ma record of environmental evolution and tectonic events inferred from the Cuoe core in the middle of Tibetan Plateau[J]. Science in China(Series D), 2004, 4(4):582-589.
[60]
王苏民, 薛滨. 中更新世以来若尔盖盆地环境演化与黄土高原比较研究[J]. 中国科学(D辑), 1996, 26(4):323-328. Wang Sumin, Xue Bin. Environmental evolution of Zoigê Basin since 900 ka B.P. and comparison study with Loess Plateau[J]. Science in China(Series D), 1997, 40(3):329-336.
[61]
施雅风, 郑本兴. 青藏高原进入冰冻圈的时代、高度及其对周围地区的影响[C]//青藏项目专家委员会编. 青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1995). 北京:科学出版社, 1996:136-146. Shi Yafeng, Zheng Benxing. Timing and height of the Qinghai-Xizang Plateau up lifting into the cryosphere and its impact on the surrounding areas[C]//The Expert Committee on the Qingzang Program. Study on the Formation and Evolution of the Qinghai-Xizang Plateau, Environmental Change and Ecological System(1995). Beijing:Science Press, 1996:136-146.
[62]
沈才明, 唐领余, 王苏民, 等. 若尔盖盆地RM孔孢粉记录及其年代序列. 科学通报, 2005, 50(3):246~254. Sheng Caiming, Tang Lingyu, Wang Sumin, et al. Spore records and its chronological list of Ruoergai Basin. Chinese Science Bulletin, 2005, 50(3):246-254.
[63]
吕厚远, 王苏民, 吴乃琴, 等. 青藏高原错鄂湖2.8 Ma来的孢粉记录. 中国科学(D辑)2001, 31(增刊):234-240. Lü Houyuan, Wang Sumin, Wu Naiqin, et al. A new pollen record of the last 2.8 Ma from the Co Ngoin, central Tibetan Plateau[J]. Science in China(Series D), 2001, 31(Suppl.):234-240.
[64]
刘东生, 等. 黄土与环境[M]. 北京:科学出版社. 1985:1-207. Liu Tungsheng, et al. Loess and Environment[M]. Beijing:Science Press, 1985:1-207.
[65]
EPICA community members. Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429(6992):623-629.